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Part I

Introduction
In this part, we introduce monads and their algebras. Section 2 contains the
basic definitions: first illustrated on examples of finite words and∞-words, and
then formally defined. Sections 3-6 show how some results about languages
can be stated and proved on the level of monads, including: the Myhill-Nerode
theorem (Section 3), Eilenberg’s pseudovariety theorem (Section 4), and some
parts of the connection between regular languages and mso (Sections 5 and 6).
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1 Introduction

The principle behind algebraic language theory for various kinds of structures,
such as words or trees, is to use a compositional function from the structures into
a finite set. To talk about compositionality, one needs some way of composing
structures into bigger structures. It so happens that category theory has an
abstract concept for this, namely a monad. The goal of this paper is to propose
monads as a unifying framework for discussing existing algebras and designing
new algebras. To introduce monads and their algebras, we begin with two
examples, which use a monad style to present algebras for finite and infinite
words.

Example 1. Consider the following non-standard definition of a semigroup.
Define a +-algebra A to be a set A called its universe, together with a multi-
plication operation mulA : A+ → A, which is the identity on single letters, and
which is associative in the sense that the following diagram commutes.

(A+)+ µA //

(mulA)+
��

A+

mulA��
A+

mulA

// A
,

In the diagram, (mulA)+ is the function that applies mulA to each label of a
word where the alphabet is A+, and µA is the function which flattens a word of
words into a word, e.g.

(abc)(aa)(acaa) 7→ abcaaacaa.

Restricting the multiplication operation in a +-algebra to words of length two
(the semigroup binary operation) is easily seen to be a one-to-one correspon-
dence between +-algebras and semigroups. �

The second example will be running example in the paper.

Running Example 1. Let us define an algebra for infinite words in the spirit of
the previous example. Define A∞ to be the∞-words over A, i.e. A+∪Aω. Define
an∞-algebra A to be a set A, called its universe, together with a multiplication
operation mulA : A∞ → A, which is the identity on single letters, and which is
associative in the sense that the following diagram commutes.

(A∞)∞
µA //

(mulA)∞ ��

A∞

mulA��
A∞

mulA

// A

In the diagram, (mulA)∞ is the function that applies mulA to the label of every
position in a ∞-words where the alphabet is A∞, and µA flattens an ∞-word
of ∞-words into an ∞-word. If the argument of µA contains an infinite word
on some position, then all subsequent positions are ignored.
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An ∞-algebra is essentially the same thing as an ω-semigroup, see [PP04],
with the difference that ω-semigroups have separate sorts for finite and infinite
words. There is also a close connection with Wilke semigroups [Wil91], which
will be described as the running example develops. �

The similarities in the examples suggest that the should be an abstract no-
tion of algebra, which would cover the examples and possibly other settings,
e.g. trees. A closer look at the examples reveals that concepts of algebraic
language theory such as “algebra”, “morphism”, “language”, “recognisable lan-
guage” can be defined only in terms of the following four basic concepts (written
below in the notation appropriate to +-algebras):

1. how a set A is transformed into a set A+;

2. how a function f : A→ B is lifted to a function f+ : A+ → B+;

3. a flattening operation from (A+)+ → A+;

4. how to represent an element of A as an element of A+.

These four concepts, subject to certain axioms, are what constitutes a monad, a
fundamental concept in category theory (and recently, programming languages).

The point of this paper is that, based on a monad one can also define things
like: “syntactic algebra”, “pseudovariety”, “mso logic”, “profinite object”, and
even prove some theorems about them. Furthermore, monads as an abstraction
cover practically every setting where algebraic language theory has been applied
so far, including labelled scattered orderings [BR12], labelled countable total
orders [CCP11], ranked trees [Ste92], unranked trees [BW08], preclones [ÉW03].

The paper has three parts.
Part I of this paper shows that several results of formal language theory can

be stated and proved on the abstract level of monads, including: the Myhill-
Nerode theorem on syntactic algebras (Section 3), the Eilenberg pseudovariety
theorem (Section 4), or the Reiterman theorem (Section 11) on profinite identi-
ties defining pseudovarieties. Another example is decidability of mso (Section 6),
although here monads only take care of the symbol-pushing part, leaving out
the combinatorial part that is specific to individual monads, like applying the
Ramsey theorem in the case of infinite words. When proving such generali-
sations of classical theorems, one is naturally forced to have a closer look at
notions such as “derivative of a language”, or “finite algebra”, which are used
in the assumptions of the theorems.

Part II includes shows how existing algebraic settings can be seen as a special
case of monads. Part II also contains some new settings, illustrating how new
kinds of algebras can be easily produced using monads. Specifically, Section 8
describes a monad for words with a distinguished position, where standard the-
orems and definitions come for free by virtue of being a monad.

Part III, is devoted to profinite constructions. It is shown that every monad
has a corresponding profinite monad, which, like any monad, has its own no-
tion of recognisability, which does not reduce to recognisability in the original
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monad. For example, the monad for finite words has a corresponding monad of
profinite words, and recognisable languages of profinite words turn out to be a
generalisation of languages of infinite words definable in the logic mso+u.

Thanks. I would like to thank Bartek Klin (who told me what a monad is),
Szymon Toruńczyk, Joost Winter and Marek Zawadowski for discussions on the
subject.

2 Monads and their algebras

This paper uses only the most rudimentary notions of category theory: the
definitions of a category (objects and composable morphisms between them),
and of a functor (something that maps objects to objects and morphisms to
morphisms in a way that is consistent with composition). Almost all examples
in this paper use the category of sets, where objects are sets and morphisms are
functions; or possibly the category of sorted sets, where objects are sorted sets
for some fixed set of sort names, and morphisms are sort-preserving functions.

A monad over a category is defined to be a functor T from the category to
itself, and for every object X in the category, two morphisms

ηX : X → TX and µX : TTX → TX,

which are called the unit and multiplication operations. The monad must satisfy
the axioms given in Figure 1. In the language of sets, an intuition appropriate
for this paper is that a monad inputs a set X, and produces the set of all
“structures” whose “nodes” are labelled by elements of X. Depending on the
monad, the structures could be words, or trees, or graphs, etc. The function
ηX inputs a label and produces a one-node structure that uses this label; while
the function µX , which is the essence of the monad, flattens a structure of
structures into a single structure. Basing on this intuition, we will use the name
T-structures over X for elements of TX.

We already saw two monads in Example 1 and in the running example.
For this paper, the most important thing about monads is that they have

a natural corresponding notion of algebra. An Eilenberg-Moore algebra in a
monad T, or simply T-algebra, is a pair A consisting of a universe A, which is
an object in the category underlining the monad, together with a multiplication
morphism

mulA : TA→ A,

such that the mulA ◦ ηA is the identity, and which is associative in the sense
that the following diagram commutes.

TTA
µA //

TmulA ��

TA
mulA��

TA
mulA

// A
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X
f //

ηX

��

Y

ηY

��
TX

Tf
// TY

TTX
TTf //

µX

��

TTY

µY

��
TX

Tf
// TY

.

TTTX
µTX //

TµX

��

TTX

µX

��
TTX

µX

// TX

TX
idX

$$

ηTX //

TηX
��

TTX

µX

��
TTX

µX

// TX

Figure 1: The axioms of a monad are that these four diagrams commute for
every object X in the category and every morphism f : X → Y . The upper
diagrams say that the unit and multiplication are natural. The lower left dia-
gram says that multiplication is associative, and the lower right says that the
unit is consistent with multiplication.

Observe that this associativity is similar to the lower left axiom in Figure 1.
In fact, the lower left axiom in Figure 1 and the upper half of the lower right
axiom say that µX induces a T-algebra with universe TX.

We use the convention that an algebra is denoted by a boldface letter, while
its universe is written without boldface. A T-morphism between two T-algebras
A and B is defined to be a function h between their universes which respects
their multiplication operations in the sense that the following diagram com-
mutes.

TA
Th //

mulA ��

B
mulB��

A
h

// B

This completes the definition of monads and their algebras.

Languages and colourings. To develop the basic definitions of recognisable
languages over a monad, we require the following parameters, which we call the
setting : the underlying category, the monad, a notion of finite alphabet, and a
notion of finite T-algebra. So far, we do not place any restrictions on the notions
of finiteness, e.g. when considering sets with infinitely many sorts, reasonable
settings will often have finite algebras whose universe is not be finite in the same
sense as a finite algebra. Actually, for some monads, it is not clear what a finite
algebra should be, e.g. this is the case for infinite trees, and this paper sheds
little new light on the question. Fix a setting, with the monad being T, for the
following definitions.
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A colouring of a T-algebra is defined to be a morphism from its universe
to some object in the underlying category. For example, when the category is
sets, then a coloring is like a multivalued language, i.e. instead of saying only
“yes” or “no” to each input, a colouring can have multiple values. A coloring
is said to be recognised by a T-morphism if it factors through it. A coloring is
called T-recognisable if it is recognised by some T-morphism with a finite target,
according to the notion of finite T-algebra given in the setting.

Almost all examples in this paper are in sets, or in sorted sets. When the
category is sets or sorted sets, we will focus mainly on the special case of colour-
ings, namely languages, where colourings have two possible values on every sort.
Consider a finite alphabet, according to the notion of finite alphabet given in
the setting. In all of the examples of this paper where the category is sorted
sets, a finite alphabet will be a possibly sorted set with finitely many elements.
In particular, if there are infinitely many sorts, then a finite alphabet will use
only finitely many. A T-language over a finite alphabet Σ is defined to be any
subset L ⊆ TΣ. Notions of recognisability are inherited from colourings, using
the characteristic function of a language. Colourings are a mild generalisation of
languages, for example, when the category is sets, then a colouring with finitely
many colours is T-recognisable if and only if for every color, its inverse image is
a recognisable language.

When the monad T is clear from the context, we will sometimes skip the
prefix T-, and simply write language, algebra, morphism, structure.

Beyond recognisable languages. The recognisable languages will play the
role of regular languages in the monad. One could go beyond regular languages.
For instance, there is a natural monad version of context-free grammars, where
the production rules have right hand sides in the monad applied to the terminals
and nonterminals, and one can prove some theorems, like closure of context-free
languages under intersection with recognisable languages. Context-free lan-
guages are beyond the scope of this paper.

3 Syntactic morphisms

This section presents a monad generalisation of the Myhill-Nerode theorem,
which gives a sufficient condition for colourings, and therefore also languages,
to have a syntactic (i.e. minimal) morphism. The generalisation is proved only
in the setting of sorted sets, and therefore also in the setting of normal sets1.
Fix a category of sorted sets, for some choice of, possibly infinitely many, sort
names. A finite sorted set is one which has finitely many elements, in particular
it can use only finitely many sorts.

Finitary algebras. If T is a monad, then a T-algebra A is called finitary if
for every w ∈ TA, there is some finite A0 ⊆ A such that w ∈ TA0. Sometimes,

1Bartek Klin has an alternative proof, which works in arbitrary categories, but requires
some additional assumptions.
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a monad is such that every T-algebra is finitary, e.g. this is the case for the
monad of finite words A+.

Theorem 3.1 [Syntactic Morphism Theorem] Consider a monad T in a cate-
gory of sorted sets. Let f be a colouring of an algebra A, which is recognised
by a T-morphism h into some finitary T-algebra. There exists a surjective T-
morphism into a T-algebra

syntf : A→ Af ,

called the syntactic morphism of f , which recognises f and which factors through
every surjective T-morphism recognising f . Furthermore, syntf is unique up to
isomorphisms on Af .

Note that if A itself is finitary, then f is recognised by the identity T-
morphism on A. Therefore, if a monad T is such that every T-algebra is finitary,
then every colouring of a T-algebra has a syntactic morphism. This implies that
every colouring has a syntactic morphism in monads such as the monad of finite
words that corresponds to monoids, the monad of nonempty finite words that
corresponds to semigroups, and several monads for describing finite trees that
will be described later in the paper. Before proving the theorem, we give an
example which shows how that a syntactic morphism might not exist in general.

Running Example 2. Consider the monad of ∞-words and the language

L = {an1ban2b · · · : the sequence ni is unbounded, i.e. lim supni =∞.}

We will prove that L does not have a syntactic morphism. Consider an equiva-
lence relation ∼ on natural numbers such that every equivalence class is finite.
For example, ∼ could identify all numbers that are between two consecutive
powers of two. Define a function

h∼ : {a, b}∞ → N ∪ (N2 × N/∼) ∪ {⊥,>}︸ ︷︷ ︸
A

as follows. If the input is infinite, then h∼ returns ⊥ or > depending on whether
the input belongs to L. If the input has no b’s, then h∼ returns the length.
Finally, if the input contains at least one b, then h returns the triple consisting
of: the number of a’s before the first b; the number of a’s after the last b; the
equivalence class of the largest n such that the input has an infix banb (or the
equivalence class of 0 if there is no such n). One can show that the kernel of h∼
is a congruence in the natural sense, and therefore A can be equipped with the
structure of an ∞-algebra which makes h an ∞-morphism recognising L.

Consider two equivalence relations ∼1 and ∼2 on natural numbers, such
that their transitive closure has infinite equivalence classes, e.g. ∼1 identifies
even numbers with their successors, while ∼2 identifies even numbers with their
predecessors. If there were a syntactic morphism h, then it would need to factor
through both h∼1

and h∼2
, and therefore it would need to assign the same
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value to all words in ba∗b. By associativity, h would assign the same value to all
∞-words with infinitely many b’s, and therefore it would not recognise L. �

The rest of Section 3 is devoted to proving the Syntactic Morphism Theorem.

3.1 Proof of the Syntactic Morphism Theorem

We are working in a category of sorted sets; fix therefore a set of sort names,
and a monad T. We first show that the syntactic morphism, if it exists, is
unique up to ismorphisms on the target algebra. This is a consequence of the
following lemma. In the lemma, the crucial distinction is between a function
between universes of two T-algebras, and such a function which is a T-morphism,
i.e. one that is consistent with the multiplication in the two algebras.

Lemma 3.2 Let T be a monad, let A,B,C be T-algebras, let

f : A→ B and g : A→ C

be T-morphisms, with f being surjective, and let h : B → C be a function such
that, as functions on universes, the following diagram commutes.

A
f //

g
��

B

h
��
C

Then h is a T-morphism.

Proof.
This might be a standard lemma on Eilenberg-Moore algebras, although this
proof uses right inverses, and it will therefore not work in every category. Con-
sider the following diagram.

TB
mulB

!!
Th

++

TA

Tf
<<

Tg ""

mulA // A

g
!!

f // B

h
��

TC
mulC

// C

The right triangular face (involving A,B,C) commutes by assumption of the
lemma, and the left triangular face (involving TA, TB, TC) commutes by T
applied to the assumption of the lemma. The two quadrangular faces commute
because f and g are T-morphisms. Therefore, the entire diagram commutes.
Because f is surjective, and we are in the category of sorted sets, f has a right
inverse, i.e. a function f−1 : B → A such that f ◦ f−1 is the identity on B. By
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the previous commuting diagram, the two paths from TA to C in the following
diagram describe the same function.

TB
Tf−1

// TA
Tf // TB

Th
��

mulTB // B

h
��

TC
mulTC // C

Because T is a functor, it follows that the path connecting the two copies of TB
in the above diagram is actually the identity on TB, and therefore the square
face above commutes, which proves that h is a T-morphism.�

Congruences. Define a congruence in an T-algebra A to be a surjective func-
tion g : A → B from the universe of A to some set such that g ◦mulA factors
through Tg.

Lemma 3.3 If A is a T-algebra and g : A→ B is a congruence, then there is
a multiplication operation on B which makes g into a T-morphism.

Proof.
The assumption that g is a congruence says that there is a function, call it mulB,
which makes the following diagram commute.

TA

mulA
��

Tg // TB

mulB
��

A
g
// B

To prove the lemma, we need to show that mulB is associative, which is explained
in the following diagram.

TTB

TmulB

��

µB // TB

mulB

��

TTA

TTg
dd

TmulA
��

µA // TA

mulA
��

Tg
<<

TA
mulA

//

Tg{{

A
g

""
TB

mulB

// B

The upper face commutes because Tg is a T-morphism between the free algebras
TA and TB. The right and lower faces commute by the assumption on mulB,
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while the left face commutes by T applied to this assumption. It follows that
all paths that begin in TTA and end in B denote the same function. Since g is
surjective, we can use the same argument as in the end of Lemma 3.2 to show
that the perimeter of the diagram commutes. �

Therefore, a congruence is simply a T-morphism with the algebraic structure
on the target being ommitted.

Polynomials. In universal algebra, a polynomial is a term with some con-
stants from the algebra. We generalise this notion to monads. For a set X,
define the set of polynomials over A with variables X to be

polXA
def
= T(A tX).

For a valuation v : X → A, we consider the evaluation function

[[ ]](v) : polXA→ A

which first replaces the variables in the argument polynomial by the valuation v,
and then applies the multiplication in A. The notion of polynomials makes sense
in arbitrary categories, not just those in sorted sets, but the following definition
is specific to the category of sorted sets. Suppose that p is a polynomial over A
with variables X. Define

[[p]] : AX → A

to be the function v 7→ [[p]](v). A problem is that although [[p]] is a well-defined
function, it is not a morphism in the category, because it is not necessarily sort
preserving. For example, if X has just one variable x, then the function [[p]] is
sort preserving only when the (output) sort of p is the same as the sort of the
variable x. In the language of category theory, this problem is that monads in
sorted sets need not be strong. The problem goes away when there is only one
sort.

If h : A→ B is a T-morphism, and p ∈ polXA, then h(p) ∈ polXB is defined
by applying h to the constants in p and leaving the variables alone. Formally
speaking h(p) is obtained by applying Th′ to p, where h′ is the disjoint union
of h and the identity on the variables. From the definition of T-morphism, it
follows that the T-morphisms commute with polynomials in the sense that the
following diagram commutes:

AX

hX

��

[[p]] // A

h

��
BX

[[h(p)]]
// B

(1)

Note that the diagram is not in the category of sorted sets, because the hori-
zontal arrows are not necessarily sort preserving.
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Unary polynomials. In our proof of the Syntactic Morphism Theorem, spe-
cial attention is devoted to unary polynomials. In the setting of (unsorted) sets,
which covers the well-known versions of the Syntactic Morphism Theorem for
monoids or finite automata, the classical construction is to identify elements
that cannot be distinguished by unary polynomials. To define unary polynomi-
als in the setting of sorted sets, one needs a little care with the sorts. In the
following, we assume that the name of each sort is also an element of its own
sort. For sort names τ and σ, a unary polynomial with input sort τ and output
sort σ over A is defined to be a polynomial over A, which has sort σ, and which
uses just one variable, namely the sort name τ . By abuse of notation, if τ is a
sort name then we write polτA and [[p]](a), respectively, instead of the formally
correct pol{τ}A and [[p]](τ 7→ a). In the setting of (unsorted) sets, there is only
one sort and unary polynomials can be composed forming a monoid. In the set-
ting of sorted sets, to compose unary polynomials one needs to take care that
the output sort of one unary polynomial matches the input sort of the other.

Definition of the syntactic morphism. Consider a colouring

f : A→ C,

as in the assumptions of the Syntactic Morphism Theorem. Define an equiv-
alence relation ∼ on the universe A which identifies a, b ∈ A if they have the
same sort τ and

f([[p]](a)) = f([[p]](b)) for every p ∈ polτA.

Define Af to be the equivalence classes of ∼, and define the syntactic morphism

syntf : A→ Af

to be the function which maps a to its equivalence class under ∼. We will show
that syntf is a congruence, and therefore by Lemma 3.3 there is a multiplication
operation on Af image which makes syntf into a surjective T-morphism. Let
us begin by showing that ∼ is a congruence with respect to polynomials with
finitely many variables, as expressed in the following lemma.

Lemma 3.4 Let X be a finite set of variables, and let p ∈ polXA. If v1, v2 :
X → A are valuations then∧

x∈X
v1(x) ∼ v2(x) implies [[p]](v1) ∼ [[p]](v2).

Proof.
The idea is that the definition of ∼ guarantees the lemma for unary polynomials,
and then induction extends the result to polynomials of higher finite aritites.

Consider first the case when X has exactly one variable, i.e. p is a unary
polynomial. Let a1, a2 be the values of the valuations v1, v2 on the unique
variable. We need to show that a1 ∼ a2 implies

[[p]](a1) ∼ [[p]](a2).

13



Unraveling the definition of ∼, we need to show that

(f ◦ [[q]] ◦ [[p]])(a1) = (f ◦ [[q]] ◦ [[p]])(a2)

holds for every unary polynomial q whose input sort is the output sort of p.
Composing the polynomials q and p yields a unary polynomial r such that that
[[q]] ◦ [[p]] and [[r]] describe the same function. By assumption that a1, a2 are
∼-equivalent, they have the same values under f ◦ [[r]], which proves the above
equality, and completes the proof of the special case of the lemma when X has
one variable.

