Verification of database-driven systems
via amalgamation

Mikotaj Bojanczyk*
Univ. of Warsaw

ABSTRACT

We describe a general framework for static verification of
systems that base their decisions upon queries to databases.

The database is specified using constraints, typically a schema,

and is not modified during a run of the system. The system
is equipped with a finite number of registers for storing inter-
mediate information from the database and the specification
consists of a transition table described using quantifier-free
formulas that can query either the database or the registers.

Our main result concerns systems querying XML databases
— modeled as data trees — using quantifier-free formulas with
predicates such as the descendant axis or comparison of data
values. In this scenario we show an EXPSPACE algorithm for
deciding reachability.

Our technique is based on the notion of amalgamation and
is quite general. For instance it also applies to relational
databases (with an optimal PSPACE algorithm).

We also show that minor extensions of the model lead to
undecidability.

Categories and Subject Descriptors

F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms

Logic, automata

Keywords

Database-driven Systems, Register Automata, Amalgama-
tion, Fraissé classes

1. INTRODUCTION

In this paper we describe a general framework for static
verification of database-driven systems. Such a system bases
its decisions upon queries to databases. Typical examples

* Authors supported by ERC Starting Grant “Sosna”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PODS’13, June 22-27, 2013, New York, New York, USA.

Copyright 2013 ACM 978-1-4503-2066-5/13/06 ...$10.00.

Luc Segoufin
INRIA and ENS Cachan

Szymon Torunczyk*
Univ. of Warsaw

are web services, web applications, or data-centric business
processes. These systems can be complex and error prone.
Computer-aided static analysis can improve their robustness
and correctness.

In order to perform static analysis, the behavior of the
database-driven system is specified in a suitable formalism;
the desired properties of its executions are also specified
in a suitable formalism. The computer then automatically
checks whether all runs of the system verify the expected
properties.

As advocated in [10], classical software verification tech-
niques have serious limitations when applied to such systems
— the main reason is that they abstract away data values,
resulting in serious loss of semantics for both the system and
the properties being verified.

For this reason, several specific formalisms have been de-
signed allowing meaningful specification of relational database-
driven systems. See for instance [8, 6, 4, 5, 9]. As demon-
strated in [9], for these scenarios, the system can be de-
scribed using a register automaton whose transition rules
are quantifier-free first-order formulas querying the database
and the registers. The correctness criterion for executions
of the system is specified using a language mixing queries
to the database and temporal behavior that can easily be
translated into the same register automata model. Alto-
gether the static analysis problem boils down to testing the
existence of a database such that the register automaton has
an accepting run driven by that database.

In this paper we develop general techniques for testing
reachability of such automata models. These techniques
encompass the examples cited above concerning relational
databases, but also apply to XML databases, and — in gen-
eral — to any kind of structures having “good” model prop-
erties.

Following [9], we specify database-driven systems using
transition rules controlling their workflow. Each such rule
may be based on the result of quantifier-free queries to the
database. The database is not fixed and may vary from
run to run. It is however restricted to range over a certain
class of databases typically specified using a schema and
possibly several other constraints. Moreover the system has
only read access to the database and the database does not
change during a run.

To give an idea of the setting we are dealing with, let us
describe a toy example of a database-driven system S that
fits into our framework. The system S is equipped with one
register capable of storing nodes of XML documents. We
specify the transitions of S as follows:

The node stored in the register after the transi-
tion is a descendant of the node stored in the reg-
ister before the transition and the attribute a of
both nodes (before and after) contains the same
data value.

Furthermore, we specify that in the initial configuration of
the system, the register stores the root of the tree, and in an
accepting configuration, it must store some leaf of the tree.
Note that the transitions of the system do not modify the
database.

We are interested in the following question: is there some
XML document ¢ such that the described system has an
accepting run driven by t? We may ask more detailed ques-
tions: is there some XML document t satisfying a certain
XML schema such that the described system has an accept-
ing run driven by t?

In general our goal is to give an algorithm for the following
problem, parametrized by a class C of databases.

— Input. A database-driven system.

— Output. Does the system have some finite accepting
run driven by some database in C?

We show that if the class C of databases satisfies a certain
model-theoretic assumption — namely, it is a computable
Fraissé class — then there exists an algorithm for the de-
scribed problem.

