
Submitted to the International Conference on Rewriting Techniques and Applications
http://rewriting.loria.fr/rta/

AUTOMATA FOR DATA WORDS AND DATA TREES

MIKO LAJ BOJAŃCZYK

University of Warsaw
E-mail address: bojan@mimuw.edu.pl

URL: www.mimuw.edu.pl/∼bojan

Abstract. Data words and data trees appear in verification and XML processing. The
term “data” means that positions of the word, or tree, are decorated with elements of an
infinite set of data values, such as natural numbers or ASCII strings. This talk is a survey
of the various automaton models that have been developed for data words and data trees.

A data word is a word where every position carries two pieces of information: a label
from a finite alphabet, and a data value from an infinite set. A data tree is defined likewise.

As an example, suppose that the finite alphabet has two labels request and grant,
and the data values are numbers (interpreted as process identifiers). A data word, such as
the one below, can be seen as log of events that happened to the processes.

request

1
request

2
request

1
request

7
request

7
request

3
grant

1
grant

3
...

The example with processes and logs can be used to illustrate how data words are used
in verification. In one formulation, verification is a decision problem with two inputs: a
correctness property, and a scheduling mechanism. The correctness property is some set
K of “correct” logs. Often in verification, one talks about infinite words. For example, we
might be interested in the following liveness property:

“For every position with label request, there exists a later position with
label grant and the same data value.”

The scheduling mechanism is represented as the set L of logs consistent with the mechanism.
For example, a rather unwise scheduler would result in the following logs:

“Every position with label grant carries the same data value as the most
recent position with label request.”

The verification problem is the question: does the scheduling mechanism guarantee the
correctness property? (In the example given here, the answer is no.) In terms of languages,
this is the question if the difference L−K is nonempty. To complete the description of the

1998 ACM Subject Classification: PREFERRED list of ACM classifications.
Key words and phrases: Automata, Infinite State Systems.
Work supported by the FET programme within the Seventh Framework Programme for Research of the

European Commission, under the FET-Open grant agreement FOX, number FP7-ICT-233599.

c© M. Bojańczyk
Confidential — submitted to RTA

2 M. BOJAŃCZYK

problem, one should indicate some way of representing the languages L and K; a typical
solution is to use some variant of logic or automata.

Another application of data is in XML. Here, (finite) data trees are the pertinent object.
The data values are used to model the text content in an XML document, while the labels
are used to model tag names, as illustrated in the following example. The finite alphabet
describes three possible tag names: root, team and player. The data values are ASCII
strings that describe team names and player names. The picture below depicts an XML
document and its interpretation as a data tree.

<root>

<team> Borussia
 <player> Kuba </player>
 <player> Zidan </player>
</team>

<team> Poland
 <player> Boruc </player>
 <player> Kuba </player>
 <player> Bąk </player>
</team>

</root>

root

team
Borussia

team
Poland

player
Kuba

player
Kuba

player
Zidan

player
Boruc

player
Bąk

One might want to express correctness properties of an XML document, such as “no
player is a member of two different teams”. A typical algorithmic problem would concern
the relation between two correctness properties, such as: does correctness property L imply
correctness property K? This is a problem like the one in the verification example, although
the logics used for describing XML documents usually have a different flavor than the logics
for describing behavior of processes. Another algorithmic problem is to query documents,
such as “find the nodes that describe a player who plays in two different teams”. For
querying, algorithms should be very fast, for instance linear in the document size. For
verification, sometimes even decidability is hard to get.

The problems described above are well understood in the data-free setting, where posi-
tions carry only labels and not data values. Automata techniques have been highly successful
in this area.

What about data? What is the right automaton model for data words and data trees?
Recent years have seen a lot of work in this direction, with many incompatible definitions
being proposed. Some of the approaches are listed in the references. Which one is the right
one? What is a “regular language” in the presence of data? We do not know yet, and maybe
we never will. It is difficult (indeed, impossible, under a certain formulation) to design an
automaton model that is robust (the languages recognized have good closure properties, such
as boolean operations and projections), expressive (captures some reasonable languages,
such as “all positions with label a have the same data value”) and decidable (e.g. has
decidable emptiness). Undecidable problems, like the Post Embedding Problem, can be
easily encoded in data words, in many different ways.

The talk surveys the varied landscape of automata models for data words and data
trees. I will talk about the technical aspect of deciding emptiness, including the connection
with vector addition systems (Petri Nets), as well as the connection with well-quasi-orders.

AUTOMATA FOR DATA WORDS 3

I will also talk about the technical aspect of efficient evaluation, including the connection
with semigroup theory.

References

[1] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the presence of DTDs. In
PODS, pages 25–36, 2005.

[2] H. Björklund and T. Schwentick. On notions of regularity for data languages. In FCT, pages 88–99,
2007.

[3] Miko laj Bojańczyk, S lawomir Lasota. An extension of data automata that captures XPath . To appear
in LICS, 2010.

[4] Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic on data
trees and XML reasoning. J. ACM, 56(3), 2009.

[5] Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David. Two-variable
logic on words with data. In LICS, pages 7–16, 2006.

[6] Miko laj Bojańczyk, Pawe l Parys. Efficient evaluation of nondeterministic automata using factorization
forests. To appear in ICALP, 2010.

[7] Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register automata. ACM Trans.
Comput. Log., 10(3), 2009.

[8] Diego Figueira. Forward-XPath and extended register automata on data-trees. In ICDT, 2010. To
appear.

[9] Marcin Jurdziński and Ranko Lazić. Alternation-free modal mu-calculus for data trees. In LICS, pages
131–140, 2007.

[10] Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–363,
1994.

[11] Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL, pages 41–57,
2006.

If accepted for publication by RTA, this work will be licensed under the Creative Commons Attribution-NoDerivs
License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