The case when X has more than one variable is proved by a straightforward
induction on the size of X as follows. Let then v1, v2 : X → A be as in the
assumption of the lemma. Choose some parition X = X1 ∪ X2 with both Xi

being nonempty, and define pi for i ∈ {1, 2} to be the polynomial obtained from
p by substituting the variables from Xi with their values under vi. Then

[[p]](v1) = [[p1]](v1|X2) ∼ [[p1]](v2|X2) = [[p2]](v2|X1) ∼ [[p2]](v2|X1) = [[p]](v2).

�

Let us restate a special case of the above lemma in terms of commuting
diagrams.

Corollary 3.5 If X is a finite set then

X

v2

��

v1 // A

syntf

��
A

syntf
// Af

implies

TX

Tv2

��

Tv1 // TA
mulA // A

syntf

��

TA

mulA

��
A

syntf
// Af

Proof.
This is a special case of Lemma 3.4 where the polynomials have no constants in
them, i.e. they are built entirely out of variables. �

Lemma 3.6 If h : A → B is a T-morphism that recognises f , then syntf
factors through h.

Proof.
The value of syntf for an element of A is determined by the values of f ◦ [[p]]
on the element, ranging over all unary polynomials p of appropriate input sort.
Therefore, to prove the lemma it suffices to show that f ◦ [[p]] factors through
h for every unary polynomial p. This is the content of diagram (1) and the
assumption that h recognises f . �
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We now resume the proof of the Syntactic Morphism theorem. Recall the
assumption that the coloring f is recognised by a morphism

h : A→ B

into a finitary T-algebra. By Lemma 3.6, the syntactic morphism factors through
h, and therefore there is a function syntBf which makes the following diagram
commute.

A
h //

syntf   

B

syntBf

��
Af

We will show in the following lemma that syntBf is a congruence on B. The
lemma will complete the proof of the Syntactic Morphism Theorem, because by
Lemma 3.3, there is a multiplication operation on Af which makes it into an
algebra Af such that syntBf is a T-morphism. Therefore, syntf is a T-morphism
from A to Af , as the composition of T-morphisms syntBf and h.

Lemma 3.7 syntBf is a congruence in B.

Proof.
By the assumption that we are in a category of sorted sets, and the assumption
that syntBf is surjective, there is a right inverse

syntBf
−1 : Af → B,

i.e. a function such that syntBf ◦ syntBf
−1 is the identity on Af . Define

i
def
= syntBf

−1 ◦ syntBf.

Similarly, let h−1 : B → A be a right inverse of h, i.e. a function such that
h ◦ h−1 is the identity on B. From the definitions of h−1 and i we see that the
following diagram commutes.

B

syntBf

��

h−1

&&
B

syntBf

%%

i

88

A

syntf
yy

A

h

99

syntf
// Af

(2)

Later in the proof, we will use the above commuting diagram to show that that
the assumptions of Corollary 3.5 are satisfied, when the mappings v1, v2 from
the Corollary are the identity and h−1 ◦ i ◦ h, restricted to a finite subset of A.
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We will prove that Ti does not affect the value under syntBf ◦mulB, i.e. that
the following diagram commutes

TB

mulB
��

Ti // TB

mulB
��

B

syntBf !!

B

syntBf

��
Af

(3)

Before proving that the diagram above commutes, we show how it implies the
statement of the lemma. The statement is that syntBf is a congruence, which
means that if w,w′ ∈ TB have the same image under TsyntBf , then they have
the same image under syntBf◦mulB. By definition i factors through syntBf , and
therefore if w,w′ have the same image under TsyntBf , then they have the same
image under Ti, and therefore they have the same image under syntBf ◦mulB
thanks to (3).

To prove (3), we use the assumption that B is finitary, i.e. every structure in
TB already belongs to TB0 for some finite subset B0 ⊆ B. Therefore, to prove
that the above diagram commutes, it suffices to prove that it commutes when
the upper left TB is replaced by TB0 for some finite B0. Let then B0 be a finite
subset of B. Define A0 to be the image of B0 under h−1, and define j : A→ A
to be the restriction of h−1 ◦ i ◦ h to A0.

TB0

Th−1

��
TA0

mulA

��

Tj //

Th

��

TA

Th

��
mulA

��

TB0

mulB
��

Ti // TB

Th−1

88

mulB

&&

TB

mulB
��

A
h //

syntf
++

B
syntBf

&&

B
syntBf

xx

A
h

oo

syntf
tt

Af

We claim that all paths that begin in the upper TB0 and end in Af denote the
same function. Thanks to (2), the functions j and the identity on A0 satisfy the
assumptions in Corollary 3.5. By the Corollary, the two paths on the permieter
that begin in TB0 and end in Af describe the same function. The two upper
quadrangular face commutes by definition of j. The face which uses TB twice
commutes because h ◦ h−1 is the identity on B. The two faces which use mulA
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commute because h is a T-morphism. The two triangular faces commute by
definition of syntBf .

Since Th◦Th−1 is the identity on TB0, we have proved that the diagram (3)
commutes assuming that the top left corner is replaced by TB0; and therefore
by the assumption on B being finitary we have proved that the diagram (3)
commutes in general.�

4 Pseudovarieties

This section is dedicated to a monad version of Eilenberg’s pseudovariety theo-
rem. Eilenberg’s theorem says that, in the case of semigroups, language pseu-
dovarieties and algebra pseudovarieties, which will be defined below, are in
bijective correspondence. The theorem implies that if L is a language pseudova-
riety, then the membership problem L ∈ L can be decided only by looking at
the syntactic semigroup of L, and one need not look at the accepting set, nor at
the information about which letters are mapped to which elements of the semi-
group. A typical application of the pseudovariety theorem is that definability
in first-order logic, or various fragments thereof, can be determined based only
on the syntactic monoid. The theorem does not give an algorithm to determine
this, the algorithm needs to be found in a case-by-case way.

In this section we prove that the pseudovariety theorem works in general
for monads when the category is (possibly sorted) sets, with the same proof
as in the case of monoids. Surely Eilenberg must have known this, since he
invented both the pseudovariety theorem and algebras in abstract monads, but
I have not found this result in his book [Eil74]. Our generalised pseudovariety
theorem subsumes pseudovariety theorems for: finite words in both monoid and
semigroup variants [Eil74], ∞-words [Wil91], scattered linear orderings [BR12],
finite trees [Ste92]; it also gives pseudovariety theorems for other known settings
which have not had their pseudovariety theorems yet, such as forest algebra.

Algebra pseudovarieties. The definition of an algebra pseudovariety is a
straightforward generalisation of the definition given by Eilenberg for semi-
groups or monoids. It is a class of finite algebras, according to the notion of
finiteness given in the setting, which is closed under products, morphic images
and subalgebras, as defined below in more detail.

• Products. A class of T-algebras is called closed under products if when-
ever A,B are in the class, then so is A×B.

• Morphic images. A class of T-algebras is called closed under morphic
images if whenever h : A→ B is a surjective T-morphism and A is in the
class, then so is B.

• Subalgebras. A class of T-algebras is called closed under subalgebras if
whenever A is in the class, then every subalgebra of A is in the class. A
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subalgebra of A is obtained by restricting the universe to a subset B such
that mulA maps elements of TB to B.

• Algebra pseudovariety. A class of finite T-algebras is called an algebra
pseudovariety if it has all three closure properties defined above.

Running Example 3. Call an ∞-algebra A definite if the multiplication
operation

mulA : A∞ → A

is such that the value of the multiplication depends only on the first n letters of
the argument, for some n depending only on the algebra. Definite ∞-algebras
are easily seen to form an algebra pseudovariety. �

Language pseudovarieties. Unlike for algebras, the notion of language pseu-
dovariety requires some discussion. For intuition, let us recall the original no-
tion of language pseudovariety for semigroups that was introduced by Eilenberg.
Eilenberg defines a language pseudovariety for semigroups to be a class of recog-
nisable languages of finite words which is closed under Boolean combinations,
inverse images of semigroup morphisms h : Σ+ → Γ+, and derivatives. Here a
derivative of a language L ⊆ Σ+ is defined to be any language of the form

w−1Lv−1 def
= {u ∈ Σ+ : wuv ∈ L}.

for some w, v ∈ Σ∗.
It is not immediately obvious how to generalise the notion of derivative

to abstract monads. We propose two solutions: one using unary polynomials,
which we call a polynomial derivative, and one using syntactic morphisms, which
we call a syntactic derivative. The advantage of polynomial derivatives is that
they are closer to the derivatives used by Eilenberg, while the advantage of
syntactic derivatives is that they make sense in settings without a clear notion
of unary polynomials (recall that unary polynomials have only been defined for
sorted sets). The two notions of derivative lead to different notions of language
pseudovariety, which happen to coincide in settings that use sorted sets. The
precise definitions are given below.

• Boolean combinations. A class of T-languages is called closed under
Boolean combinations, if whenever it contains languages L ⊆ TΣ and
K ⊆ TΓ, then it also contains

L ∩K L ∪K TΣ− L

Of course, in the presence of complementation, only one of ∪,∩ is needed.

• Morphic preimages. A class of T-languages is called closed under mor-
phic preimages if whenever the class contains a language L ⊆ TΣ and
h : TΓ → TΣ is a T-morphism with Γ being a finite alphabet, then the
class also contains h−1(L).
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• Polynomial derivatives. (This definition assumes that the setting has
a notion of unary polynomial, which have only been defined for sorted sets
in this paper.) A class of T-languages is called closed under polynomial
derivatives if whenever the class contains a language L ⊆ TΣ and p is a
unary polynomial in the T-algebra TΣ, then the class also contains the
language

p−1L
def
= {w ∈ TΣ : [[p]](w) ∈ L}.

• Syntactic derivatives. A class of T-languages is called closed under
polynomial derivatives if whenever the class contains a language, then it
also contains all other languages recognised by its syntactic algebra.

• Polynomial language pseudovariety. A polynomial language pseu-
dovariety is a class of recognisable T-languages that is closed under Boolean
combinations, morphic preimages, and polynomial derivatives.

• Syntactic language pseudovariety. A polynomial language pseudova-
riety is a class of recognisable T-languages that is closed under Boolean
combinations, morphic preimages, and syntactic derivatives. (Since com-
plementation is covered by syntactic derivatives, it suffices to have only
closure under union and not all Boolean combinations.)

As usual for pseudovarieties, a T-language in the above definitions is formally
treated as its characteristic function, which means that a language comes with a
description of its domain. The reason for this is that it is sometimes important
to know the input alphabet of a language. Before continuing, let us observe the
following simple fact.

Fact 4.1 Polynomial derivatives are a special case of syntactic derivatives.

Proof.
Thanks to (1), any T-morphism, not necessarily the syntactic morphism, which
recognises L will also recognise every polynomial derivative p−1L. �

Running Example 4. Call an∞-language definite if there is some n ∈ N such
that membership in the language depends only on the first n letters. Examples of
definite∞-languages include: “words that begin with a”, or “words of length at
least two”. Clearly definite∞-languages are closed under Boolean combinations.
They are also closed under inverse images of ∞-morphisms, because if

h : Σ∞ → Γ∞

is an ∞-morphism, then the first n letters of h(w) are uniquely determined by
the first n letters (or less) of w. Here it is important that the monad of∞-words
does not allow the empty word; there is a natural variant of the monad which
does have the empty word, and in this variant the definite ∞-languages do not
form a pseudovariety.
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The same argument as for ∞-morphisms applies to functions Σ∞ → Σ∞

defined by unary polynomials. Therefore, definite ∞-languages are closed un-
der polynomial derivatives as well. Summing up, definite ∞-languages form a
polynomial language pseudovariety. Definite ∞-languages also form a syntactic
language pseudovariety, but this takes a little more effort to check, and will
follow from Corollary 4.5. �

4.1 The Syntactic Pseudovariety Theorem.

We have defined two versions of language pseudovarieties, syntactic and poly-
nomial, and therefore there will be two version of Pseudovariety Theorem. In
this section we present the version which talks about syntactic varieties. The
proof is essentially a monad version of half of Eilenberg’s proof, because the
definition of syntactic derivative eliminates the other half. A closer similarity
with Eilenberg’s full theorem is the polynomial version, which is presented in
the next section, but which comes at the cost of restricting to settings that use
sorted sets.

For a class L of recognisable T-languages, define AlgL to be the class of finite
T-algebras which only recognise T-languages from L. For a class A of finite T-
algebras, define Lan A to be the T-languages recognised by T-algebras from A.
The Pseudovariety Theorem says that these mappings are mutual bijections
when restricted to pseudovarieties.

Theorem 4.2 [Syntactic Pseudovariety Theorem] Consider a setting with the
following properties.

• Every recognisable language has a syntactic morphism;

• Every finite algebra is finitely generated, i.e. its universe has a finite subset
G such that multiplication is surjective when restricted to TG;

• Every finite algebra A has a finite subset of its universe A0 with the follow-
ing property. If h : A → B is a surjective T-morphism which is injective
when restricted to A0, then h is an isomorphism.

Then the mapping Lan is a bijection between algebra pseudovarieties and syn-
tactic language pseudovarieties, and its inverse is Alg .

The rest of Section 4.1 is devoted to proving the Syntactic Pseudovariety
Theorem. We begin by showing that Alg and Lan produce pseudovarieties
when given pseudovarieties (of appropriate types, respectively); actually not all
closure properties are needed for this part. If L is a syntactic language pseu-
dovariety, then AlgL is easily seen to be an algebra pseudovariety. Actually, to
prove this, we only need to assumption that L is closed under Boolean combi-
nations. This is because every T-language recognised by A × B is a Boolean
combination of T-languages recognised by A and B. If A is any class of finite
T-algebras, in particular an algebra pseudovariety, then Lan A is easily to be a
syntactic language pseudovariety.
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To finish the proof of the Syntactic Pseudovariety Theorem, it remains to
show that if L and A are pseudovarieties of T-languages and T-algebras respec-
tively, then

Alg LanA = A and Lan AlgL = L.

By definition, the class Lan AlgL consists of T-languages that are recognised by
some finite T-algebra which only recognises T-languages from L. Therefore

Lan AlgL ⊆ L.

For the converse inclusion, consider a language L ∈ L. By assumption on the
setting, L has a syntactic algebra, and by definition of language pseudovarieties,
every language recognised by this syntactic algebra belongs to L. Therefore, L
is recognised by some algebra which only recognises languages from L. Here
we have profited from the definition of syntactic derivatives; with polynomial
derivatives this part of the proof will need to be more involved.

More effort is required for the equality

Alg LanA = A.

By definition, the class Alg LanA consists of finite T-algebras A such that every
finitely sorted T-language recognised by A is recognised by some T-algebra from
A. This gives the right-to-left inclusion. The converse inclusion is proved in the
following lemma.

Lemma 4.3 Let A be a finite T-algebra such that every T-language recognised
by A is recognised by some T-algebra from A. Then A ∈ A.

Proof.
Let G be a finite generating subset of the universe of A, i.e. a subset such that
mulA is surjective when restricted to TG. By the assumptions on the setting,
there is a finite subset A0 of the universe of A such that if a surjective T-
morphism f : A→ B is injective on A0 then it is an isomorphism. For a ∈ A0

define

La = {w ∈ TG : mulA(w) = a}.

Let the syntactic morphism of La be

ha : TG→ Ba.

The syntactic morphism exists because La is recognised by a finite algebra,
namely A, and therefore the Syntactic Morphism Theorem can be applied.
Furthermore, by the assumption of the lemma, La, like any language recognised
by A, is also recognised by some algebra from A. Therefore, the syntactic
algebra Ba is an image of some algebra in A, and therefore itself belongs to A
by closure of algebra pseudovarieties under morphic images. Using the definition
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of syntactic morphism again, the syntactic morphism ha must factor through
mulA. Summing up, Ba ∈ A and there is a surjective morphism fa which makes
the following diagram commute.

TG
mulA //

ha !!

A

fa
��

Ba

Define h to be the product of the morphisms ha ranging over a ∈ A0, which is
surjective onto its image

h : TG→ B ⊆
∏
a∈A0

Ba.

The algebra B belongs to A, by closure of A under finite products and subalge-
bras. Defining f to be the product of all fa, we see that the following diagram
commutes.

TG
mulA //

h !!

A

f

��
B

To prove that f is actually an isomoprhism, it suffices to show that f is inective
when restricted to A0. Because G are generators, every element a ∈ A0 is the
image under mulA of some wa ∈ TG. Furthermore, if a 6= b, then h(wa) 6= h(wb),
because only one of wa, wb belongs to the language La that is recognised by h.
�

4.2 The Polynomial Pseudovariety Theorem

In this section, we prove that if the setting uses sorted sets with finitely many
sorts, then both the syntactic and polynomial versions of language pseudovariety
coincide. The key result is Lemma 4.4 below, which says that syntactic deriva-
tives can be represented as inverse morphic images of Boolean combinations of
polynomial derivatives. This lemma is essentially the other half of Eilenberg’s
proof, which was not used in the syntactic version of the pseudovariety theorem.
We state Lemma 4.4 in the more general setting with possibly infinitely many
sorts. In such a setting, call a language finitely sorted if on all but finitely many
sorts it is full or empty. When there are finitely many sorts, then all languages
are finitely sorted.

Lemma 4.4 Consider a setting where the category is sorted sets, with possibly
infinitely many sorts, and that the notion of finite algebra is such that finiteness
of an algebra implies that the universe is finite on every sort. Then for every
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recognisable T-language L, every finitely sorted syntactic derivative of L is an
inverse image, under some T-morphism, of a Boolean combination of polynomial
derivatives of L.

Before proving the above lemma, let us note two corollaries, and an example
of a setting where the conclusion of the lemma is violated.

Corollary 4.5 Consider a setting where the category is sorted sets with finitely
many sorts, finite alphabets are finite sorted sets, and the notion of finite algebra
is such that finiteness of an algebra implies that the universe is finite. Then
syntactic language pseudovarieties are the same thing as polynomial language
pseudovarieties.

Proof.
Lemma 4.4 implies that every polynomial language pseudovariety is closed under
syntactic derivatives, and is therefore a syntactic language pseudovariety. The
converse is Fact 4.1, which says that closure under syntactic derivatives implies
closure under polynomial derivatives. �

Actually, the above corollary would also be true with infinitely many sorts,
with a modified definition of language pseudovariety where only finitely sorted
languages are allowed. By combining the above corollary with the Syntactic
Pseudovariety Theorem, we get the Polynomial Pseudovariety Theorem stated
below.

Corollary 4.6 [Polynomial Pseudovariety Theorem] Under assumptions on the
setting as in Corollary 4.5, Lan is a bijection between T-algebra pseudovarieties
and polynomial T-language pseudovarieties, and its inverse is Alg .

An advantage of the polynomial version of the pseudovariety theorem is that
it is sometimes easier to check if a class is closed under polynomial derivatives,
as compared to syntactic derivatives. This was the case for definite∞-languages
discussed previously in the running example.

Running Example 5. As an illustration of the Polynomial Pseudovariety
Theorem, it is easy to see that Alg takes the class of definite ∞-languages to
the class of definite ∞-algebras, and the mapping Lan goes the other way. An
∞-language is definite if and only if its syntactic ∞-algebra is definite. �

Here is an example of a setting which violates the conclusions of the Polyno-
mial Pseudovariety Theorem, and therefore also the conclusions of Lemma 4.4.

Example 2. In the proof of the Lemma 4.4, we will use the following property
of the category of sorted sets: if g : X → Y is surjective, then there is an inverse
g−1 : Y → X such that g ◦ g−1 is the identity on Y . An example of a category
where this assumption fails is nominal sets. In nominal sets, the Polynomial
Pseudovariety Theorem also fails, as we show in this example. The example
assumes familiarity with nominal sets, and orbit-finite sets.
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Consider the category where objects are finitely supported nominal sets and
morphisms are finitely supported functions. Consider the monad of finite words
in this category, where algebras are finitely supported semigroups. To complete
the definition of the setting, define finite alphabets to be finitely supported
sets which are orbit-finite, and define finite algebras to be finitely supported
orbit-finite semigroups. This setting was studied in [Boj13], although not using
the monad terminology. The Syntactic Morphism Theorem holds in this set-
ting, as was shown in Lemmas 3.3 and 3.4 of [Boj13]. We will show that the
Pseudovariety Theorem fails in this setting.