Our main technical result shows that many natural classes
of databases are Fraissé. Examples include: all databases
over a given relational schema, three-colorable graphs (more
generally, any property of databases expressed as a Con-
straint Satisfaction Problem), XML documents viewed as
data trees satisfying a given XML schema (more generally,
any property of trees recognized by a tree automaton).

The most interesting and most difficult result is the XML
case. In this scenario the database is an XML document
that must verify a certain XML schema. The system can
query the XML document using the descendant axis, the
document order and the closest common ancestor relation.
It can also test equality or inequality between attribute val-
ues. Our generic technique shows that in this setting the
above problem is decidable in EXPSPACE.

In the setting of relational databases, we derive from our
generic technique an optimal PSPACE decision procedure.

We also show how extending slightly the expressive power
of these systems quickly leads to undecidability. For in-
stance, in the XML setting, allowing the system to use the
sibling axis or the child axis in its queries leads to undecid-
ability.

Comparison with previous work. The model described
in this paper generalizes the previous existing models of au-
tomata introduced for relational database-driven systems [8,
6, 4, 5, 9]. In particular, the domain can be linearly ordered
and the specification of the database-driven system may use
this order within the quantifier-free formulas. In this paper
we notice that the key is the Fraissé property, which holds
for linear orders, and show that the XML setting is also
Fraissé.

In terms of results, this paper considers only finite runs
and generalizes all the previous known results concerning
the existence of finite runs. As shown in several of the

above cited papers, the existence of infinite runs lead to ad-
ditional challenges which are not solved by the Fraissé prop-
erty alone. However, in all the practical cases mentioned
here the existence of infinite runs can be reduced to the ex-
istence of finite runs using a Ramsey argument as described
in [9].

2. DATABASE-DRIVEN SYSTEMS

We model databases as finite structures over finite schemas
containing relation and function symbols. We use standard
terminology from model theory (see [7] for a reference); we
briefly recall the relevant notions below.

Basic notions.

A schema X is a finite set of relation symbols and function
symbols, each with a given arity (0-ary function symbols are
constant symbols). A model, or structure, A over a schema %
is a set dom(A) — the domain of A — together with an inter-
pretation s® for each symbol s € 3 as a relation or function
over the domain of an appropriate arity, as described by the
schema. A structure is said to be finite if its domain is finite.
A database is a finite structure over a given schema.

By substructure we always mean in this paper an induced
substructure, i.e. a restriction of the initial structure to a
subset of its domain, which is closed under the function sym-
bols from the schema.

A homomorphism from a structure A to a structure B, is
a mapping h : dom(A) — dom(B) that preserves the rela-
tions and functions from X, i.e. (a1,...,ax) € R* implies
h(ai,...,ax) € R® and h(f*(a1,...,ax)) = fE(h(a,...,ar)),
for all tuples ai,...,ar of elements of dom(A) and func-
tion/relation symbols of arity k. An isomorphism is a bi-
jective homomorphism whose inverse mapping is also a ho-
momorphism. An automorphism is an isomorphism from A
to itself. Finally an embedding is a mapping h that is an
isomorphism onto the substructure induced by the image
of h.

We assume familiarity with first-order logic. We write
A Eval ¢ to express the fact that a first-order formula ¢
holds in the structure A with the valuation val for its free
variables.

Database-driven systems.
A database-driven system over a schema X is described by
the following components.

— A finite set of control states Q@ = {p,q,...}

— A finite set of registers X = {z,y,...}

— A subset of initial states I C Q

— A subset of accepting states F' C Q

— Finitely many transition rules of the form:
p i q

where p, g are control states and ¢ is a quantifier-free first-
order formula over the schema ¥ with free variables in the
set X X {new,old}. The formula ¢ is called the guard of
the transition and relates the values of the registers before
and after the transition.

Fix a database-driven system as described above. A config-
uration is a triple (D, g, val), where:

— D is a database over the schema X;
— ¢ is a control state;

— val : X — D is a valuation, which maps the registers to
elements in the domain of D.

We say that there is a transition between configurations
(D01d7 Gold, Valold) and (DneW7 Qnew Valnew), if

— Dota = Drnew (transitions do not modify the database)

— There is a transition rule goq i> Qnew such that

Dold Fval 6
where val(z, i) = val;(z) for z € X,i € {old, new}.

A run of the system is a sequence of configurations that
begins in a configuration with an initial state, and where two
consecutive configurations are connected by a transition. In
this paper, we are interested in finite runs. A run is accepting
if the control state in its last configuration is accepting. It
follows from the definition that for each run, there is some
database D that is shared by all configurations in the run.
We say that the run is driven by D. Note that different runs
of the same system may be driven by different databases.