Here is the property of finitely supported functions that will make the Poly-
nomial Pseudovariety Theorem fail. Let A denote the atoms underlying the
nominal sets, let P2A be size two sets of atoms, i.e. unordered pairs of atoms.
One can show that if

f : P2A→ A+

is a function supported by a finite set S of atoms,

f({a, b}) = f({c, d}) for a, b, c, d 6∈ S. (4)

Define L to be the polynomial language pseudovariety generated by all recog-
nisable languages over the alphabet A. It is not difficult to see that a language
L ⊆ Σ+ belongs to L if and only if there is a finitely supported monoid morphism

h : Σ+ → A+

such that L is an inverse image under h of some recongisable subset of A+. We
will show that Alg L is not an algebra pseudovariety, because it is not closed
under morphic images.

Consider the following two languages.

1. The alphabet is ordered pairs of atoms, i.e. A2. The language consists of
two letter words over this alphabet such that the two atoms which appear
in the first letter are pairwise distinct from the two atoms that appear in
the second letter. In other words, this language is

L1 = {(a, b)(c, d) : {a, b} ∩ {c, d} = ∅} ⊆ (A2)+

This language is recognised by a semigroup, call it S1, whose universe is

A2 ∪ {>,⊥},

with elements of A2 describing one letter words, with > describing words
in the language, and with ⊥ describing words of length at least two that
are outside the language. Although S1 recognises the language L1, it is
not its syntactic semigroup. To get the syntactic semigroup, one needs to
identify ordered pairs that correspond to the same set, i.e. the syntactic
semigroup, call it S2, has universe

P2A ∪ {>,⊥}.
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Clearly S2 is an image of S1 under a finitely supported semigroup mor-
phism, namely the function which forgets the order in pairs. Therefore,
any algebra pseudovariety with S1 will also contain S2.

2. Here is a language that is recognised by S2. The alphabet is unordered
pairs of atoms, i.e. P2A. The language consists of two letter words over
this alphabet such that the set in the first letter is disjoint with the set in
the second letter. In other words, this language is

L2 = {{a, b}{c, d} : {a, b} ∩ {c, d} = ∅} ⊆ (P2A)+

We claim that AlgL contains S1 but not S2, and is therefore not an algebra
pseudovariety. It is not difficult to show that S1 recognises only languages from
L, and therefore it belongs to Alg L. We only show that L2 is not in L, and
therefore S2 is not in Alg L. To this end, we need to show that there is no
finitely supported semigroup morphism

h : (P2A)+ → A+

such that L2 is an inverse image of some recognisable subset of A+. Indeed,
by (4), the function h would need to assign the same value to two different
letters in P2A, and therefore it could not recognise L2. �

The rest of this section is devoted to proving Lemma 4.4.

Lemma 4.7 Assume the assumptions of Lemma 4.4. Let L be a recognisable
T-language. Every finitely sorted language recognised by the syntactic morphism
of L is is a Boolean combination of polynomial derivatives of L.

Proof.
Let L ⊆ TΣ be a recognisable T-language. Let K be a finitely sorted language
recognised by the syntactic morphism of L, in particular the K is also a subset
of TΣ. We want to show that K is a Boolean combination of derivatives of
L. A finitely sorted language is a finite union of single-sorted languages, and
therefore without loss of generality, we can assume that K entirely included in
a single sort, call it τ .

Claim 4.7.1 There is a finite set P ⊆ polτTΣ such that structures w,w′ ∈ TΣ
of sort τ have the same image under the syntactic morphism of L if and only if

p(w) ∈ L iff p(w′) ∈ L for every p ∈ P . (5)

Proof.
By construction of the syntactic morphism in the proof of the Syntactic Mor-
phism Theorem, structures w,w′ have the same image under the syntactic mor-
phism if and only if (5) holds for every polynomial p ∈ polτTΣ, not necessarily
from some finite set P . In other words, one can choose for every w,w′ a poly-
nomial pw,w′ such that w and w′ have the same image under the syntactic
morphism if and only if

[[pw,w′ ]](w) ∈ L iff [[pw,w′ ]](w
′) ∈ L.
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Furthermore, because the syntactic morphism recognises L, the choice of pw,w′

need need only depend on the images of w and w′ under the syntactic morphism,
for which there are finitely many possibilities. �

Stated differently, the claim says that structures in sort τ have the same
image under the syntactic morphism if and only if they belong to the same
polynomial derivatives p−1L for p belonging to the finite set P in the statement
of the claim. This means that K, being a subset of sort τ that is recognised by
the syntactic morphism, is a Boolean combination of finitely many derivatives.
�

Lemma 4.8 Let Γ be a set and let f : A→ B and h : TΣ→ B be T-morphisms.
If f is surjective, then there is some T-morphism g which makes the following
diagram commute

TΣ

h !!

g // A

f

��
B

Proof.
Because f is surjective, there is a function g′ which makes the following diagram
commute.

A

f
&&

Σ
g′oo ηΣ // TΣ

h
xx

B

Consider the following diagram.

TA

mulA

��

A

ηA

OO

A

f
&&

Σ

g′

OO

g′oo ηΣ // TΣ

h
xx

Tg′

^^

B

By definition of g′, the lower face commutes. The upper left face commutes
because multiplication in an algebra must maps units to themselves, while the
upper right face comes from the assumption that the unit in a monad is a natural
transformation. All arrows on the perimeter of the diamond-shaped diagram
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describe T-morphisms. Therefore, both paths which begin with the edge ηΣ and
end in B describe the same function. Because TΣ is generated by the units of
Σ, and both paths from TΣ to B are (compositions of) T-morphisms, it follows
that both paths from TΣ to B describe the same T-morphism. Therefore, g in
the statement of the lemma can be taken to be mulA ◦ Tg′. �

Proof. (of Lemma 4.4)
The lemma says that if L ⊆ TΓ is a recognisable T-language, then every finitely
sorted syntactic derivative of L is an inverse image, under some T-morphism,
of a Boolean combination of polynomial derivatives of L. Let the syntactic
morphism of L be

f : TΓ→ B.

Suppose that K ⊆ TΣ is a finitely sorted syntactic derivative of L, i.e. it is
recognised by some T-morphism

h : TΣ→ B.

By Lemma 4.8, there is a T-morphism g which makes the following diagram
commute.

TΣ

h !!

g // TΓ

f

��
B

In other words, K is an inverse image, under g, of some language M recognised
by the syntactic morphism f . We can assume without loss of generality that M
is empty (respectively, full) on sorts where K is empty (respectively, full), and
therefore M is also finitely sorted. By Lemma 4.7, M is a Boolean combination
of polynomial derivatives of L. �

This completes the proof of the Polynomial Pseudovariety Theorem.

5 Representing an algebra

In all interesting cases, the monad T produces infinite sets, even on finite argu-
ments. Therefore, the finiteness of the universe of a T-algebra A does not, on
its own, imply that the algebra itself has a finite representation, because one
needs some way of representing the algebra’s multiplication operation

mulA : TA→ A.

In this section, we present one such way. We assume that the monad is in the
category of sets, or sorted sets. The idea is to find a function T0, which chooses
for every finite set A a finite subset T0A ⊆ TA such that:
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1. for every finite T-algebra A with universe A, the multiplication operation
is uniquely determined by its values on T0A;

2. the function A 7→ T0A can be computed, modulo some representation of
elements in T0A ⊆ TA.

For instance, in the monad of finite words, the function T0 maps a set A to
word over A of length two, because a semigroup is uniquely determined by its
neutral element and its binary multiplication. In the example of ∞-algebras,
the function T0 maps A to words over A of length two and to infinite words of
the form aω for some a ∈ A. We now describe these notions in more detail.

Subfunctors. Because the monad is in the category of sets, or sorted sets,
the notion of subset can be used. Define a subfunctor of a monad T to be a
mapping which takes every set X to a subset T0X ⊆ TX. A subfunctor on
its own is not a monad (as defined here it is not even a functor), however it
can be used to generate a monad as follows. For an ordinal number α, define
Tα0X ⊆ TX as follows by transfinite induction: T0

0X is the units of X, while for
α > 0 we have

Tα0X
def
=

⋃
β<α

mulTXT0Tβ0X.

By monotonicity, this sequence must stabilise at some value, which is denoted
by T∗0X. If the monad is finitary, i.e. every element w ∈ TX belongs to w ∈ TY
for some finite Y ⊆ X, then the sequence stabilises at ω, i.e. induction only on
natural numbers is needed. It is not difficult to show that T∗0 is a submonad of
T, i.e. a subfunctor with the monad structure inherited from T. A subfunctor
T0 is said to span an algebra A if

mulAT∗0X = mulATX

holds for every subset X of the universe. A subfunctor is called complete if it
spans every T-algebra, and finitely complete if it spans every finite T-algebra;
note how this depends on the notion of finite T-algebra.

Running Example 6. Consider the monad ∞ for infinite words. Define

T0X
def
= {xy, xω : x, y ∈ X}.

It is not difficult to check that the submonad T∗0 maps X to the finite and
ultimately periodic words over alphabet X. Using the Ramsey Theorem, in the
same way as it is used explicitly by Wilke in [Wil91], and implicitly by Büchi
in [Büc62], we show that T0 is finitely complete. Indeed, let X be a subset of
the universe in some finite ∞-algebra A. To show that T0 spans A, we need
to show that if w ∈ X∞, then there is some ultimately periodic word v over X
such that

mulA(w) = mulA(v).
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If w is finite, then it already is ultimately periodic. Otherwise, using the Ramsey
Theorem, one can decompose w as

w = w0w1w2 · · · with w0, w1, . . . ∈ X+

such that mulA gives the same result for all the finite words w1, w2, . . .. Let ai
be the image of wi under mulA. By assumption that all ai are the same for
i ≥ 1 and by associativity, we have

mulA(w) = mulA(a0a1a1 · · · ) = mulA(w0(w1)ω),

and the latter uses an ultimately periodic word. As we shall see, the argument
made in this example is the only part of the proof of decidability of mso on ∞-
words that needs to be proved by hand; the remainder of the proof will follow
from abstract principles stated in Theorem 6.3. �

Reducts. Consider a subfunctor T0 that is finitely complete for a monad T.
For a finite T-algebra A, define its T0-reduct to be the pair consisting of the
universe A of A, and the restriction of the multiplication operation from A to
the subfunctor:

mulA|T0A : T0A→ A

The T0-reduct is a special case of what category theorists call an algebra over
signature T0. Straight from the definition it follows that if T0 spans A, then
A is uniquely determined by its T0-reduct. In particular, if T0 is complete,
then every algebra over signature T0 extends to at most one T-algebra. Note
the “at most one” in the previous sentence; some algebras over signature T0

might not extend to T-algebras, e.g. not every binary operation extends to a
semigroup operation, because for this associativity is needed. The same holds
for finite completeness and finite algebras. The point of using T0-reducts is
that sometimes T0 can be chosen so that it preserves finiteness, and therefore
T0-reducts can be manipulated by algorithms, at least as long as finite objects
and functions between them can be manipulated by algorithms.

Running Example 7. The T0-reduct of a finite ∞-algebra consists of a finite
universe A together with two operations, of aritites two and one:

· : A×A→ A ω : A→ A.

This is essentially the same thing as a Wilke semigroup. Not every choice of
finite universe and three operations above will yield an T0-representation of
some finite ∞-algebra; this requires the operations to satisfy certain axioms,
e.g. Wilke gives such axioms in Definition 3 of [Wil93]. �
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Computing the syntactic T-morphism. The point of T0-reducts is to have
a finite representation of T-algebras so that they can be manipulated by algo-
rithms. We give one example of such an algorithm, namely the Moore2 algo-
rithm. This algorithm computes the syntactic morphisms in polynomial time.
To state this result, we need to explain how morphisms are represented. Con-
sider a subfunctor T0. We assume that it is effective, in the sense that T0Σ
can be computed up to isomorphism based on Σ for finite Σ, in particular T0

preserves finiteness. The T0-representation of a finite T-algebra is simply the
finite multiplication table that gives the values of mulA for arguments from
T0A. The T0-representation of a T-morphism h : TΣ → A consists of the
T0-representation of the algebra, as well as the values of h for units. If T0 has
polynomial size increase, as is the case in the examples of monoids or∞-algebras
discussed in Examples 6 and 7, then the T0-representation of an algebra will be
of size polynomial with respect to the size of the universe. However, there will
be examples where T0 has exponential size increase, e.g. in Section 7 in the case
of countable chains.

Lemma 5.1 Let T be a monad in a category of sorted sets, with finitely many
sorts, and let T0 be a subfunctor that is complete for finite algebras. Then syn-
tactic T-morphisms can be computed for T-recognisable languages, in polynomial
time with respect to T0-representation.

Proof.
Using the Moore algorithm. �

6 Monadic second-order logic

An important part of the theory of regular languages is the connection between
recognisability and definability in monadic second-order logic mso. This con-
nection says that languages recognised by finite recognisers are the same thing
as mso definable languages. Examples where this connection holds include: fi-
nite words (as proved independently by Büchi, Elgot and Trakhtenbrot), infinite
words (as proved by Büchi), finite trees (as proved by Thatcher and Wright),
infinite trees (as proved by Rabin), etc. There are common ingredients in all
of the proofs, and there are parts that are specific to each domain. In this
section, we show that the common ingredients can be stated and proved on the
abstract level of monads. This takes care of much of the symbol pushing in
the proofs, and leaves only the combinatorial parts to be proved in each spe-
cific case, e.g. nothing is left to be proved for finite words or trees, or only the
Ramsey theorem needs to be applied in the case of ∞-words.

6.1 Language theoretic definition of mso

To establish the connection between mso and recognisability, consider the fol-
lowing lemma, see [Tho96], which characterises mso in a way that does not talk

2This is not the same Moore as in Eilenberg-Moore algebras.
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about “positions” or “sets of positions” of a structure, but is defined in purely
language theoretic terms.

Lemma 6.1 A language L ⊆ Σ∗ is definable in mso if and only if it belongs to
the least class of languages that is closed under Boolean combinations, images
and inverse images of morphisms h : Σ∗ → Γ∗, and which contains the languages

0∗ ⊆ {0, 1}∗ and 0∗1∗ ⊆ {0, 1}∗.

A similar lemma holds for infinite words (instead of 0∗1∗ one uses 0∗1∞),
and also for finite and infinite trees, etc. Motivated by the above, we define
an abstract notion of mso in a monad T. In the abstract version, predicates
are modelled by languages. For a set L of T-languages, define msoT(L) to be
the smallest class of T-languages which contains L, is closed under Booolean
operations, images and inverse images of T-morphisms.

The following lemma is in the category of sets, or more generally, in cate-
gories which have a powerset functor that preserves finiteness. A non-example
is the category of nominal sets with orbit-finite sets, where powerset does not
preserve orbit-finiteness, and also mso contains non-recognisable languages,
see [Boj13].

Lemma 6.2 If L contains only T-recognisable T-languages, then so does msoT(L).

Proof.
To prove the lemma, one needs to show that T-recognisable languages are
closed under Boolean operations, images of T-morphisms, inverse images of
T-morphisms. For Boolean operations we use products, for inverse images the
property is immediate. The only nontrivial part is the images, where we use the
powerset construction, defined as follows. We write PX for the powerset of X.
If X is a set, then we say that w ∈ TX belongs pointwise to v ∈ TPX if there
is some element of

T{(a ∈ X, b ∈ PX) : a ∈ b}

which projects to w and v respectively on the first and second coordinates. For
a T-algebra A, define its powerset to be the T-algebra

PA : TPA→ PA

whose multiplication operation maps w ∈ TPA to the set

{mulA(v) : v ∈ TA belongs pointwise to w}.

It is not difficult to check that this is indeed a T-algebra, for the distrustful see
Johnstone []. �
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6.2 Deciding satisfiability of mso

For a monad T, we define mso satisfiability over T to be the following decision
problem. An instance is what one can see as an mso formula, which is formalised
as an expression that uses the constructors of mso formulas, with the predicates
being represented by T-morphisms recognising them. The question is whether
the language corresponding to the instance is nonempty.

In this section we give a sufficient criterion for the decidability of mso sat-
isfiability. We assume that the monad is in the setting of finitely sorted sets.

Strongly effective subfunctor. Recall the notion of an effective subfunctor
T0 from Section 5, which said that if Σ is finite then T0Σ is also finite and
can be computed based on Σ. As discussed in Section 5, if a monad T has an
effective subfunctor T0 that is finitely complete, then a finite T-algebra can be
represented by its multiplication table restricted to T0, while a T-morphism

h : TΣ→ A

where Σ is a finite alphabet and A is finite can be represented by its values on
generators, i.e. units of Σ. For the results on mso of this section, we will need
a stronger assumption, which says that algebras recognising singleton sets can
be computed. A subfunctor T0 is called strongly effective if for every finite set
Σ and every w ∈ T0Σ, one can compute a representation of a T-morphism

h : TΣ→ A

into a finite T-algebra that recognises {w}.

Example 3. Consider the monad ∞ of infinite words, and the subfunctor

T0X
def
= {ε, xy, xω : x, y ∈ X}.

which was considered in Examples 6 and 7, and proved to be finitely complete.
We claim that T0 is strongly effective. Clearly T0 preserves finiteness and can
be computed, as T0X is isomoprhic to 1tX2 tX. For a finite alphabet Σ and
a, b ∈ Σ it is not difficult to compute T0-reducts of ∞-algebras that recognise
the languages {ab} and {aω}. Let us do the case of {aω}. The ∞-algebra has
four elements in its universe, representing the empty word, finite words in a+,
the unique infinite word aω, and finally words that use some letter other than
a. �

The following theorem shows that a sufficient crieterion for decidable mso
satisfiability is having a subfunctor that is finitely complete and strongly effec-
tive.

Theorem 6.3 Let T be a monad in the setting of finitely sorted sets. If there
is a subfunctor T0 that is strongly effective and finitely complete, then mso
satisfiability is decidable.
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As mentioned at the beginning of this section, Theorem 6.3 is abstract non-
sense in the sense that it does not resolve the actual combinatorics necessary
to prove satisfiability of mso. This can be seen in the series of Examples 6, 7
and 3, which show that the monad of infinite words has a subfunctor that is
finitely complete and effective, and therefore Theorem 6.3 can be invoked to
show that satisfiability of mso is decidable over infinite words. The decidability
proof that comes from these examples has the same structure as the original
proof of Büchi [Büc62], or its algebraic version in [Wil93]. What the examples
show is that a large part of the proof is sufficiently generic to be stated on the
abstract level of monads; and the only challenge is finding a subfunctor that is
finitely complete and strongly effective, with finite completeness being essential
part.

Theorem 6.3 follows immediately from the following lemma.

Lemma 6.4 From multiplication tables of T0-reducts of a finite T-algebras A,B,
one can compute multiplication tables of the T0-reducts of PA and A×B.

Proof.
The Cartesian product is immediate, the interesting case is the powerset PA.
For w ∈ T0(PA), we need to compute mulPA(w). By strong effectivity of T0, we
can compute a T-morphism

h : T(PA)→ B

that recognises the singleton {w}. Define Σ to be the finite set of pairs (a,A0)
such that a ∈ A0 ⊆ A and consider the T-morphism

g : TΣ→ A×B

which works like mulA on the first coordinate, and like h on the second coordi-
nate. By definition of the powerset algebra,

mulPA(w) = {a : some v ∈ TΣ satisfies g(v) = (a, h(w))}.

Therefore, to compute the above, it suffices to be able to compute the image

g(TΣ) ⊆ A×B.

Because T0 spans every finite T-algebra, the above image is the same thing as
the smallest subset of A×B that contains images of single letters from Σ, and
which is closed under g restricted to T0. This subset can be computed. �
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Part II

Example Monads
In this part, we give examples of how monads can be used to describe algebraic
approaches to the languages for labelled chains (Section 7), unary queries over
finite words (Section 8) and various kinds of trees (Section 9). These examples
illustrate the general theorems from the first part, i.e. the Syntactic Morphism
Theorem, the Eilenberg Pseudovariety Theorem, and the results on mso.
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7 Monads for chains

In this section, we show monads for representing chains, which are a generalisa-
tion of infinite words, where the set of positions can be any total order, e.g. the
rational or even real numbers. A chain over an alphabet Σ is defined to be a
nonempty totally ordered set of positions, together with a labelling of these po-
sitions by Σ. Chains form a monad, modulo the issue that all chains over a given
alphabet do not form a set. The unit of this monad interprets an element a ∈ Σ
as a chain with a single position labelled by a. The multiplication of a chain of
chains w is defined by taking positions to be pairs (i, j) such that i is a position
in w, and j is a position in the label of position i, ordered lexicographically.

Shelah showed in [She75] that it is undecidable if a sentence of mso is true
in ordered real numbers (R,≤), which can be seen as an unlabelled chain, or
equivalently, a chain over a one-letter alphabet. This implies that satisfiability
of mso is undecidable on arbitary chains, or even on chains of cardinality con-
tinuum, i.e. one cannot decide, given an mso formula with a binary predicate
for the order, whether or not the formula is true in some chain. The binary
predicate for the order can be seen as the language of chains over the alphabet
{0, 1} where all zeros are before all ones. It follows that the assumptions of
Theorem 6.3 cannot be met, even for chains of cardinality at most continuum.
These problems go away if one considers countable chains.

Countable chains. A countable chain is one where the set of positions is
countable. A countable chain is called scattered if its indexing set is scattered,
i.e. its positions do not embed an isomorphic copy of the rational numbers.
A special case of a scattered chain is a countable well-chain, i.e. one where
the positions are well-ordered. These three kinds of chains are submonads of
the monad of chains, i.e. they form monads when equipped with the unit and
multiplication inherited from the monad of all chains.

The following theorem shows that in all three cases, the algebras admit
finitely complete subfunctors, as defined in Section 5, which are also strongly
effective as defined in Section 6. The cases of countable well-founded and count-
able scattered chains are simple enough to warrant a self-contained proof, mod-
ulo the Hausdorff theorem on scattered chains. The case of arbitrary countable
chains is more involved and follows from [She75], see also [CCP11].

Theorem 7.1

1. Every finite algebra in the monad of countable well-chains is spanned by

X 7→ {x · y, xω : x, y ∈ X}

2. Every finite algebra in the monad of countable scattered chains is spanned
by

X 7→ {x · y, xω, x−ω : x, y ∈ X}
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3. Every finite algebra in the monad of countable chains is spanned by

X 7→ {x · y, xω, x−ω, shuffleY : x, y ∈ X,Y ⊆ X}

where shuffleY is the chain where the positions are rational numbers and
where every y ∈ Y labels a dense subset (such a chain is unique up to
isomorphism).

Proof. (of the first two cases)
The Hausdorff theorem on scattered chains says that scattered chains are the
smallest class of chains that contains the finite chains, chains indexed by ω and
−ω, and is closed under substitution. For well-founded countable chains, the
same holds, but −ω is not allowed. The result then follows, using the Ramsey
theorem in the same way as in the case of ∞-algebras. �

Corollary 7.2 Satisfiability for mso is decidable on: all countable chains, scat-
tered chains, and well-ordered countable chains.

Proof.
It is easy to see that the subfunctors given in Theorem 7.1 are strongly effective.
Therefore, the result follows from Theorem 6.3. �

In particular, for the well-chains and the scattered chains, we get a simple
self-contained proof of decidability for mso. This proof is no different from the
known ones, but the advantage of using monads is that they clearly identify
which part of the argument is specific to the monad being used.

8 Pointed words

This section presents a monad which generates a new kind of algebra, which,
although simple, has not appeared in the literature up to the author’s best
knowledge. The monad, call it Point, is defined by

PointA
def
= A∗AA∗,

where A is a disjoint copy of the set A. Elements of PointA are called pointed
words3. The idea is that a pointed word represents a nonempty word over A
where the underlined position is selected, and therefore a pointed word can be
used as an input to a unary query that tests properties of positions in a word.
Therefore we will use the term unary query for a set of pointed words. The unit
operation is a 7→ a, while the monad multiplication operation is the same as in
the monad of finite words, except that the underlined position is the underlined
position in the underlined word.

A pointed word can be viewed in two ways: as a nonempty word over al-
phabet Σ with a distinguished position, or as a special case of a non-pointed

3Similar ideas would work for pointed chains, pointed trees, etc.
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word over an extended alphabet Σ∪Σ. In logical terms, the first view proposes
that sets of pointed words are defined by unary queries (i.e. formulas with one
free individual variable) over the alphabet Σ, and the second view proposes that
sets of pointed words are defined by Boolean queries (i.e. with no free variables)
over the extended alphabet Σ∪Σ. For some logics, the two views are essentially
the same. For instance a set of pointed words is mso definable in the first view
if and only if it is mso-definable in the second view. The same is true for first-
order logic with the order predicate. Therefore, for some logics such as mso or
first-order logic, characterising unary queries reduces to characterising Boolean
queries. However, for some logics this is not the case.

In Section 8.1, we will show that for two-variable first-order logic, charac-
terising unary queries is not easily reducible to characterising Boolean queries
over extended alphabets. We also show how finite Point-algebras are useful in
characterising unary queries. Along the way, we use much of the machinery
developed in Part I of this paper, in particular the Syntactic Morphism theo-
rem, the Pseudovariety Theorem, and the results on representation. All of these
would be relatively straightforward to prove by hand in the special case of the
monad Point, but deducing them from abstract nonsense allows us to focus on
the more specific and combinatorial parts of the proof.

Much of the material in Section 8.1 is specific to unary queries definable
in two-variable first-order logic, and the reader who is more interested in the
general principles of monads is advised to skip it.

8.1 Unary queries definable in two-variable first-order logic

To illustrate the monad of pointed words Point, consider the fragment of first-
order logic that uses only two variables, but which is allowed to reuse them by
requantifying. The logic has access to predicates for the labels and the order,
but not for the successor, although similar results are true for other choices of
predicates. We say that a set of pointed words, i.e. a unary query, is two-variable
definable if it can be defined by a formula of two-variable first-order logic that
has one free variable, say x, and which uses the predicates described above.
In the semantics of the formula, the free variable binds the selected position,
but once the free variable of the query is requantified, the selected position is
forgotten. For example the unary query “the distinguished position is followed
by at least two positions with label a” can be defined in two-variable first-order
logic, although only thanks to using requantification:

ϕ(x) = ∃y (x < y ∧ a(y) ∧ ∃x (y < x ∧ a(x))).

It is not immediately clear how to define the unary query “the successor of the
distinguished position has label a”, because the natural formula would use three
variables to define successor in terms of order:

ψ(x) = ∃y (x < y ∧ a(y) ∧ ∀z(z ≤ x ∨ y ≤ z)).

In fact, the unary query ψ(x) cannot be defined using two variables, as long as
the vocabulary has predicates just for the order and labels, which is our chosen
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setting in this section. This example illustrates that with only two variables, the
choice of vocabulary is more important than in first-order logic with arbitrarily
many variables.

The two-variable fragment of first-order logic is a well-studied logic for non-
pointed words, i.e. for Boolean queries on words, see e.g. [TW98], but it also
makes sense for unary queries, as it corresponds to unary queries definable in
XPath with only the transitive axis // and its inverse4.

We will show that two-variable definable languages form a pseudovariety,
and therefore by the Pseudovariety Theorem, definability of a language in two-
variable logic depends only the syntactic Point-algebra of the language. The
Pseudvariety Theorem alone does not give an algorithm to decide this definabil-
ity, but such an algorithm is given in Theorem 8.2.

The transformation monoids. In every Point-algebra there is a hidden
monoid, actually two monoids. Consider a Point-algebra A. For a ∈ A, de-
fine its left transformation to be the function A→ A defined by

b 7→ mulA(ab).

Likewise we define the right transformation. Left transformations form a monoid,
equipped with function composition, call it the left monoid. If A is finite then
so is the left monoid. Likewise one can define right transformations and the
right monoid. It is not difficult to see that a Point-algebra is uniquely specified
by its universe A and the the left and right transformations for each a ∈ A. In
other words, using the terminology of Section 5, the subfunctor

A 7→ {ab, ab : a, b ∈ A}

is complete for all Point-algebras. It is also strongly effective as defined in Sec-
tion 6. It follows that a finite Point-algebra can be represented in space polyno-
mial in the size of its universe; and that syntactic algebras can be computed in
polynomial time (by Lemma 5.1).

The following example shows that just looking at the left and right monoids
of a unary query is not sufficient to decide if it is two-variable definable. Stated
in the language of temporal logic, the example shows that two-variable logic
does not have the separation property.

Example 4. Let us revisit the successor query discussed at the beginning
of this section. Let the alphabet be {a, b}, and consider the unary query “the
successor of the selected position has label a”, i.e.

{wσav : w, v ∈ {a, b}∗, σ ∈ {a, b}} ⊆ Point{a, b}.

When seen as a language over an extended alphabet, the above is definable by
a formula of two-variable logic without free variables. The formula says that

4To be fair, the XPath motivation would be best justified by studying the tree variant of
the logic. Preliminary research indicates that the results from this section can be generalised
to trees.
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there exists a position with label a, such that one can go one step to the left
and find the underlined position, but one cannot go two steps to the left and
find the underlined position. When seen as a unary query over the alphabet Σ,
the above is not two-variable definable, which will follow from Theorem 8.2.

Also, one can observe that just looking at the left and right monoids is
not sufficient to understand the query. In this case, the left monoid is trivial,
i.e. contains only the identity transformation, while the right monoid is the
syntactic monoid of the language “words beginning with a”. Both monoids
have the property that they recognise only languages definable in two-variable
first-order logic. �

The above example shows that characterising unary queries definable in two-
variable logic does not simply reduce to characterising languages (i.e. Boolean
queries) definable in two-variable logic over an extended alphabet.

An Ehrenfeucht-Fräıssé game. We now show that two-variable definable
unary queries form a pseudovariety of Point-languages. Therefore, by the Pseu-
dovariety Theorem, the syntactic Point-algebra of a unary query has sufficient
information (unlike the left and right monoids) to decide if the query is two-
variable definable.

We do this using Ehrenfeucht-Fräıssé games in a standard way. Consider two
pointed words w0, w1. For n ∈ N, define the following game, which is played by
players Spoiler and Duplicator. At the beginning of the game, the labels of the
selected positions in the two pointed words are checked; if they are different then
Spoiler wins immediately and the game is terminated. If the selected positions
have the same labels, then n rounds of the game are played as follows. At the
beginning of each round Spoiler chooses i ∈ {0, 1} and a direction, which is one
of “left”, “stay” or “right”. Then Spoiler changes the selected position in the
pointed word wi according to the direction, i.e. if the direction is “left” then the
selected position is moved somewhere to the left, if it is “stay” than it is not
changed, and if it is “right” then it is moved to the right. Duplicator responds
by choosing a choosing a new selected position in the other pointed word w1−i,
according to the direction chosen by Spoiler, and such that the new selected
positions have the same labels. If Duplicator cannot do this, then Spoiler wins
immediately and the game is terminated. Otherwise, another round is played
with the new selected positions; and if all n rounds are played without Spoiler
winning, then Duplicator wins.

We write w0 ∼n w1 if Duplicator has a winning strategy in the n-round
game. It is not difficult to show that w0 ∼n w1 holds if and only if w0, w1

satisfy the same unary queries of two-variable logic of quantifier depth n. The
following lemma, which is proved by composing winning strategies for Duplicator
in an obvious way, says that equivalence under ∼n is preserved under unary
polynomials and Point-morphisms.
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Lemma 8.1 If pointed words satisfy w0 ∼n w1 then

[[p]](w0) ∼n [[p]](w1) for every unary polynomial in PointΣ
h(w0) ∼n h(w1) for every Point-morphism f : PointΣ→ PointΓ

A corollary of the above lemma is that unary queries that are two-variable
definable form a pseudovariety of Point-languages. Closure under Boolean com-
binations is immediate, while for closures under derivatives and inverse images
under Point-morphisms, one uses Lemma 8.1 and the fact that a Point-language
is two-variable definable if and only if it is a finite union of equivalence classes
of ∼n for some n.

An effective characterization As stated above, two-variable unary queries
form a pseudovariety of Point-languages, and therefore the Pseudovariety The-
orem can be invoked to show that whether or not a unary query is two-variable
depends only on its syntactic Point-algebra. Is this dependency effective? In the
case of Boolean queries, i.e. languages of non-pointed words, this problem was
solved in [TW98], where it was shown that a language L ⊆ Σ∗ is two-variable
definable if and only if its syntactic monoid belongs to a class of monoids called
da. The class da is a pseudovariety of monoids that can be defined by two iden-
tities, and therefore membership in it is decidable. In the following theorem,
we extend the result of [TW98] from Boolean queries to unary queries, i.e. from
non-pointed words to pointed words.

Theorem 8.2 Let q ⊆ PointΣ be a unary query recognisable by a finite Point-
algebra. Then q is two-variable definable if and only if its syntactic Point-algebra
A satisfies:

• the left and right monoids of A belong to da;

• for every w ∈ A+ which all letters in a set B ⊆ A, every b ∈ B and every
v ∈ PointB, the following equality holds for all but finitely many n ∈ N:

mulA(wnbvwn) = mulA(wnvwn) = mulA(wnvbwn).

The rest of Section 8.1 is devoted to proving the above theorem. We begin
with a corollary of the theorem, which says that definability of unary queries
in two-variable logic can be decided in polynomial time. When talking about
polynomial time, we refer to representation of Point-algebras with respect to

A 7→ {ab, ab : a, b ∈ A}.

When a, b are in the universe of a Point-algebra A, we will treat ab as an element
of A, although the more formally correct notation would be mulA(ab).

Corollary 8.3 Whether or not a recognisable q ⊆ PointΣ is two-variable defin-
able can be decided in polynomial time with respect to the recognising morphism.
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Proof.
By Lemma 5.1, the syntactic morphism can be computed in polynomial time
based on any recognising morphism into a finite algebra. Therefore, it suffices
to show that the conditions in Theorem 8.2 can be checked in polynomial time,
when given on input an Point-algebra A.

For the first condition, one computes the left and right monoids. These
monoids are quotients of A under an equivalence relation that can be checked
in polynomial time, and therefore they can be computed in polynomial time.
Then one checks in polynomial time if the left and right monoids satisfy the
identities for da.

Let us show how to check the second condition. A naive algorithm would
check all possible subsets B ⊆ A, which would take exponential time. To
overcome this, define an ordering � on the universe of A, such that a � b holds
if there exist pointed words w, v ∈ PointA such that

a = mulA(w) b = mulA(v)

and every letter that appears in w also appears in v, ignoring the underlining.
The relation � is not necessarily transitive, due to taking the image under mulA.
In terms of �, the second condition in the statement of the theorem says that
for all but finitely many n,

mulA(anbcan) = mulA(ancan) = mulA(ancban) for every a � b, c

It is not difficult to show that the above need only be checked for n which are
linear in the size of left and right monoids of A, and therefore the only remaining
thing to do is compute �.

It is not difficult to show that � is the smallest relation which contains every
pair a � a and which satisfies the following implications for every a, b, c, d in A.

a � b implies a � bc
a � b implies a � bc

a � b and c � d implies ac � bd
a � b and c � d implies ac � bd.

In particular, � can be computed in polynomial time using a fixpoint algorithm.
�

The rest of Section 8.1 is devoted to proving Theorem 8.2. We begin with
the easier implication.

Lemma 8.4 If a unary query is two-variable definable, then its syntactic alge-
bra satisfies the conditions in Theorem 8.2.

Proof.
Let q ⊆ PointΣ be a unary query definable in two-variable first-order logic,
and let n be the quantifier depth of the defining formula. By Lemma 8.1, the
equivalence relation ∼n is preserved under unary polynomials, and therefore by
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the Syntactic Morphism theorem it is a congruence, i.e. the set of equivalence
classes can be equipped a multiplication operation which makes it into a finite
Point-algebra, call it An. Since q is a finite union of equivalence classes under
∼n, it is recognised by An, and therefore the syntactic algebra of q is an image
of An under a Point-morphism. The conditions in Theorem 8.2 are easily seen
to be closed under images of Point-morphisms, and therefore it suffices to show
that these conditions are satisfied by An. We only sketch the proof for the
second condition: this boils down to showing that if w ∈ Σ∗ is a word which
uses all letters in a set B ⊆ Σ, then

wmv1bv2w
m ∼n wmbwm for every m ≥ n, v1, v2 ∈ B∗ and b ∈ B.

This is proved by induction on n. Here is one of the cases that needs to be
considered: if in the first round, Spoiler moves the selected position of the first
pointed word to some position in v1, the Duplicator responds by moving the
selected position in the second pointed word to a position in the last copy of w
before b which has the same label, such a position exists by assumption on w
using all letters from B. �

The rest of Section 8.1 is devoted to showing the converse implication in
Theorem 8.2. A possibly partial function f : PointΣ → X with X finite is
called two-variable definable if the inverse image of every x ∈ X is two-variable
definable. We will prove that if A is a finite Point-algebra that satisfies the con-
ditions in the theorem, then every Point-morphism h : PointΣ→ A is definable
in two-variable logic. The proof is by induction on the size of the alphabet Σ.
We begin by introducing some auxiliary results.

Filtering. For a unary query q ⊆ PointΣ, define

filterq : (Σ∗ ∪ PointΣ)→ (Σ∗ ∪ PointΣ)

to be the function which inputs a pointed or non-pointed word, and only keeps
positions that are selected by q. The output is a pointed word if the input was
a pointed word and q selected the selected position, otherwise the the output is
a non-pointed word. For example, if q ⊆ Point{a, b} is the set of pointed words
where the distinguished position has label a, then

(filterq)(aba) = aa ∈ Σ∗ (filterq)(aaa) = aaa ∈ PointΣ.

The following simple fact is proved by relativising formulas in the obvious
way.

Fact 8.5 If f : PointΣ→ X and q ⊆ PointΣ are definable in two-variable logic,
then so is the partial function f ◦ filterq. (The function is partial because it is
undefined when filterq removes the selected position.)
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A monoid. Let monA be the product of the left and right transformation
monoids of A. It is not difficult to see that the left and right transformations
of h(w) for w ∈ PointΣ do not depend on the selected position. In other words,
there is a function monh which makes the following diagram commute

PointΣ

mon ((

deselect // Σ∗

monh
��

monA

(6)

where deselect is the function that ignores the selected position and mon is the
function that computes the left and right transformation. It is not difficult to
show that monh is a monoid morphism. By the assumption of the theorem, the
monoid monA is in da, as a product of two monoids in da.

Known results about da. We now recall some results about sets of words
(not pointed words) definable in two-variable logic. Let M be a monoid. Define
the right ideal generated by m ∈M to be the set

{mn : n ∈M} ⊆M.

We say m,n ∈ M are R-equivalent, denoted by m ∼R n, if they generate the
same right ideals. There is a symmetric notion of L-equivalence that uses left
ideals. The theorem below summarises some results from [TW98]. It only men-
tions R-classes, i.e. equivalence classes under R-equivalence, but the symmetric
results also hold for L-classes.

Theorem 8.6 For a monoid morphism g : Σ∗ →M into a monoid in da:

1. every language recognised by g is a two-variable definable Boolean query,
i.e. it is definable by a formula of two-variable first-order logic without free
variables;

2. for every R-class R of M there is a two-variable definable unary query
which selects a position if and only if the prefix up to and including that
position is mapped by g to R.

3. for every m ∈M the set {n : mn ∼R m} is a submonoid of M.

Apply the above theorem to the morphism monh defined in diagram (6).
By the second item of the theorem and its symmetric variant for L-classes, for
every R-class R and every L-class L of the monoid monA, there are two-variable
definable unary queries, call them qR and qL, such that

uav ∈ qR iff monh(ua) ∈ R
uav ∈ qL iff monh(av) ∈ L

holds for every u, v ∈ Σ∗ and a ∈ Σ.
The more difficult implication from Theorem 8.2 will follow from the follow-

ing lemma.

43



Lemma 8.7 Let R be an R-class in the monoid monA, and let L be an L-class
in the monoid monA. Then the partial function obtained from h by restricting
its domain to qR ∩ qL is two-variable definable.

Before proving the lemma, observe that it implies that h is two-variable
definable. This is because every pointed word belongs to qR ∩ qL for some
choice of R and L.

Proof.
Call an R-class minimal if the corresponding right ideal is minimal with respect
to inclusion. Likewise we define a minimal L-class. Consider three cases: when
R is not minimal, when L is not minimal, and when both R and L are minimal.
The first two cases are not disjoint.

The R-class R is not minimal. We prove a stronger result, namely the
restriction of h to qR is two-variable definable. Let us decompose qR into a
disjoint union of two unary queries, both of which are two-variable definable:
q0
R selects the leftmost position that satisfies qR, and q+

R selects the remaining
positions.

• Let us first show that h is two-variable definable when its domain is re-
stricted to q0

R. Define qleft be the unary query which selects positions that
are strictly to the left of some position that satisfies q0

R. Likewise define
qright to be the positions that are strictly to the right of some position
that satisfies q0

R. Because q0
R is two-variable definable, then the queries

qleft and qright are also two-variable definable. Consider some w ∈ q0
R. The

word deselectw underlying w splits into three consecutive intervals:

1. first come the positions that satisfy qleft;

2. then comes the single position that satisfies q0
R;

3. finally come the positions that satisfy qright.

Because the intervals are consecutive, when restricted to arguments from
q0
R, the function h factors through the following three functions.

monh ◦ filterqleft : PointΣ → monA
h ◦ filterq0

R : PointΣ → A
monh ◦ filterqright : PointΣ → monA

The first and third functions are two-variable definable by Theorem 8.6
and Fact 8.5. The middle function depends only on the label of the selected
position, and is therefore also two-variable definable. Therefore, h is two-
variable definable when restricted to arguments from q0

R.