FEzample 1. Consider directed graphs, where some of the
nodes are colored red, and the remaining nodes are white.
This corresponds to a schema with one binary edge predicate
FE and one unary predicate red.

We describe a database-driven system whose accepting
runs trace odd-length cycles of red nodes. The system has
the following components.

— The control states are {start,qo,q1,end}. The initial
state is start and the accepting state is end.

— The registers are z, y.

— There is a transition rule gqo RN q1, where the guard 9§ is

(xold = xncw) A E(yold, yncw) A Ted(yncw)~

There is also a transition rule ¢ 2, qo, with the same
guard. This means that the system alternates between
the states go and g1, each time moving the content of
register y along an edge to some red node (the content of
register = stays in place).

There is a transition rule start = go, where the guard «
is

Told = Tnew — Yold = Ynew

There is also a transition g1 — end, with the same guard.
This means that, in order to exit the initial state, both
registers need to point to the same vertex; likewise, in
order to enter the accepting state, both registers need to
point to the same vertex.

Here is an example run of the system. The run is driven by
the database that is the graph G depicted below. The nodes
of the graph are colored red or white; the numbers are not
part of the database, they are used to identify the nodes.

An accepting run of the system, driven by G is:

(G’ start, [17 1]) - (Gv q0, [17 1]) - (G7 q1, [172]) - (Ga q0, [173]) -
- (G7q1a [1»4}) - (quo» [175]) - (G7 q1, [17 1]) - (G7 end, [17 1])7

where [i, j] denotes the valuation that maps z to the node
marked with ¢ and y to the node marked with j.

In general, the described system has an accepting run
driven by a graph G if and only if there is a cycle in G
of odd length, consisting only of red nodes.

The emptiness problem. In this paper, we study the fol-
lowing decision problem, which is parametrized by a class C
of databases over a common schema ¥, and called emptiness
of database-driven systems over C.

— Input. A database-driven system over 3.

— Output. Does the system have some finite accepting
run driven by some database in C?

Actually, in some of our results also a finite description of
the class C will be given on input. The following observa-
tion shows that the problem is PSPACE-hard for almost any
choice of parameter C.

LEMMA 1. The emptiness problem for database-driven sys-
tems over C is PSPACE-hard if C contains at least one database
with at least two elements.

Existential guards. Before describing our results in more
detail, we point out that replacing quantifier-free formulas
by existential formulas in the guards when specifying the
system does not affect the expressive power nor the decid-
ability results, as quantified variables can be simulated by
using extra registers and nondeterminism.

FAcT 2. For every database-driven system with existen-
tial guards one can compute in linear time a database-driven
system with quantifier-free guards accepting the same Tuns
driven by the same databases.

However, as we shall show later on, further extensions
of the guards, such as boolean combinations of existential
formulas, break decidability.

3. DECIDABILITY RESULTS

In this section, we present the main results of the paper,
which show that emptiness of database-driven systems is
decidable over certain classes of databases.

3.1 XML documents and regular tree languages

This class is motivated by XML databases. We work with
vertex-labeled, unranked and sibling-ordered trees. We use
the standard terminology for trees: root, leaf, descendant,
ancestor, child, parent, sibling. The next sibling of a node
z is the first (and therefore unique) sibling after in docu-
ment order, which might not exist if z is a rightmost sibling.
The following sibling is the transitive (but not reflexive) clo-
sure of the next sibling relation. Likewise, each node has at
most one previous sibling, but possibly many preceding sib-
lings. We use the standard notion of regular languages for
unranked trees. The automaton model is presented in Sec-
tion 5.3.

It is easy to see that in the presence of a successor rela-
tion database-driven systems can simulate counters and are
therefore undecidable. See also Section 6.1. For this reason
we disallow in our model the use of the child, parent, next
sibling and previous sibling relations and only allow rela-
tions such as ancestor, descendant, following and preceding
sibling. As a matter of fact we can also include the docu-
ment order and the closest common ancestor function that
maps z,y to the node that is a descendant of all common
ancestors of both x and y.

We model a tree ¢t as a database, denoted by Treedb(t),
whose domain is the nodes of the tree, and which is equipped
with the following predicates and functions:

— A unary predicate for every possible node label (there are
finitely many labels);

— Binary predicates for document order (denoted by <goc)
and descendant order (denoted by =<,);

— A binary function for closest common ancestor, which is
denoted by = A y. Observe that the descendant relation
is defined in terms of this function by a quantifier-free
formula:

T =y Yy iff

rT=TANYy

If the set of node labels is A, then the schema above is
denoted by TreeSchema(A).