• Let us now show that h is two-variable definable when restricted to q+
R .

The proof is the same as above, the only difference is in the proof that

h ◦ filterq+
R : PointΣ→ A (7)
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is two-variable definable. To prove this, let m be an element of the R-class
R, and consider the set

Mm
def
= {n : mn ∼R m}

which is a submonoid of monA by item 3 of Theorem 8.6. Because Mm

is a submonoid, it is not difficult to show that it does not depend on the
choice of m ∈ R, i.e. it only depends on the R-class R. Furthermore, this
submonoid cannot be all of monA, since otherwise R would be a minimal
R-class. Therefore, there is some a ∈ Σ such that monh(a) does not belong
to the submonoid, which means that

mmonh(a) 6∼R m for every m ∈ R

It follows that positions selected by q+
R cannot have label a. Therefore

the function in (7) is two-variable definable by induction assumption on a
smaller alphabet.

The L-class R is not minimal. This case is symmetric to the previous one.

Both L and R are minimal. We are left with the case where L is a minimal
L-class of monA, and R is a minimal R-class of monA. We will prove that,
when restricted to pointed words in qR ∩ qL, the value of h depends only on the
label of the selected position. In other words, we claim that if

w = wleftawright v = vleftavright

are pointed words in qR ∩ qL with the same label a ∈ Σ of the distinguished
position, then both have the same value under h. Let u ∈ Σ∗ be a non-pointed
word which uses all letters in Σ, whose R-class is R and whose L-class is L.
Such a word exists by minimality, for example, u can be obtained from either of
the pointed words w or v by replacing the selected position by some non-pointed
word which uses all letters from Σ. Let n be a sufficiently large number. We
will show that

h(w) = h(unaun) = h(v).

By symmetry, we only prove the left equality above. Because monh(wleft) is
in the same R-class as monh(wleftu

n), we have

monh(wleftu
n)m = monh(wleft) for some m ∈ monA.

Therefore, there must exist some xleft ∈ Σ∗ such that wleftu
nxleft induces the

same left transformation in A as wleft. Using a symmetric reasoning for L-
classes, we obtain some xright ∈ Σ∗ such that h(w) is equal to

h(wleftu
nxleftaxrightu

nwright)
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The elements monh(wleftu
n) and monh(un) are in the R-class R, because both

have prefixes in this R-class and the class is minimal; and they are both in the
L-class L because both have suffixes in this L-class. (Here we use minimality.)
In a monoid from da, or more generally in an aperiodic monoid, and element
is uniquely determined by its L-class and R-class. Therefore, wleftu

n and un

induce the same left transformation in A. By this observation, and a symmetric
one for L-classes, it follows that h(w) is equal to

h(unxleftaxrightu
n).

From the assumption on A in the theorem, the above is equal to

h(unaun).

By the same reasoning, h(v) is also equal to the above, which completes the
proof of the lemma. �

9 Monads for trees

In this section, we present a series of monads for modelling trees.

9.1 Ranked trees over a fixed alphabet

We begin with a monad that represents finite trees over a fixed ranked alphabet.
Algebras in this monad will be deterministic bottom up tree automata over the
ranked alphabet.

Consider a ranked alphabet Σ, i.e. a finite set where each element has an
associated rank, which is a natural number. A ranked tree over such an alphabet
is a finite tree labelled by Σ, where a node has as many children as the rank of
its alphabet, and these children are ordered. In other words, this is a ground
term over Σ seen as a signature. We define a monad TΣ, which is parametrised
by Σ, and which will model ranked trees over Σ. Although the alphabet Σ is
ranked, the monad TΣ itself is in the category of sets, i.e. sets without any arity
structure imposed.

Define TΣ to be the monad which maps a set Γ to the set of terms over the
signature Σ extended by variables from Γ (i.e. trees where labels from Γ can
occur in the leaves). The multiplication operation

mulTΣΓ : TΣTΣΓ→ TΣΓ

is term substitution, while the unit maps a variable a ∈ Γ to the term that
consists only of this variable. In the language of category theory, this is the
monad generated by Σ interpreted as a polynomial functor.

If Γ is a finite alphabet, then a TΣ-language over Γ is a set of trees over the
ranked alphabet Σ, extended by rank zero symbols for letters from Γ. In the
special case of Γ = ∅, a TΣ-language over the empty alphabet is a set of ranked
trees over the alphabet Σ.

46



Example 5. In this example, we show that when Σ contains only letters of rank
one, then the monad TΣ can be seen as modelling deterministic word automata
with input alphabet Σ. Consider a ranked set Σ, which has only letters of rank
one. If Q is a set, then elements of TΣQ are trees with unary branching where
inner nodes are from Σ and the unique leaf is from Q. For example an element
of T{a,b}{q} can look like this:

a

b

a

q

When written bottom-up, such a tree can be seen as a word in Q · Σ∗. A
finite algebra Eilenberg-Moore for this monad, i.e. a finite TΣ-algebra, consists
of a universe, call it Q, and a multiplication operation, which can be seen as a
function

δ : Q · Σ∗ → Q.

The associativity of multiplication says that

δ(δ(q · w) · v) = δ(q · w · v),

and therefore δ is uniquely defined by its values on Q · Σ. Stated differently,
a TΣ algebra is the same thing as a deterministic finite word automaton with
input alphabet Σ, without designated initial and accepting states. �

Connections with Σ-algebras. Recall that in universal algebra, a Σ-algebra
consists of a universe A together, together with an operation f : An → A for
each f ∈ Σ of rank n. To go from a TΣ-algebra A in the sense of Eilenberg-
Moore to a Σ-algebra in the sense of universal algebra, one defines the universe
to be A, and the operation corresponding to a n-ary letter f ∈ Σ to be

(a1, . . . , an) ∈ An 7→ mulA(f(a1, . . . , an)).

In the terminology of Section 5, this is the Σ-reduct of A, where we view Σ as
the (finitely complete and effective) subfunctor

ΣA = {f(a1, . . . , an) : f is an n-ary symbol in Σ} ⊆ TΣA

Every Σ-algebra is obtained this way, and therefore the two notions are essen-
tially the same. This sameness extends to morphisms5.

5Actually, this sameness works for a more general notion of ranked set used in category
theory, i.e. when Σ is an arbitrary functor. This more general setting can be used to describe
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Connection with tree automata. As shown in Example 5, if the alpahbet
Σ contains letters of rank at most one, then TΣ-algebras are essentially the same
thing as deterministic word automata. For other alphabets, the correspondence
is with deterministic bottom-up tree automata. For a TΣ algebra A, there is a
unique TΣ-morphism

h : TΣ∅ → A.

When interpreting an element of TΣ∅ as a tree over the ranked alphabet, the
algebra A maps every tree to an element of its universe. When the algebra
is finite, this is the same thing as a deterministic bottom-up tree automaton,
with the only difference being that an automaton also has an accepting subset
of states, which indicates when a tree belongs to the language. Therefore, TΣ-
recognisable languages are the same thing as the classical notion of regular
languages of finite trees over the ranked alphabet Σ.

Example 6. Consider the following variant of first-order logic on trees over a
ranked alphabet Σ. To a tree t ∈ TΣΓ, one assigns a logical structure, where
the universe is the nodes of the tree, and there are the following predicates: a
unary predicate that is true in nodes with label a, a binary predicate for the
descendant relation, and binary predicates for the i-th child relation for every
i. A subset of TΣΓ is called definable in first-order logic if there is a formula
of first-order logic that is true in the logical structures corresponding to trees
in the subset, and false in logical structures corresponding to tree outside the
subset. A well-known open problem stated in [Tho84] is: can one decide if a
recognisable language of trees is definable in first-order logic?

Here we show the, already known, result that tree languages definable in
first-order logic form a language pseudovariety. Since the assumptions of the
Pseudovariety Theorem apply to the monad TΣ, this will imply that first-order
definability of a tree language depends only on its syntactic algebra (whether
or not this dependence is computable is the open problem).

Recall that a language pseudovariety is a class of languages that is closed
under Boolean combinations, polynomial derivatives, and inverse images under
morphisms. (The other conditions in the definition are vacouous when there is
only one sort, as is the case here.) Boolean combinations are for free in first-
order logic. Closure under polynomial derivatives is shown that same way as
closure under inverse morphisms, so we only show the latter closure. We need
to show that for every TΣ-morphism

h : TΣΓ→ TΣ∆, (8)

unranked trees, when Σ is the functor

X 7→ X∗

or unranked trees without sibling order, when Σ is the functor which takes X to finite multisets
over X. A problem with these more general settings is that their Eilenberg-Moore algebras
model automata that are too strong, in the sense that the transition function need not be
describable in a finite way.
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inverse images under h of first-order languages are also first-order definable. One
way of proving this statement is to show that h is a special case of a more general
notion of copying first-order interpretation, and first-order definable languages
are closed under inverse images of such interpretations. Another way, which
we use here, is to use Ehrenfeucht-Fräıssé games. Let us write s ∼n t if player
Duplicator has a winning strategy in the n-round Ehrenfeucht-Fräıssé game for
the logical structures corresponding to s and t. It is easy to see that closure
under inverse morphisms of first-order definable languages is implied by the
following observation:

s ∼n t implies h(s) ∼n h(t) for every n ∈ N. (9)

The above observation is proved using a straightforward strategy copying argu-
ment, which we describe in more detail below. The key to the strategy copying
argument is that every node in an image tree h(t) is uniquely identified by two
pieces of information, which we call the origin and offset, whose definition is
explained by example in Figure 2.

To prove (9), in the game corresponding to h(s) and h(t), Duplicator pre-
serves the following invariant.

(*) Suppose that i rounds have been played so far, and that the nodes selected
in those rounds were x1, . . . , xi in the tree h(s) and y1, . . . , yi in the tree
h(t). Then the offsets, if defined, are the same for each xj and yj , and
Duplicator has a winning strategy for the remaining rounds in the game
for s and t, assuming that the selected nodes x1, . . . , xi and y1, . . . , yi are
replaced by their origins.

Assuming that s ∼n t holds, it is not difficult to show that Duplicator can
preserve the invariant for n rounds in the game between h(s) and h(t). Al-
though simple, the strategy copying argument is a bit delicate – as we will see
in Example 7, closure under inverse morphisms will fail in a different monad for
modelling trees, where morphisms can duplicate subtrees. �

Dependence on Σ. In the monad TΣ, there is a different monad for every Σ.
In the following two sections, we present two approaches where the monad is
independent of the alphabet. The price we will pay is using categories of ranked
sets.

9.2 Clones

In this section, we consider a monad which is used to describe clones. We begin
by recalling the definition of a clone from universal algebra: a clone over a
universe A is a set of functions of the form An → A, of possibly different arities
n ∈ N, which includes all projections, i.e. functions of the form (a1, . . . , an) 7→ ai,
and which is closed under composition in the sense that if the clone contains
an n-ary operation f and k-ary operations f1, . . . , fn, then it also contains the

49



a

c c

a

c c

a

c

a

y

a

c x

a

c

c c

a

a

orig
in

o�set

h(x)

h(t)

t

h(y)

a

a c

cc

Figure 2: The origin and offset functions. In this example, Σ has one symbol a
of rank two, and one symbol c or rank zero. The origin function is from nodes
of h(t) to nodes of t. The offset function is defined on the “new” nodes in h(t),
i.e. those nodes in h(t) that have labels in Γ, and which have darker colour in
the picture. The offset function maps such a node to the corresponding node
h(σ), where σ ∈ Γ is the label of the origin.
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k-ary operation

ā ∈ Ak 7→ f(f1(ā), . . . , fn(ā)) ∈ A.

The category of ranked sets. To model clones by a monad, we use a dif-
ferent category than sets. The category is ranked sets, i.e. sorted sets where
the sort names are natural numbers. Recall that the notions of language theory
are parametrised by notions of finite object and finite algebra. We make the
following design decisions for the clone monad: a finite ranked set is one with
finitely many elements, in particular only finitely many ranks can be achieved
in a finite ranked set. We come back to the notion of finite algebra later on.

The clone monad. The clone monad maps a ranked set Σ to the ranked set
cloΣ, where elements of rank n are terms over Σ that use n variables x1, . . . , xn
(the sequence of variables x1, x2, . . . is chosen so that they are fresh with respect
to Σ). The terms need not use all variables, and variables may appear with
repetitions. The monad multiplication operation

µΣ : clocloΣ→ cloΣ

is substitution, as illustrated in Figure 3.

Comparison with clones. We use the name clo-algebra for an Eilenberg-
Moore algebra in the monad of clones. A clo-algebra is almost the same thing
as a clone in the sense of universal algebra, with the following differences.

• Clones are more general than clo-algebras in the sense that clones admit
a distinction between the universe and the operations of rank zero (con-
stants). In other words, it is not necessarily the case that every element of
a clone’s universe is a constant. (If this is the case, then a clone is called
a polynomial clone.)

• Clones are less general than clo-algebras in the sense that in a clone, un-
like in a clo-algebra, there is an extensionality property with respect to
the universe: elements of the clone are uniquely determined by the trans-
formations that they induce on the universe. This is similar to the finite
observability condition used in the Pseudovariety Theorem from Section 4.

Therefore, a polynomial clone is the same thing as a clo-algebra that is zero-
extensional in the sense every element is determined by its transformation on
rank zero elements.

Finitary clones. There is no sense in considering clo-algebras that have a
finite universe, because the requirement on projections means that the universe
is nonempty on every rank. In clo-algebras, we call a clo-algebra finite if it
has finitely many elements for every rank, and is finitely generated. The fi-
nite generation axiom is natural in the context of recognising languages (every
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t ∈ clo clo Σ µΣ(t) ∈ clo Σ
t has 4 nodes and rank 0 µΣ(t) has 11 nodes and rank 0.

Figure 3: Example of multiplication in a clo-algebra. The ranked alphabet Σ
has elements a, g, f of arities 0, 1, 2 respectively. The left picture represents
a tree t ∈ clo clo Σ, where variable x1 is used twice in the label of the root,
which is drawn using parallel edges. This double use results in duplication after
multiplication is applied. The light grey dotted circles on the right are not part
of mulcloΣ(t), they just highlight how µΣ(t) is obtained from t.

recognisable clo-language over a finite alphabet is recognised by a finitely gen-
erated clo-algebra), but it is not superfluous – there exist clones over a three
element universe that are not fintiely generated, as shown by Yanov and Much-
nik in [YM59], and this is even the case for polynomial clones [ÁDH83].

Example 7. This is a non-example of a pseudovariety. Let us revisit first-order
logic on trees as defined in Example 6. A language of ranked trees can be seen
as a special case of a clo-language, which happens to contain only elements of
rank zero. Such languages are not closed under inverse images of clo-morphisms,
which is witnessed by the following example, essentially due to Potthoff [Pot95].
(Recall that first-order definable language were closed under inverse morphisms
for the monad of ranked trees, as shown in Example 6. What worked in Ex-
ample 6 and no longer works in this example is that for clo-morphisms, a node
is not uniquely determined by its offset and origin.) Consider letters a0, a1, a2

with ranks 0, 1, 2 respectively, and consider the clo-morphism

h : clo{a0, a1} → clo{a0, a2}
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which maps a0 to a0, and which maps a1 to the term a2(x1, x1). This morphism
sends trees that look like words to complete binary trees, as shown below:

a1

a1

a1

a0 a0 a0

a2

a0 a0

a2

a2

a0 a0

a2

a0 a0

a2

a2

a2

t ∈ clo{a0, a1} h(t) ∈ clo{a0, a2}

There is a first-order formula ϕ that is true in complete binary trees of even
depth, and false in complete binary trees of odd depth. The formula says that
if one follows the unique path that begins in the root, and then turns left, right,
left, right, etc., then one ends up in a leaf that is a left child. The inverse image,
under the clo-morphism h, of the language defined by ϕ is the set of trees over
alphabet {a0, a1} which have even depth. This inverse image is not definable in
first-order logic, and therefore first-order definable tree languages are not closed
under inverse images of clo-morphisms.

In particular, first-order logic does not form a pseudovariety of clo-languages.
Therefore clones, or at least syntactic clones, are not the right tool to study first-
order logic on trees. As shown in [ÉW03], his problem can be solved by using
preclones, which are a variant of nonduplicating clones where every variable is
used only once. The inadequacy of clones in this context is a bit of a shame,
because clones have a better developed theory than preclones, e.g. Rosenberg
classifies clones with a minimal set of operations that contains something other
than projections [Ros86] or clones with a maximal set of operations that does not
contain all operations [Ros70], while Hobby and McKenzie classify congruences
in a finite clone [HM88]. �

9.3 Forests of unranked trees

We present a monad for modelling trees, which corresponds to forest alge-
bra [BW08]. As in the previous two monads, the trees are finite (finitely many
nodes) and labelled (each node comes with a label). Unlike for the two previous
monads trees are unranked, i.e. the number of children of a node is not deter-
mined by its label, and can be arbitrarily large. We also assume that trees are
sibling-ordered, i.e. the children of a node come with a total order. Finally, in-
stead of trees it will be more convenient to talk about forests, which we define to
be ordered sequences of trees, i.e. ordered sequences of trees that are unranked,
labelled and sibling-ordered. Here is a picture of a forest:

b

cc c

a

(10)
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Forests and contexts. The monad in this section will correspond to forest
algebra. The principal idea behind forest algebra is to use two kinds of objects,
namely forests and contexts. Forests have already been described above. A
context is defined to be a forest with exactly one distinguished leaf, which is
called the port of the context6. Here is a picture of a context, with the port
being labelled by x1:

b

bb

a

c

c c

cx1 (11)

The idea behind the port is that it can be replaced with a forest (or another
context). One needs to be careful with the notion of replacement, because a
port is a single node, while the forest that will replace it might have multiple
roots, e.g. the forest in (10). The result of the replacement is that the all the
roots of the inserted forest become children of the parent of the port, e.g. the
result of replacing the port of (11) by the forest (10) is illustrated below, with
the grey background indicating what used to be the port:
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bb
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c

c c

cb

cc c

a (12)

The forest monad. We now define the monad for forests and contexts, which
is called the forest monad. Line in all previously considered monads, the main
idea is that one can replace any node with another element of the monad. In the
forest monad, we will use the following discipline: leaves in a forest or context
are be replaced by forests, while non-leaves are be replaced by contexts. This
leads to a two-sorted alphabet: there are forest labels, which are found in leaves,
and there are context labels, which are found on non-leaves.

More formally, the forest monad, denoted by F, is in the category of two-
sorted sets, where the sort names are “forest” and “context”. When applied to
a sorted set Σ, the forest monad F yields the following sorted set FΣ

• on the forest sort, FΣ contains nonempty forests labelled by Σ such that
leaves are labelled by letters of “forest” sort, while non-leaves are labelled
by letters of “context” sort;

• on the context sort, FΣ contains contexts labelled by Σ in the same way
as in the previous item.

6One could consider a variant of this monad without the requirement that the port appears
in exactly one leaf, we keep this requirement so that the monad ends up describing forest
algebra introduced in [BW08]. Furthermore, allowing ports in many leaves would break the
argument in Example 8, actually first-order logic would no longer be a pseudovariety.
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The unit operation in the monad F maps a forest element a to unit forest that
looks like this

a

and maps a context element a to a unit context that looks like this

x

a

The multiplication operation in the monad is based on the intuitions of replace-
ment depicted in pictures (10), (11) and (12). The operation is illustrated in
Figure 4.
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t ∈ FFΣ mulFΣ(t) ∈ FΣ

Figure 4: Example of multiplication in the forest monad. Before multiplication,
t has two context nodes v1 and v3 and two forest nodes v2 and v4. After
multiplication, t has fourteen nodes, which correspond to the non-variable nodes
in the labels of v1, . . . , v4. Note how the x in the label of node v1 is replaced by
three nodes, namely the two roots of v2 and the one root of v3, resulting in a
change of the number of children for node v.

A finite alphabet is a two-sorted set finite that is finite on both sorts, and a
finite F-algebra is one whose universe is finite.
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Lemma 9.1 Every F-algebra is spanned by the subfunctor F0 which maps Σ to

dc

a

c

a

x

b

where a, b are context elements of Σ, and c, d are forest element of Σ.

Proof.
The lemma boils down to the following easy fact. Every forest or context can be
built out of units forests and unit contexts by the following operations: replacing
the port of a context by another context or a forest, and concatenating two
forests. �

By the above lemma, every F-algebra is uniquely determined by its F0-reduct.
This reduct is exactly the same thing as a forest algebra from [BW08], in the
variant of forest algebra where there is no empty forest or context. One advan-
tage of seeing forest algebras as a special case of monads is the we can apply the
general theorems from the first part to see that forest algebra has a syntactic
morphism theorem (already known) or a pseudovariety theorem (not present in
the literature).

Example 8. Let us revisit first-order login on trees, as considered in Examples 6
and 7. To a forest one can assign a logical structure, where the universe is the
nodes of the forest, there are unary predicates for the labels, and two binary
predicates for the descendant and document orders (document order is the order
in which nodes are visited in depth first search, which takes into account the
order on siblings). For a context, the structure is defined the same way, except
there is constant which denotes the port. A language L ⊆ FΣ is called first-
order definable if it can be defined by a formula of first-order logic in terms
of the logical structure defined above. One can show that first-order definable
language form a pseudovariety. The interesting case is to show that if

h : FΣ→ FΓ

is a F-morphism, then

t ∼n s implies h(t) ∼n h(s) for every n ∈ N,

where∼n says that the corresponding logical structures have the same first-order
theory of rank n. This is proved using the same origin and offset argument as
in Example 6. �
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9.4 A monad for infinite unranked forests.

The ω-forest monad, denoted by X 7→ ωFX, is defined like the monad F, with
the difference that infinite forests and infinite contexts are also allowed (assume
finite branching, though). The problem with this monad is that it is unclear
what finite algebra should be in this case. Clearly, the algebra needs to be finite
on both sorts, but this is not sufficient, as the following example shows.

Example 9. Consider an alphabet Σ in the sense of the monad ωF, i.e. an
alphabet with elements of sorts “forest” and “context”. Let L be an arbitrary
set of trees over the alphabet L, not necessarily mso definable. Define denseL
to be those forests where every node has a some descendant with a subtree in
L. We claim that denseL is recognised by an ωF-algebra A with a four element
universe. There forest sort has elements “forests in L” and “forests not in L”.
The context sort has elements: “every node outside the port path has some
descendant with a subtree in L” and “some node outside the port path has
no descendants with a subtree in L”; where the port path is defined to be the
ancestors of the port. The dependence on L in the algebra A is seen in the
multiplication operation

mulA : ωFA→ A

which maps infinite objects to elements of the universe A. In particular, there
are uncountably many ωF-algebras with finite universes, and there is no hope
of representing them in a finite way. �

As witnessed by the above example, the notion of finite algebra should have
some additional requirements. Let us make the design decision that languages
recognised by finite algebras should be exactly those that can be defined in
mso. The question of finding an adequate notion of finite ωF-algebra is a monad
formulation of an open problem in the community of algebraic language theory,
namely the problem of a finding an algebraic model for mso on infinite tees.
The fact that we use monads, or that the trees are unranked, does not seem to
be important.

A simpleminded solution is to define an ωF-algebra A to be finite if its
universe is finite on both sorts, and the multiplication operation is mso definable,
in the sense that every language

mul−1
A (a) ⊆ ωFA with a ∈ A

is mso definable. Adjusting for a different terminology, this is the solution pro-
posed in [BI09], where it is shown that syntactic algebras can be computed, one
can check if an algebra satisfies given equalities, and the algebras can be used
to decide questions such as “is a given language of infinite trees definable in
the temporal logic EF?”. This definition of finite algebra is compatible with the
results from Part I, in particular with the Syntactic Morphism Theorem and the
Pseudovariety Theorem. Examples of language classes that are pseudovarieties
include: languages defined in weak mso, i.e. only using existential quantifi-
cation over finite sets; languages recognised by nondeterministic (respectively,
alternating) tree automata that use parity ranks from a given subset Ω ⊆ N.
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10 Future work

This section sketches some potential monads to study in the future, with reasons
for studying them.

• Unranked trees with possibly infintie branching (or graphs, which should
not make a difference) modulo bisimulation. The hope would be that
recognisable languages, under a suitably chosen notion of finite algebra,
would be the same thing as definable in µ-calculus.

• Edge labelled hypergraphs. This looks like a monad, because a hypergraph
with n distinguished port vertices can be substituted for a hyperedge of
rank n, in the same spirit as Figure 3. The hope would be to describe tree
width or clique width as submonads generated by finite subfunctors (as
defined in Section 5).

• Typed terms of λ-calculus with fixpoints, modulo equivalence. The hope
would be to describe the work of Salvati and Walukiewicz.

• Relations on words with origin information, as a generalisation of trans-
ducers with origin information from [Boj14]. The hope would be to give an
algebraic framework for asynchronous relations on words with origin. The
origin information would cure problems like no syntactic object, or un-
decidability of universality, which plague asynchronous relations without
origin.
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Part III

Profinite Monads
In this part, we show that for every monad T, at least in the category of sets,
there is a profinite version T. This gives immediately definitions, and basic
theorems about, things like profinite words, profinite countable chains, profinite
trees, etc. We also study the special case of profinite words, and show how the
generic notion of recognisable language instantiates to an interesting class of
languages of profinite words.
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11 Stone duals and topology on an algebra

Profinite constructions are common in mathematics. For recognisable languages,
the best known profinite construction is the semigroup of profinite words. In
this section, we show how profinite are defined on the abstract level of monads.
The main results of this section are:

• Lattices of languages are exactly those families of languages that can be
defined by profinite implications. This generalises to monads a result
that was proved for semigroups in [GGP08]. As a corollary, we get a
monad generalisation of the Reiterman theorem [Rei82], which says that
pseudovarieties are exactly those families of languages that can be defined
by profinite identitites, which are a stronger form of profinite implications.

• Every class of languages, e.g. context-free or decidable, can be used to
yield get some kind of profinite object, but only recognisable languages
can be used if we want algebraic operations to be uniformly continuous.
These results are monad generalisations of results that were proved for
semigroups in [GGP10].

11.1 Stone duals of Boolean algebras

In this section, we recall the definition of the Stone dual of a Boolean algebra,
and how Stone duals can be used to characterise lattices. Section 11.1 does not
talk about monads.

Consider a Boolean algebra

(A,∩,∪,¬).

Define an ultrafilter in A to be a proper subset U ⊂ A which is closed under
intersections, and which contains every element of A or its complement but not
both. The Stone dual of A, denoted by StoneA, is defined to be the following
topological space. The points in the space are ultrafilters in the Boolean algebra.
The topology is generated by base open sets which are of the form

ā
def
= {U : U is an ultrafilter containing a} for a ∈ A.

The topology on the Stone dual is known to compact and Hausdorff. One of
the advantages of the Stone dual is that it can be used to describe lattices of
languages, including the special case of pseudovarieties of languages.

Profinite implications. We begin by repeating a result from [GGP08], which
says that for an arbitrary Boolean algebra, lattices are exactly those sets which
are defined by profinite implications. (This terminology is different than [GGP08],
which uses the name “equation” for what we call an implication.)

Consider a Boolean algebra A. (In the context of this paper, it is convenient
to think of A as being all recognisable subsets of TΣ. In this case, elements of
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the Boolean algebra are themselves sets.) A profinite implication over a Boolean
algebra A is an expression of the form w → v, where w, v ∈ StoneA. The arrow
is just part of the syntax, so formally a profinite implication is simply a pair of
elements from StoneA. An element a ∈ A (e.g. a recognisable language, when
the Boolean algebra consists of recognisable languages) is said to satisfy the
implication if a ∈ w implies a ∈ v. A subset B ⊆ A (e.g. a family of recognisable
languages when the Boolean algebra consists of recognisable languages) is said
to be defined by a set of profinite implications if it contains exactly the elements
that satisfy all profinite implications from the set. In the following lemma, B
is called a lattice if it contains the 0 and 1 in a Boolean algebra, and is closed
under finite unions and finite intersections. The following theorem can be found
implicitly in [GGP08], and maybe earlier as well.

Theorem 11.1 Let A be a Boolean algebra and let B ⊆ A. Then B is a lattice
if and only if it is definable by profinite implications.

Proof.
It is easy to see that if a subset of A is definable by profinite implications, then
it is a lattice. To prove the other implication, consider a lattice B ⊆ A. We
claim that B is defined by the set of profinite implications:

{x→ y : for every a ∈ B, if a ∈ x then a ∈ y}. (13)

By definition, every element of B satisfies the profinite implications above. Let
then a ∈ A be such that a satisfies all the profinite implications above. To prove
the theorem, we will to show a ∈ B.

Recall the definition of ā in the definition of the Stone dual, which is that ā
is the set defined by a ∈ x iff x ∈ ā. We first claim that every x ∈ ā satisfies

x ∈ b̄ ⊆ ā for some b ∈ B (14)

For x ∈ ā, define [x] ⊆ StoneA to be the intersection⋂
b∈B∩x

b̄.

It is easy to see that [x] is the set of all y ∈ Ā such that the profinite implication
x→ y belongs to the set (13). By assumption that a satisfies all these profinite
implications, it follows that [x] ⊆ ā. Note that [x] is an intersection of sets that
are closed. By compactness of the Stone dual, [x] is equal to an intersection
of finitely many b̄ with x ∈ b ∈ B. Furthermore, the intersection is nonempty,
because B contains the greatest element of the Boolean algebra, being a lattice.
Because B is closed under finite intersections, it follows that [x] = b̄ for some
b ∈ B with x ∈ b̄. Together with [x] ⊆ ā, this proves (14).

From (14) it follows that ā is the union of all b̄ ranging over b ∈ B such
that b̄ ⊆ ā. By compactness, the union can be made finite, and by closure of B
under finite union, it follows that there is some b ∈ B such that ā = b̄. Finally,
since a, b are in the Boolean algebra, it follows that a = b. �
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11.2 Stone duals of T-algebras

Section 11.1 did not use monads and recognisability. In this section, we consider
the special case of Stone duals of recognisable languages in a T-algebra. Using
this Stone dual, we prove a monad version of the Reiterman theorem, which
says that a class of recognisable languages is a language pseudovariety if and
only if it can be defined by profinite identities.

The Stone dual of a T-algebra. Fix a monad T in the category of sets. We
assume that finite alphabets are finite sets, and finite algebras are algebras with
finite universes. The results can be easily generalised to sorted sets. Let A be a
T-algebra, not necessarily finite. Define recA to be the subsets of the universe
of A that are recognised by T-morphisms from A into finite T-algebras. Since
recA is a Boolean algebra, it has a Stone dual, which we denote by StoneA.

Example 10. Consider the monad of finite nonempty words, where +-algebras
are semigroups, and +-morphisms are semigroup morphisms. Consider the semi-
group Σ+ where Σ is a a finite alphabet. An element of StoneΣ+ is an ultrafilter
in the Boolean algebra of recognisable languages over Σ. Recalling the definition
of an ultrafilter, an element of StoneΣ+ is a family of recognisable languages
over Σ, which is closed under intersection, and which contains every recognisable
language or its complement.

A simple example of such an ultrafilter is one that is induced by a word w ∈
Σ+, namely the ultrafilter of recognisable languages which contain w. Stated
differently, StoneΣ+ can be seen as a generalisation of Σ+.

Here is a more exciting ultrafilter, which corresponds to taking the idem-
potent power of a finite word. Recall the well known fact that in every finite
semigroup A of size n, the function a 7→ an! maps every element of A to an
idempotent, i.e.

an! · an! = an!,

and this element is the unique idempotent power of a, i.e. if

ak · ak = ak implies ak = an!.

We write a# for this idempotent power. A common notation would be wω,
but choose # to avoid conflict with the ω power in infinite words. For every
semigroup morphism h : Σ+ → A, and every w ∈ Σ+, we have

h(wn!) = h(w)# for all but finitely many n.

This implies that for every recognisable language L ⊆ Σ+ and every word w ∈
Σ+, either L contains wn! for all but finitely many L; or L does not contain wn!

for all but finite many L. This in turn implies that the set of languages

{L ⊆ Σ+ : L is recognisable and wn! ∈ L for all but finitely many n}
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is an ultrafilter, which we denote by w#. �

Running Example 8. Consider the monad of ∞-words used in the running
example. As for semigroups, for every ∞-algebra A and every a ∈ A there is
a unique idempotent power a#. Let w ∈ Σ+ is a finite nonempty word. As in
Example 10, one can also define profinite ∞-word w#, namely the ultrafilter

{L ⊆ Σ∞ : L is recognisable and wn! ∈ L for all but finitely many n}. (15)

Note that in the monad for ∞-words, the notation wω stands for an actual
infinite word, which can then be treated as a profinite word, i.e.

{L ⊆ Σ∞ : wω ∈ L} (16)

�

Theorem 11.1 can be applied to StoneA; for instance if the monad is the
monad of finite words, and A is Σ+, then Theorem 11.1 says that a family of
recognisable languages over Σ is a lattice if and only if it is definable by a set
of profinite identities.

Running Example 9. Consider a language L ⊆ Σ∞. Define the first differ-
ence distance between two ∞-words to be zero if they are equal, and otherwise
to be 1/n where n is the first position where the words have a different label.
Define a safety language to be a set of ∞-words which is closed under limits
with respect to first difference distance. In other words, safety says that if w
is an infinite word such that every finite prefix of w can be extended to some
word from the language, then w itself belongs to the language.

It is easy to see that recognisable safety ∞-languages form a lattice, and
therefore by Theorem 11.1 they must be characterised by a set of profinite
implications. One can show that the set of profinite implications is

vw#u→ vwω, (17)

where v, w, u ∈ Σ+ and the powers # and ω are understood as profinite words
in the same sense as in (15) and (16), i.e. the two sides of the above profinite
implication are the following ultrafilters, respectively.

{L ⊆ Σ∞ : L is recognisable and vwn!u ∈ L for all but finitely many n}
{L ⊆ Σ∞ : vwω ∈ L}

Indeed, suppose that L is a safety language, and it satisfies the left side of
the profinite implication for some v, w, u, which means that it contains vwn!u
for almost all n. By safety, the language L must also contain the limit of the
sequence vwn!u, which is vwω, and therefore L satisfies the right side of the
profinite implication. The more interesting case is the converse, i.e. showing
that if L satisfies all profinite implications of the form (17), then it is a safety
language. To prove that L is a safety language, assume that it contains all words

w1, w2, . . .
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which tend, under first difference distance, to some word w. We need to show
that L also contains w. If w is finite, then all but finitely many of the words wi
are equal to w, and therefore w ∈ L. Assume therefore that w is infinite. By
the Ramsey Theorem, w can be factorised as

w = v0v1v2 · · ·

such that all word v1, v2, . . . have the same image under some ∞-morphism

h : Σ∞ → A

which recognises L. This means that for every i, all but finitely many of the
words wj have a prefix of the form v0v1 · · · vi. Without loss of generality, we
may assume that

wi = v0v1 · · · viui,

and also without loss of generality we may assume that all words ui have the
same image under the∞-morphism h. Since L is recognised by h, it follows that
L contains all words of the form v0(v1)nu1. By (17), L also contains v0(v1)ω,
which has the same image under h as w, and therefore L also contains w. �

Defining pseudovarieties by identities As mentioned in its proof, Theo-
rem 11.1 does not use any properties of recognisability over a monad. We now
present a corollary of the theorem, which is more specific to monads, and which
says that pseudovarieties can be defined by identities.

To define profinite identities, we observe that both T-morphisms and unary
polynomials can be naturally lifted to profinite objects, as described below.
Suppose that

f : A→ B

is a function, not necessarily a T-morphism, which has the property that recog-
nisable languages are preserved under inverse images of f , i.e.

L ∈ recB implies f−1(L) ∈ recA. (18)

Then for every ultrafilter U of recognisable languages subsets of A, the family

(Stonef)(U)
def
= {L ∈ recB : f−1(L) ∈ U}

is an ultrafilter of recognisable subsets of B. In other words, f lifts to a function

Stonef : StoneA→ StoneB.

One can show that the mapping Stone defined this way is a functor, whose
domain is the category of T-algebras with functions that satisfy (18). We will
be interested in two special cases of functions f with property (18), i.e. when
f is a T-morphism and when f is a unary polynomial. The following fact is an
immediate consequence of the definitions.
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Fact 11.2 If f : A→ B satisfies (18), and L ⊆ B, then

f−1(L) satisfies w → v iff L satisfies (Stonef)(w)→ (Stonef)(v)

Define a profinite identity to be an expression of the form w = v where
w, v ∈ StoneTX for some finite set X of variables. As in profinite implications,
the equality sign is just part of the syntax, and formally a profinite identity is
simply the pair (w, v). If A is a T-algebra, then we say that L ∈ recA satisfies
a profinite identity w = v if it satisfies

(Stone(p ◦ h))(w)↔ (Stone(p ◦ h))(v)

for every unary polynomial p ∈ pol1A and every T-morphism h : TX → A,
where ↔ means that the profinite implication is satisfied both ways. As men-
tioned above, the mapping Stone is a functor, and therefore Stone(p ◦ h) is the
same as (Stonep) ◦ (Stoneh). Intuitively speaking, for every substitution of the
variables, i.e. every morphism h, and in every environment, i.e. for every unary
polynomial p, the two sides of the profinite identity are equivalent.

Example 11. Consider the monad of finite words, and the profinite identity

xy = yx.

Formally speaking, the profinite identity uses profinite words, call them “xy”
and “yx”, which correspond to the finite words xy and yx, as described in the
second paragraph of Example 10. A recognisable language L ⊆ Σ+ satisfies this
profinite identity if

p−1L ∈ “wv” iff p−1L ∈ “vw”

holds for every unary polynomial p over Σ+ and every w, v ∈ Σ+. Unraveling
the definitions of the profinite words “xy” and “yx”, this means that

wv ∈ p−1L iff vw ∈ p−1L.

This means that the language must be commutative. �

Example 12. Consider again the monad of finite words. Recall the profinite
word w# that was described in Example 10. In a similar way, we can define a
profinite word w#+1 to be the ultrafilter

{L ⊆ Σ+ : L is recognisable and wn!+1 ∈ L for all but finitely many n}.

Consider the following profinite identity over a single variable x:

x# = x#+1,

which the reader might recognise as the identity defining aperiodic semigroups.
We now check that this is the case under the definitions of this section. A
recognisable language L ⊆ Σ+ satisfies this profinite identity if for every unary
polynomial p over the semigroup Σ+ and every w ∈ Σ+, the following conditions
are equivalent
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• wn! belongs to p−1L for all but finitely many n;

• wn!+1 belongs to p−1L for all but finitely many n.

This implies that for every word w and unary polynomial p, the language p−1L
contains either finitely many, or all but finitely many, of the powers wn. This
means that the syntactic semigroup of the language is aperiodic, which means
that the language is definable in first-order logic, by Schützenberger’s theorem.
�

The above two examples showed that, in the monad of finite words, some
classes of recognisable languages can be characterised via profinite identities.
The following theorem, which is a monad version of the Reiterman Theo-
rem [Rei82], says that this is the case for all pseudovarieties, although infinite
sets of identities might need to be used. Note that although profinite identi-
ties can be evaluated in a recognisable subset of an arbitrary T-algebra, in the
following theorem we talk only about T-languages, i.e. recognisable subsets of
algebras of the form TΣ where Σ is a finite alphabet.

The following theorem uses the polynomial variant of language pseudovari-
eties that is mentioned in Section 4.2, i.e. this is a class of recognisable languages
that is closed under polynomial derivatives, inverse morphisms, and Boolean
combinations.

Theorem 11.3 Let L be class of recognisable T-languages. Then L is a pseu-
dovariety if and only if it is defined by a set of profinite identities.

Proof.
The right-to-left implication is essentially checking the definitions, while the
left-to-right implication is a corollary of Theorem 11.1.

Right-to-left implication. Suppose that I is a set of profinite identities,
and let L be the set of recognisable T-languages which satisfy all of these iden-
tities. We need to show that L is a pseudovariety. As mentioned in the proof
of Theorem 11.1, satisfying profinite implications is closed under unions and
intersections. It is easy to see that satisfying a profinite identity is invariant
under complementation. Therefore, L is closed under Boolean combinations. It
remains to show that L is closed under inverse images of morphisms and un-
der polynomial derivatives. Let then L ⊆ TΓ be a language that satisfies all
identities from I, and suppose that

h : TΣ→ TΓ

is a T-morphism. We will show that h−1(L) ⊆ TΣ also satisfies all identities
in I. (The proof for polynomial derivatives is the same and is ommitted.) By
definition, we need to show that for every profinite identity w = v in I which is
over variables X, and every

f : TX → TΣ q ∈ pol1TΣ
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which are a T-morphism and unary polynomial, respectively, we have

h−1(L) satisfies (Stone(q ◦ f))(w)↔ (Stone(q ◦ f))(v)

By Fact 11.2 and functoriality of Stone, the above is equivalent to saying that

L satisfies (Stone(h ◦ q ◦ f))(w)↔ (Stone(h ◦ q ◦ f))(v),

which is the same as saying that

L satisfies (Stone(r ◦ h ◦ f))(w)↔ (Stone(r ◦ h ◦ f))(v),

where r ∈ pol1TΓ is the image of q under h, see (1). Since h ◦ f is itself a T-
morphism, the above holds by assumption that L satisfies all profintie identities
from L.

Left-to-right implication. Let L be a class of recognisable T-languages
which is a language pseudovariety. We need to show that L is definable by
profinite identitites. For a finite alphabet Σ, define LΣ to be all languages from
L over alphabet Σ, and let IΣ be the set of profinite implications that are satis-
fied by all languages in LΣ. Define I to be the set of profinite identities w = v
such that some IΣ contains the profinite implication w → v. We show below
that L is defined by I, i.e. a language belongs to L if and only if it satisfies all
identities in I.

• Suppose that L satisfies all profinite identities from I. In particular, this
means that L satisfies all profinite implications from IΣ. Since L is a pseu-
dovariety, it follows that LΣ is a lattice, and therefore by Theorem 11.1,
LΣ is defined by the profinite implications from IΣ, which means that L
belongs to LΣ.

• Suppose that L belongs to L. We need to show that L satisfies all profinite
identities from I. In other words, we need to show that if w → v is a
profinite implication from IΓ, then

L satisfies (Stone(p ◦ h))(w)↔ (Stone(p ◦ h))(v)

for every unary polynomial p ∈ pol1TΣ and every T-morphism h : TΓ →
TΣ. By Fact 11.2, and closure propeties of a pseudovariety, this boils
down to the profinite implications w ↔ v being satisfied by a language
from LΓ, which holds by definition of IΓ.

�

11.3 Uniform continuity

The results in Section 11.1 and 12.4 did not really use assumptions on recog-
nisability. Actually, Theorem 11.1 would also be true for non-recognisable lan-
guages, as shown in the following example.
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Example 13. Consider the monad of finite words. For the purpose of this
example, defin StoneΣ+ to be the Stone dual of the Boolean algebra of decid-
able languages over the alphabet Σ, as opposed to the recognisable languages
considered in the previous secition. Also for the purpose of this example, de-
fine a pseudovariety to be a class of decidable languages that is closed under
Boolean combinations, inverse morphisms and polynomial derivatives, e.g. the
polynomial time complexity class p is such a pseudovariety. Inspection of the
proofs in Section 11.1 shows that Theorem 11.3 would also work in this setup,
in particular p is definable by profinite identities. �

In this section, we show that recognisable languages are special in some
sense. The result in this section is a generalisation of Theorem 4.1 in [GGP10]
from semigroups to a certain class of monads over sets.

Uniformly continuous operations. We begin by defining the notion of a
uniformly continuous operation in a T-algebra, with respect to a chosen class of
languages. Let

L = {L1, L2, . . .}

be a countable family of subsets of a set A, along with some enumeration. We
say that L ∈ L separates two elements of A if it contains exactly one of them.
Define the L-distance on A to be

distL(a, b) =
1

2n
where n is minimal such that Ln separates a, b.

It is easy to see that this is a distance, assuming that every two elements of A are
separated by some element of L. Note how countability is used in the definition.
Unravelling the classical definition of uniform continuity, a function

f : An → A

is uniformly continuous with respect to L-distance if for every finite set K ⊆ L
there is some finite set M⊆ L such that∧

i

vi ≡M wi implies f(v1, . . . , vn) ≡K f(w1, . . . , wn)

where ≡K says that elements cannot be separated by languages from K, and
≡M is the analogous equivalence but lifted pointwise to functions. It follows
that although the definition of L-distance depends on the enumeration of L, the
notion of uniformly continuous function does not.

The goal of this section is to investigate conditions on L which guarantee
that all polynomials of finite arity define uniformly continuous functions. The
answer will be that L needs to contain only recognisable languages. We begin
by two examples, which show the result for the special case of semigroups.

Example 14. Let Σ be a finite alphabet, let X be a set of finite semigroups
(e.g. all finite semigroups, or all aperiodic semigroups), and consider the L-
distance on Σ+ where L is all subsets of Σ+ recognised by semigroups in X. We
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claim that concatenation, which can be seen as a binary polynomial

(w, v) 7→ wv

is uniformly continuous with respect to L-distance. We need to show that for
every finite K ⊆ L there is some finite M⊆ L such that

w1 ≡M w2 and v1 ≡M v2 implies w1v1 ≡L w2v2.

holds for every words w1, w2, v1, v2 ∈ Σ+. The languages M can be taken
to be all languages recognised by those semigroups that are used to recognise
the languages from K. The family M is finite because there are finitely many
possible semigroup morphisms from Σ+ to a finite set of finite semigroups.
The same solution works for other operations in Σ+ that can be built using
concatenation. �

Example 15. As in the previous example, consider the L-distance on Σ+

where L contains some language that is not recognisable. We show that with
respect to L-distance, concatenation might continuous, but not uniformly con-
tinuous.

To show that concatenation might be continuous, suppose that L contains
all singleton languages, e.g. L is the decidable languages. This implies that
the topology generated by L-distance is discrete, because every singleton set is
open. Therefore, the topology on finite powers of Σ+ is also discrete, and thus
concatenation is continuous with respect to L-distance, like any other operation
on this semigroup.

Let us now show that concatenation is not uniformly continuous. Consider
some non-recognisable language L ∈ L. We will show that there is no finite set
M of decidable languages such that

w1 ≡M w2 and v1 ≡M v2 implies w1v1 ≡{L} w2v2.

for every words w1, w2, v1, v2 ∈ Σ+. Let then M be a finite set of languages
from L, or any languages for that matter. Because L is not recognisable, there
are infinitely many left derivatives, i.e. languages of the form x−1L. Since there
are finitely many equivalence classes of ≡M, there must exist some two words
w1, w2 such that

w1 ≡M v2 and w−1
1 L 6= w−1

2 L.

The inequality of derivatives means that there is some v such that

w1v 6≡{L} w2v,

which proves that concatenation is not uniformly continuous. �

The two examples above are essentially Theorem 4.1 of [GGP10]. The goal
of this section is to generalise that result to algebras over abstract monads.
The role of concatenation will be played by polynomials of finite arity. In our
generalisation we assume that the monad is finitary, and that it is over the
category of (unsorted) sets. The proof can be easily generalised to finitely
sorted sets. There is one additional assumption in our generalisation, which
will require some more definitions.
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Observationally complete polynomials. The idea behind observational
completeness is that sometimes, instead of using all unary polynomials in the
definition of the syntactic congruence, one can use a smaller subset, e.g. unary
polynomials that use the variable only once (whatever that may mean in an
abstract monad).

Let A be a T-algebra. We write polnA for polynomials with n argumetns in
the algebra A; we do not need to indicate the sorts of these arguments because
we use unsorted sets. We use the convention that the variables in a polynomial
from polnA are called x1, . . . , xn. Therefore, formally

polnA = T(A t {x1, . . . , xn}).

A set P ⊆ pol1A is called observationally complete for A if the following con-
ditions are equivalent for every a, b in the universe of A and every subset L of
the universe of A:

w ∈ p−1L iff w′ ∈ p−1L for every p ∈ pol1A (19)

w ∈ p−1L iff w′ ∈ p−1L for every p ∈ pol1A ∩ P . (20)

Recall that the condition in (19) is the equivalence relation defined in the proof
of the Syntactic Morphism Theorem.

Example 16. Consider the monad of finite words where algebras are semi-
groups. Call a unary polynomial nonduplicating if it uses its variable exactly
once. Such a polynomial is of the form wx1v where w, v are possibly empty
words over the universe of the semigroup. Without loss of generality one could
also assume that w, v have length zero or one. It is not difficult to show that the
unary nonduplicating polynomials are observationally complete in every semi-
groups. �

Running Example 10. Consider the monad of ultimately periodic ∞-words.
It is not difficult to show that in every algebra A for this monad, an observa-
tionally complete set of unary polynomials is

{wx1v, w(x1v)ω : where w, v ∈ A∗}.

These unary polynomials correspond to the Arnold congruence from [Arn85].
�

Finite covers. Define an n-ary term to be an element of T{x1, . . . , xn}, where
x1, . . . , xn are the variables used for polynomials. In other words, a term is the
special case of a polynomial that does not use any constants, and therefore
an n-ary term is an n-ary polymomial in every algebra. We say that a unary
polynomial p ∈ pol1A is covered by an n-ary term q if there exist a2, . . . , an in
the universe of A such that

p = q(x1, a2, . . . , an).
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A set P ⊆ pol1A is said to have a finite cover, if there is a finite set Q of terms,
of possibly different arities, such that every polynomial in P is covered by some
term in Q.

Example 17. The nonduplicationg polynomials mentioned in Example 16
are covered by the 3-ary term x2x1x3. The nonduplicationg polynomials men-
tioned in Running Example 10 are covered by the two 3-ary terms x2x1x3 and
x2(x1x3)ω. Summing up, in both these monads, every algebra has a finite cover
for the set of nonduplicating unary polynomials. �

Characterisation of uniformly continuous term operations. We are
now ready to state the theorem that characterises recognisability as a neces-
sary and sufficient condition for uniform continuity of term operations. In the
theorem, we write derL for the set of all polynomial derivatives of languages
from L.

Theorem 11.4 Consider a finitary monad T in the setting of sets. Let A be a
finitely generated T-algebra which has an observationally complete set of unary
polynomials that has a finite cover. Let L be a countable family of subsets of the
universe of A. Then

1. if L contains only T-recognisable languages, then every term operation is
uniformly continuous for derL-distance;

2. if L contains at least one language that is not T-recognisable, then some
term operation is not uniformly continuous for L-distance.

Before proving the theorem, note that by the discussion in Example 17, the
assumptions of the theorem are satisfied by every algebra in the monad of finite
words, and by every algebra in the monad of ultimately periodic words.

Proof.
We skip the proof of the first item, which is proved as in Example 14, and does
not use the assumption on the observationally complete set of unary polynomi-
als, but uses the assumption on finite generation.

Let us consider the second item. Let P be a set of observationally complete
polynomials with a finite cover Q, as in the assumptions of the theorem. Let
L ∈ L be some language that is not recognisable. Since A is finitary, we can use
the Syntactic Morphism Theorem. It follows that the equivalence in (19) has
infinite index, and therefore the equivalence relation defined in (20) as applied
to P has infinite index. For a unary polynomial q in the finite cover Q, define
∼q to be the relation as in (20) but with polynomials restricted to those that
are covered by q, i.e. ∼q identifies a, b ∈ A if

a ∈ p−1L iff b ∈ p−1L for every p ∈ pol1A covered by q.

Since the relation (20) has infinite index and is the intersection of the finitely
many relations ∼q, there must be some n-ary term q ∈ Q such that ∼q has
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infinite index. We claim that q, when seen as a polynomial in polnA, is not
uniformly continuous. To prove this, consider some finite set K ⊆ L. Because
the index of ∼q is infinite and the index of ≡K is finite, there must be some
a, b ∈ A such that

a 6∼q b and a ≡K b.

Unraveling the definition of ∼q, this means that there are some a2, . . . , an in
the universe of A such that

q(a, a2, . . . , an) 6≡{L} q(b, a2, . . . , an),

which proves that q is not uniformly continuous. �

12 Profinite monads

In this section, we prove that the Stone dual considered in the previous section
has sufficient structure to make it into a monad, i.e. for every monad T the
mappings

Σ 7→ Stone(TΣ)

f : Σ→ Γ 7→ Stone(Tf)

can be equipped with unit and multiplication to make it a monad, which we
will denote by T. Because T is a monad, it has its own notion of recognisability,
which is related to but richer than the notion of recognisability of the original
T. This richer notion of recgnisability is studied in Section 13, on the example
of profinite words.

12.1 Definition of the profinite monad

Fix for the rest of this section a monad T, in the category of sets, the general-
isation to sorted sets being straightforward. We explain how to convert T into
a monad, which we denote by T, that describes profinite objects over T.

Types. Instead of Stone duals as studied in the previous section, we will use
in this section an alternative definition, which has a more algebraic flavour. For
a T-algebra A, not necessarily finite, define a T-morphism type over A to be a
function τ which maps every surjective T-morphism

h : A→ B with B finite (21)

to an element hτ ∈ B, subject to the condition that

(g ◦ h)τ = g(hτ ) for every h : A→ B and g : B→ C (22)
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where g is a surjective T-morphism between finite T-algebras. The set of of T-
morphism types over a T-algebra A is called its compactification, and is denoted
by Ā. As a topological space, the set of T-morphism types is an equivalent
definition of the Stone dual defined in the previous section, as stated in the
following fact.

Fact 12.1 If A is a T-algebra, then StoneA is homeomorphic to Ā, assuming
that the base open sets are of the form

{τ ∈ Ā : hτ = b}

for h : A→ B a surjective T-morphism into a finite T-algebra and b ∈ B.

Nevertheless, we use T-morphism types instead of the Stone dual because
they will be more convenient to study the algebraic structure. Define the profi-
nite extension of a surjective T-morphism

h : A→ B

into a finite T-algebra B to be the function

h̄ : Ā→ B

defined by h̄(τ) = hτ . In terms of profinite extensions (22), says that the
following diagram commutes.

Ā
h̄ //

g◦h ��

B

ḡ

��
C

(23)

Example 18. Consider the monad + of finite words, where +-algebras are
semigroups, and +-morphisms are semigroup morphisms. Consider the semi-
group Σ+ where Σ is a a finite alphabet. As stated in Fact 12.1, +-morphism
types, or semigroup morphism types, over Σ+ are the same thing as elements
of the Stone dual StoneΣ+, which are profinite words as described in Exam-
ple 10. We now revisit the element w# of the Stone dual that was described in
Example 10, and describe its corresponding semigroup morphism types.

By definition, a semigroup morphism type over Σ+ is a function which maps
every semigroup morphism

h : Σ+ → A with A a finite semigroup

to an element of A, in a way that is consistent with composition. The idem-
potent power w# described in Example 10 is the morphism type which maps a
morphism h to h(w)#. Let us check that w# defined this way is indeed a semi-
group morphism type, we need to show that for every semigroup morphisms

h : Σ∗ → A g : A→ B
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with A and B being finite semigroups, and g being surjective, we have

g(h(w)#) = (g ◦ h(w))#.

This is checked below, assuming that n and m are the sizes of A and B.

g(h(w)#) = (by definition)

g(h(w)n!) = (because g is a semigroup morphism)

g(h(w))n! = (because m ≤ n and m! is an idempotent powe)

(g(h(w))m! = (by definition)

(g ◦ h(w))#.

�

The functor of T. We now define the profinite monad T. We assume that
the unit and multiplication in the original monad T are denoted by ηΣ and µΣ.
An object Σ is mapped by T the compactification of the T-algebra TΣ, i.e.

TΣ
def
= TΣ.

The remaining components of the monad, i.e. how T acts on functions, as well
as the unit and multiplication operations, are defined and proved correct in the
following theorem.

Theorem 12.2 There are unique operations

Tf : TΓ→ TΣ for f : Γ→ Σ

η̄Σ : Σ→ TΣ

µ̄Σ : TTΣ→ TΣ

such that for every finite T-algebra A and every surjective T-morphism

h : TΣ→ A,

into a finite T-algebra, the following diagrams commute

TΓ
Tf //

h◦Tf !!

TΣ

h̄
��

A

Σ
η̄Σ //

ηΣ

��

TΣ

h̄
��

TΣ
h // A

TTΣ

Th̄
��

µ̄Σ // TΣ

h̄

��
TA

mulA // A

.

Furthermore, equipped with the above operations, T is a monad.

The rest of Section 12.1 is devoted to proving the above theorem. First
observe that the operations from the statement of the theorem, if they exist,
are uniquely specified by the diagrams in the statement of the theorem, because
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an element of TΣ is uniquely specified by its values under all possible profinite
extensions h̄. We need to check that the operations actually produce morphism
types, i.e. the values that they produce satisfy (22). Let us first check that Tf
produces types, i.e. that

g ◦ h ◦ T = g ◦ h̄ ◦ Tf

holds for every finite T-morphisms

h : TΣ→ A g : A→ B

where A,B are finite. This is checked below:

g ◦ h ◦ Tf = (by definition of Tf)

g ◦ h ◦ Tf = (by (23))

g ◦ h ◦ Tf = (by definition of Tf)

g ◦ h̄ ◦ Tf

For the unit operation, the check is even simpler:

g ◦ h ◦ η̄Σ = (by definition of η̄Σ)

g ◦ h ◦ ηΣ = (by definition of η̄Σ)

g ◦ h̄ ◦ η̄Σ

Before checking that the multiplication operation defined in the theorem pro-
duces types, we check that T is a functor, i.e.

T(f ◦ g) = Tf ◦ Tg for every f : ∆→ Σ and g : Γ→ ∆.

To prove the above equality, we show that the two sides of the equality are equal
after being composed with functions of the form h̄ with

h : TΣ→ A

a T-morphism into a finite T-algebra. This is checked below and illustrated in
Figure 5.

h̄ ◦ T(f ◦ g) = (by definition of T(f ◦ g))

h ◦ T(f ◦ g) = (because T is a functor)

h ◦ Tf ◦ Tg = (by definition of Tg)

h ◦ Tf ◦ Tg = (by definition of Tf)

h̄ ◦ Tf ◦ Tg
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TΣ

T(f◦g)

((

Tg
��

h◦Tf◦Tg=h◦T(f◦g)

##
TΓ

Tf
��

h◦Tf // A

T∆

h̄

;;

Figure 5: T is a functor.

Multiplication in T To prove that the multiplication operation of the monad
T is produces types, one uses the following lemma in the special case of A = TΣ.

Lemma 12.3 If A is a T-algebra, then there is a unique operation

mulĀ : TĀ→ Ā,

which makes the following diagram commute

TĀ

Th̄
��

mulĀ // Ā

h̄

��
TB

mulA // B

(24)

for every T-morphism h : A→ B into a finite T-algebra B.

Proof.
The diagram (24) leaves no choice in the definition of mulĀ, since an element of
Ā is uniquely defined by its images under all possible h̄. We check below that
the multiplication operation is well-defined, i.e. it produces T-morphism types.
Let then

h : A→ B g : B→ C

be T-morphisms with B and C being finite T-algebras. We need to show that

g ◦ h ◦ µ̄Ā = g ◦ h̄ ◦ µ̄Ā.

This is done below and illustrated in Figure 6.
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TĀ

T(g◦h)

##

Th̄

��

mulĀ // Ā

h̄

��
g◦h

zz

TB

g◦mulB

mulC◦Tg

  

Tg

��

mulB // B

g

��
TC

mulC

// C

Figure 6: Multiplication in T is well-defined.

g ◦ h ◦ µ̄Ā = (by (24))

mulC ◦ T g ◦ h = (by (23))

mulC ◦ T(g ◦ h̄) = (because T is a functor)

mulC ◦ Tg ◦ Th̄ = (by definition of Tg)

mulC ◦ Tg ◦ Th̄ = (because g is a T-morphism)

g ◦mulB ◦ Th̄ = (by (23))

g ◦mulB ◦ Th̄ = (by (24))

g ◦ h̄ ◦ ◦mulĀ

�

So far we have proved that the operations in the statement of Theorem 12.2
are well defined, i.e. they produce T-morphism types, and that T is a functor.
We now check the remaining axioms of a monad. We skip proving that mul-
tiplication and unit are natural, i.e. the upper two diagrams in Figure 1. We
only show that multiplication is associative and consistent with the unit, i.e. the
lower two diagrams in Figure 1.

To prove that the multiplication operation in the monad is associative, we
apply the following lemma to the special case of A = TΣ.

Lemma 12.4 Let A be a T-algebra, and let mulĀ be as in Lemma 12.3. Then
the following diagram commutes:

TTĀ
µ̄Ā //

TmulĀ
��

TĀ

mulĀ
��

TĀ
mulĀ

// Ā
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Proof.
Because an element of Ā is uniquely determined by its values under h̄, with h
ranging over T-morphisms from A into finite T-algebras, it suffices to show that
the diagram commutes when extended with such a h̄, i.e.

h̄ ◦mulĀ ◦ TmulĀ = h̄ ◦mulĀ ◦ µ̄Ā.

Let us then fix h : A → B and prove the above equality. The calculation is
performed below and also illustrated in Figure 7.

TĀ

mulĀ
��

Th̄

��

TTĀ

µ̄Ā

��
TmulB◦Th̄ ,,

TmulĀ

33

TTh̄ // TTB

T mulB
��

Ā

h̄

��

TĀ

mulĀ

��

Th̄

%%

mulB◦Th̄

&&

TB

mulB

��
TB

mulB // B

Ā

h̄

99

Figure 7: The four-sided faces in the diagram commute by (24), or by T applied
to (24). The three-sided faces in the diagram commute by the definition of T
on functions, or by T applied to the definition of T on functions.

h̄ ◦mulĀ ◦ TmulĀ = (by (24))

mulB ◦ Th̄ ◦ TmulĀ = (by T applied to (24))

mulB ◦ T mulB ◦ TTh̄ = (because T is a functor)

mulB ◦ T
(
mulB ◦ Th̄

)
= (by definition of Th̄)

mulB ◦ TmulB ◦ Th̄ = (by (24) with the T-morphism being mulB ◦ Th̄)

mulB ◦ Th̄ ◦ µ̄Ā = (by definition of Th̄)

mulB ◦ Th̄ ◦ µ̄Ā = (by (24))

h̄ ◦mulĀ ◦ µ̄Ā

�
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We now check the last axiom of a monad, namely that the following diagram
commutes:

TΣ

idΣ

##

η̄TΣ //

Tη̄Σ

��

TTΣ

µ̄Σ

��
TTΣ

µ̄Σ

// TΣ

Let us first check the upper triangular face of the diagram:

h̄ ◦ µ̄Σ ◦ η̄TΣ = (by (24))

mulA ◦ Th̄ ◦ η̄TΣ = (by definition of Th̄)

mulA ◦ Th̄ ◦ η̄TΣ = (by definition of η̄Σ)

mulA ◦ Th̄ ◦ ηTΣ = (because T is a monad)

mulA ◦ ηA ◦ h̄ = (because mulA is the identity on units)

h̄

Let us now check the lower triangular face of the diagram:

h̄ ◦ µ̄Σ ◦ TunitTΣ = (by (24))

mulA ◦ Th̄ ◦ TunitTΣ = (because T is a functor)

mulA ◦ T(h̄ ◦ unitTΣ) = (by definition of η̄Σ)

mulA ◦ T(h ◦ unitTΣ) = (because T is a functor)

mulA ◦ Th ◦ TunitTΣ = (by definition of Th)

mulA ◦ Th ◦ TunitTΣ = (by definition of TηΣ)

mulA ◦ Th ◦ TunitTΣ = (because h is a T-morphism)

h ◦ µΣ ◦ TunitTΣ = (because T is a monad)

h̄

This completes the proof that T is a monad.

12.2 From a T-algebra to a T-algebra.

Having defined the monad T, it is natural to ask what are finite T-algebras,
and what are the languages recognised by them. In this section, we discuss how
every T-algebra can be transformed into a T-algebra. Since this transformation
preserves finiteness, it gives a source of examples of finite T-algebras. However,
the algebras produced by this transformation are not very interesting, because
they are essentially decorations of T-algebras. More interesting examples will
be given in Section 13.

From A to Ā. An element of a ∈ A can can be interpreted as an element of
Ā, namely as the T-morphism type which maps a T-morphism h to h(a). We
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denote this interpretation by ιA, by definition it makes the following diagram
commute:

A

h ��

ιA // Ā

h̄
��

B

. (25)

for every T-morphism h into a finite T-algebra B. It is tempting to think of ιA
as an embedding. However, for ιA to be an embedding, one would require that
every distinct elements of A can be distinguished by some T-morphism into a
finite T-algebra. This additional assumption is true in all monads studied in this
paper, at least for finitely generated T-algebras, but it can be false, e.g. with a
very restrictive notion of finite T-algebra.

An algebraic structure on Ā. From Lemmas 12.3 and 12.4 it follows that
if A is a T-algebra, then there is a multiplication operation

mulĀ : TĀ→ Ā

which turns the compactification Ā into a T-algebra. The following lemma
implies that compactification preserves finiteness of algebras.

Lemma 12.5 If A is a finite T-algebra, then Ā is isomorphic to the T-algebra
where the universe is the universe of A, and multiplication is defined to be the
profinite extension of mulA, i.e. by

mulA : TA→ A.

Proof.
We claim that the isomorphism is the profinite extension

idA : Ā→ A

of the identity on A. We claim that the above is a bijection, because its inverse
is ιA. To prove bijectivity, we need to show that

ιA ◦ idA idA ◦ ιA

are the identity functions on Ā and A respectively. For the latter, we in-
voke (25). The former is explained in the following diagram

Ā

h̄

��

idA // A

ιA
��h��

B Ā
h̄

oo

�
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Lemma 12.6 If h : A→ B is a T-morphism, then there is a unique function

h̄ : Ā→ B̄

which makes the following diagram commute

Ā
h̄ //

g◦h ��

B̄

g

��
C

for every T-morphism g : B→ C with C finite.

Proof.
Note that the definition of Tf is actually a special case of this lemma, because
Tf is makes the diagram in the lemma commute for Tf , i.e. Tf = Tf . The
lemma is proved the same way as we proved that Tf is well defined. �

The above lemma introduces a little clash of notation. If

h : A→ B

is a T-morphism such that B if finite, then h̄ has two definitions: namely the
profinite extension of A, which is of type Ā → B, and the definition from the
above lemma, which is of the type Ā → B̄. However, the two definitions are
essentially the same mapping, because they are equal up to the isomorphism
from Lemma 12.5.

Lemma 12.7 If h : A → B is a T-morphism, then h̄ defined in Lemma 12.6
is a T-morphism and makes the following diagram commute:

A
h //

ιA
��

B

ιB
��

Ā
h̄

// B̄

Proof.
We first check the diagram in the statement of the lemma. It suffices to show
that the diagram commutes after the lower right corner is extended with the
profinite extension of a T-morphism f : B→ C into a finite T-algebra. This is
shown in the following diagram:

A
h //

ιA

��

B

f{{
ιB

��

C

Ā

f◦h
;;

h̄

// B̄
f̄

cc
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The proof that h̄ is a T-morphism is in the following diagram.

TĀ

T f◦h

!!
Th̄

��

mulĀ // Ā

h̄

��

f◦h

��
TC

mulC // C

TB̄

Tf̄

==

mulB̄

// B̄
Tf̄

__

The upper and lower faces commute by Lemma 12.3, the right face commutes
by Lemma 12.6, and the left face commutes by applying the functor T to
Lemma 12.6. �

12.3 From a T-algebra to a T-algebra.

In the previous section, we showed how to convert a T-algebra into a T-algebra.
We now discuss the opposite direction. To go from a T-algebra A to a T-algebra,
call it AT, one keeps the same universe and defines the multiplication operation
by

TA

mulAT !!

ιA // TA

mulA
��
A

The following lemma shows that this construction is correct. In the specific
case of the monad of finite words, the lemma says that a profinite semigroup is
actually a semigroup (it has other structure as well).

Lemma 12.8 If A is a T-algebra, then AT is a T-algebra. If h : A → B is a
T-morphism, then the function underlying h is a T-morphism from AT to BT.

Proof.
By Lemma 12.7 applied to h̄ being

TιTΣ : TTΣ→ TTΣ

we see that the following diagram commutes

TTΣ

TιΣ
��

ιTΣ // TTΣ

TιΣ
��

TTΣ
ιTΣ

// TTΣ
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Let us write ιιΣ for the diagonal of the above diagram.
To prove that AT is a T-algebra, we will show that the following diagram

commutes (the outer perimeter of the diagaram says that mulAT
is associative

as required in a T-algebra):

TTA
ιιA

((

µA //

TmulAT

��

TA

ιAvv

mulAT

��

TTA
µ̄A //

TmulA ��

TA

mulA

  

TA

mulA ++TA

ιA
66

mulAT

// A

The middle face of the diagram is the assumption that A is a T-algebra. The
right and bottom faces are the definition of mulAT

. The top face can be shown
using the definition of multiplication in TA, and does not use the algebraic
structure on A. Finally, for the left face, we use the following diagram:

TTA

TιA
))

TmulAT

%%

ιιΣ

,,
TTA

TmulA��
ιTA

// TTA

TmulA��
TA

ιA
// TA

The rectangular face commutes by Lemma 12.7. The lower triangular face
commutes by applying the functor T to the definition of mulAT

. The upper
triangular face commutes because it is the definition of ιιA.

This completes the proof that AT is a T-algebra. To prove that h as in the
statement of the lemma is a T-morphism, we consider the following diagram:

TA
ιA

!!
mulAT

��

Th // TB

mulBT

��

ιB

}}
TA

Th //

mulA}}

TB

mulB ""
A

h
// B

The left and right faces commute by definitions of multiplication in AT and BT.
The bottom face commutes by assumption that h is a T-morphism. The top
face commutes by Lemma 12.7. �
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12.4 Clopen languages and Stone algebras

A well known result for profinite words is that there is a one-to-one correspon-
dence between clopen subsets of the profinite monoid over Σ, and recognisable
subsets of Σ+. In this section we prove Theorem 12.9, which generalises this
observation to monads.

Recall that if A is a T-algebra, then by Fact 12.1 there is a topological
structure on Ā, which is homeomorphic to the Stone dual StoneA. Recall also
the mapping ιA : A → Ā. Using these two notions, for L ⊆ A, we define
L̄ ⊆ Ā to be the closure, in the topology of Ā, of the image of L under the
ιA. In Theorem 12.9, we will show that the clopen subsets of Ā are exactly the
closures, in the sense just defined, of T-recognisable subsets of A.

Theorem 12.9 Let A be a T-algebra. A subset of Ā is clopen if and only if it
is of equal to L̄ for some recognisable L ⊆ A.

Before proving the theorem, we present a lemma.

Lemma 12.10 If h : A→ B is a T-morphism into a finite T-algebra, then

h−1(F ) = (h̄)−1(F ) for every F ⊆ B.

Proof.
Recall that a base open set in Ā is a set of the form

h̄−1(b) for some T-morphism h : A→ B and b ∈ B,

and such sets are also closed. Therefore, the set on the right side of the equality
in the statement of the lemma is closed, as a finite union of base sets. To
complete the proof, we show that the image of h−1(F ) under ιA is dense in
the set on the right side, i.e. every open subset of the right side contains ιA(a)
for some a ∈ A with h(a) ∈ F . Every open set contains a base open set, and
therefore it suffices to show that if

g : A→ C

is a T-morphism into a finite T-algebra, and the base open set ḡ−1(c) is included
in the right side of the equality, then ḡ−1(c) contains ιA(a) for some a ∈ A with
h(a) ∈ F . For a it suffices to choose any element of g−1(c), which is easily
shown to belong to h−1(F ). �

Proof. (of Theorem 12.9)
Let us begin with the left-to-right implication. Consider a clopen subset of Ā.
Like any clopen set in a compact space, this is a finite union of base open sets.
By definition of closed base open sets in Ā and Lemma 12.10, we see that every
clopen subset of Ā can be represented as a finite union⋃

i

h−1
i (Fi) =

⋃
i

h−1
i (Fi).

The right side is as required in the statement of the theorem. The right-to-left
implication is done by reversing the above reasoning. �
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Stones In Section 12.2, we showed how to convert T-algebras into T-algebras,
and how to convert T-morphisms into T-morphisms. We now explain that the
T-algebras and T-morphisms produced this way have special topological prop-
erties.

A T-algebra A is called Stone if its universe is finite, and the multiplication
operation is continuous assuming the discrete topology on the universe. The
reason for this name is that the discrete topology is the only one which makes
the finite universe a Stone space, i.e. a compact totally disconnected Hausdorff
topological space7. As shown in the following lemma, Stone T-algebras are
essentially the same thing as finite T-algebras. In Section 13 we will show
examples of finite T-algebras that are not Stone.

Theorem 12.11 Up to isomorphism, the mappings

A 7→ A

h : A→ B 7→ h̄ : Ā→ B̄

are one-to-one correspondences between, respectively:

• finite T-algebras and finite T-algebras that are Stone; and

• T-morphisms into finite T-algebras and continuous T-morphisms into fi-
nite T-algebras that are Stone.

Proof.
We only consider the first mapping, the second is proved in a similar way. We
will show that if A is a finite T-algebra then Ā is Stone, and if A is a Stone,
then AT is a finite T-algebra. In Lemma 12.5, we have shown that if A is a finite
T-algebra, then Ā is isomorphic to the algebra whose universe is the universe
of A, and whose multiplication operation is

mulA : TA→ A,

i.e. the profinite extension of the original multiplication. Every profinite exten-
sion is continuous (assuming the discrete topology on the image) by definition
of the topology in Ā, and therefore Ā is Stone. To prove that the correspon-
dence is one-to-one up to isomorphism, we need to show that if A is a Stone
T-algebra then it is isomorphic to AT, and if A is a finite T-algebra then it is
isomorphic to (A)T. We only prove the former isomorphism. Let then A be a
Stone algebra. By Lemma 12.5, it suffices to show that the two multiplication
operations

mulA : TA→ A

mulAT
: TA→ A

7Actually, already the Hausdorff requirement implies discreteness, but Stone spaces are
closely connected to profiniteness.
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are equal. By definition, the two operations agree on elements in the image of
TA under

ιTA : TA→ TA.

This image is a dense subset of TA. Because A is finite, TA is a metric space
(we implicitly assume that there are countably many finite T-algebras up to
isomorphism), and therefore both multiplication operations are uniformly con-
tinuous functions that agree on a dense subset. Such functions must be equal.
�

13 Profinite words

In this section, we illustrate the profinite monad construction from Section 12
in the special case of words. Consider the monad Σ 7→ Σ+ of finite words.
Let us denote by Σ 7→ Σ+̄ the profinite version of this monad, as defined in
Section 12. In particular, Σ+̄ is a semigroup thanks to Lemma 12.8, and Σ+̄ is
has a topology which makes it a Stone space by Fact 12.1. An element of Σ+̄

is called a profinite word over the alphabet Σ. One of the results of this section
is Theorem 13.3, which implies that mso is undecidable over profinite words,
already with two predicates.

As shown in Section 12.2, every finite semigroup S, can be extended to a
+̄-algebra S̄ with the same universe, where the multiplication operation

mulS̄ : S+̄ → S

is continuous assuming the profinite topology on the domain and the discrete
topology on the image. In this section we give an example of a finite +̄-algebra
that is not obtained this way, because the multiplication operation is not going
to be continuous assuming the discrete topology on the image.

13.1 The unboundedness language

We say that a profinite word w ∈ Σ+̄ has at least n letters in a subset Γ ⊆ Σ if
it has value n under h̄ where

h : Σ+ → {0, 1, . . . , n}

is the semigroup morphism which counts the number of letters in Γ up to thresh-
old n. A profinite word is said to have exactly n letters from a set if it has at
least n letters from the set but not at least n + 1. If a profinite word has at
least n letters in Γ for every n, then we say that it has an unbounded number
of letters in Γ.

Lemma 13.1 The set of profinite words in {0, 1}+̄ which have unboundedly
many ones is +̄-recognisable.
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Proof.
We show that the set in the statement of the lemma is recognised by a +̄-
morphism

h : {0, 1}+̄ → A

where A is the finite +̄-algebra defined as follows. The universe of A has
three elements, call them 0, 1 and ∞, which represent profinite words that have
zero ones, a bounded number of ones, and an unboundedly number of ones
respectively. The multiplication operation

mulA : A+̄ → A

is defined as follows. If the argument has only zeros, the value is zero. If the
argument has at least one letter ∞, or unboundedly many ones, then the value
is ∞. Otherwise the value is one. Note that the multiplication operation is
not continuous, at least assuming a discrete topology on the universe, because
the inverse image of 1 is not closed. We now prove that this multiplication is
associative, i.e. that the following diagram commutes:

(A+̄)+̄ µ̄A //

(mulA)+̄

��

A+̄

mulA

��
A+̄

mulA

// A

where µ̄A denotes the multiplication operation of the profinite monad.
To prove that the above diagram commutes, we need to show that

mulA((mulA)+̄(w)) = mulA(µ̄A(w)). (26)

holds for every profinite word of profinite words w ∈ (A+̄)+̄. We consider two
cases, depending on whether w has an unbounded number of letters in the set
A+̄ − 0+̄.

• The word w has an unbounded number of letters outside 0+̄. We will show
that (26) holds, because both sides are equal to ∞. Consider first the left
side. Let

hn : A+ → {0, . . . , n}

be the semigroup morphism that counts the number of nonzero letters.
Our assumption on w says that (h1)+̄(w) has unboundedly many ones.
Since the image of h1 is a subset of A, it makes sense to compare values
of h1 with values of mulA, in particular the following observation is easy
to get:

h1(v) ≤ mulA(v) for every v ∈ A+̄.
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As in the proof of Lemma 6.2, a binary relation R ⊆ X × Y lifts to a
relation RT ⊆ TX × TY . Apply this construction to the natural ordering
on A, and call ≤ the resulting relation on A+̄. As we have observed,

(h1)+̄(w) ≤+̄ (mulA)+̄(w).

The profinite word on the left of the above inequality has an unbounded
number of ones by our assumption, and therefore it is mapped by mulA
to ∞. It is not difficult to see that the mapping mulA is monotone with
respect to ≤, and therefore the left side of the equality in (26) is ∞.

To prove that the right side of the equality in (26) is also∞, by definition
of mulA we need to show that every n satisfies

hn(µ̄A(w)) = n.

Let muln be the multiplication operation in the semigroup {0, . . . , n}.
Theorem 12.2 says that

A+̄+̄

hn
+̄

��

µ̄A // TA

hn

��
T{0, . . . , n} muln // {0, . . . , n}

To prove that the right side of the equality in (26) is also ∞, from the
definition of mulA we need to show that for every n, if start with w and
consider the right-down path in the above diagram, then we get n. Because
the diagram commutes, we can also consider the down-right path. Our
assumption on w says that (hn)+̄(w) is a profinite word which has an
unbounded number of nonzero letters. On such words, hn gives result n.

• The other case is when w has a bounded number of letters outside 0+̄. We
begin with a straightforward lemma, which uses the semigroup structure
of profinite words that was described in Lemma 12.8. Let us denote the
unit of the profinite monad by η̄Σ, i.e. if a ∈ Σ then η̄Σ(a) ∈ Σ+̄ is the
corresponding profinite word.

Lemma 13.2 If w ∈ Σ+̄ has a bounded number of letters in Γ ⊆ Σ then
it admits a finite decomposition

w = w0 · η̄Σ(a1) · w1 · · ·wn−1 · η̄Σ(an) · wn

where w0, . . . , wn are profinite words over the alphabet Σ − Γ, a1, . . . , an
are letters in Γ, and the dot stands for concatenation in the profinite semi-
group.

By applying Lemma 13.2, there is a decomposition

w = w0 · η̄A+̄(a1) · w1 · · ·wn−1 · η̄A+̄(an) · wn
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where wi ∈ (0+̄)+̄, ai ∈ A+̄ − 0+̄, and the dot is concatenation in the
profinite semigroup over alphabet A+̄. Lemma 12.8 implies that

µ̄A(w) = µ̄A(w0) · a1 · µ̄A(w1) · · · µ̄A(wn−1) · an · µ̄A(wn)

where the dot is concatenation in the profinite semigroup over alphabet
A. Since mulA is a semigroup morphism, and it maps words in 0+̄ to the
identity in A, it follows that

mulA(µ̄A(w)) = mulA(a1) · · ·mulA(an).

Let us now consider mulA((mulA)+̄(w)). Lemma 12.8 says that (mulA)+̄

is a semigroup morphism, and therefore mulA
+̄(w) is equal to

mulA
+̄(w0) ·mulA

+̄(η̄A+̄(a1)) ·mulA
+̄(w1) · · ·mulA

+̄(wn−1) ·mulA
+̄(η̄A+̄(an)) ·mulA

+̄(wn).

By the axioms of a monad, we have

mulA
+̄(η̄A+̄(ai)) = η̄A(mulA(ai)).

Each word mulA
+̄(wi) in the decomposition of mulA

+̄(w) belongs to 0+̄.
Therefore, because mulA is a semigroup morphism that maps 0+̄ to the
identity, we get

mulA(mulA
+̄(w)) = mulA(η̄A(mulA(ai))) · · ·mulA(η̄A(mulA(an))).

The result follows because mulA(η̄A(a)) = a holds for every a ∈ A.

This completes the proof that mulA : A+̄ → A is a +̄-morphism. �

Let us define mso+inf to by applying the abstract notion of mso defined in
Section 6.1, with the base predicates being the language of unboundedly many
ones from the previous lemma, and the profinite closure of the language “some a
comes before some b”. This class of languages of profinite words was considered
in [Tor11] and [Tor12], adjusting for the monad terminology. From Lemma 6.2
it follows that mso+inf contains only +̄-recognisable languages. It is not clear
if it contains all +̄-recognisable languages.

Theorem 13.3 The satisfiability problem for mso+inf is undecidable.

Proof.
Consider mso+u on infinite words, which is an extension of mso. This logic is
shown undecidable in [MB15]. Corollary 2 of [Tor12] shows that decidability of
mso+u on infinite words reduces to decidability of mso+inf on profinite words.
�
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