Our main result on trees is that emptiness of database-
driven systems is decidable over any regular tree language,
even when the description of the regular language is also
part of the input.

THEOREM 3. The following problem is decidable:

— Input. A tree automaton defining a language L of
trees labeled by an alphabet A, and a database-driven
system over TreeSchema(A).

— Output. Is there a tree t € L and an accepting run of
the system driven by Treedb(t)?

For a fixed tree automaton, the problem is PSPACE-complete.
When both the tree automaton and the system are given on
input, the problem is in EXPSPACE.

The database-driven systems are only allowed to access
the trees through quantifier-free formulas that use the pred-
icates included in TreeSchema(A). By Fact 2, we could also
allow the systems to use existential formulas defined in terms
of the predicates in TreeSchema(A). Some navigation pred-
icates for trees, such as child, next sibling, or even simply

sibling are not definable this way. We will later show (Sec-
tion 6) that adding any one of the above three predicates
leads to undecidability.

The proof of Theorem 3 will be given in Sections 4 and 5.

Adding data values. We show in Section 4.4 a composi-
tion method implying that our results extend to databases
storing data values allowing equality tests. In particular,
the result of Theorem 3 remains valid if each node of the
tree also carries a data value in N and the query can test
these values using equalities or inequalities. The complexity
bound is not affected by this extension.

3.2 Homomorphims

In this section, we consider schemas with relations only,
and no functions. Suppose that G and H are two databases
over the same schema. Suppose that H is some database.
By HOM(H) we denote the class of all databases over the
schema of H that map homomorphically to H. In other
words, G € HOM(H) if and only if there is a homomor-
phism f: G — H.

The database H is called the template for the class HOM (H).
Examples of HOM (H) include n-colorable graphs for every
n (when H is a n-clique).

We show that if a class of databases can be defined as
HOM(H) for some H, then it admits an algorithm for empti-
ness of database-driven systems. As for Theorem 3, we ac-
tually prove a stronger result where the template is also part
of the input.

THEOREM 4. The following problem is PSPACE-complete.

— Input. A template database H and a database-driven
system over the schema of H

— Output. Does the system have an accepting run driven
by some database in HOM(H)?

Ezample 2. Let H be the graph below, with nodes colored
red or white

Then a graph G maps homomorphically to H if and only if
there is no red cycle of odd length in G. On the other hand,
the system from Example 1 has a G-driven run if and only if
there is some red cycle of odd length in G. Therefore, there
is no database G € HOM(H) such that the system has an
accepting run driven by G.

The proof of Theorem 4 will be given in Section 4.

Adding data values. As for the previous case, the result of
Theorem 4 remains valid if each node of the tree also carries
a data value in N and the query can test these values using
equalities or inequalities.

4. THE METHOD

Both decidability results stated in the previous section,
namely Theorems 3 and 4, are proved using the same method.
The method is presented in this section. The general idea is

to add some more predicates or functions to the databases,
so that the resulting class of databases has good closure
properties, of which the most important is closure under
amalgamation.

4.1 Fraissé classes and amalgamation

An instance of amalgamation consists of two embeddings
of the same database C into two other databases:

a1 : C— Ay ag : C — As.
D g
oS
3
S
ﬁ/ \g2
Aq Ay 8
§
AN E
C

A solution to the instance is a database D, together with
embeddings

B1:A —D B2 : Ay — D.

such that the diagram above commutes, i.e. f10a1 = f20aa.
Following [7, Chapter 6, Section 6.1] a Fraissé class is a
class C of databases over a common schema such that:

— C is closed under embeddings: if C is a database in C and
D is any database over the same schema that embeds into
C, then D € C;

— C is closed under amalgamation: every instance of amal-
gamation, where the databases A1, Ay, C all belong to C,
has a solution D that belongs to C; and

— C has the joint embedding property: every two databases
from C can be embedded into a single database from C.

Ezample 3. Consider a schema with one binary relation.
The reader can verify that Fraissé classes over this schema
include: all finite linear orders, all finite directed graphs,
and all equivalence relations over finite sets. The class of
forests (understood as directed graphs) is not closed under
amalgamation: the instance depicted below does not have a
solution which is a forest.

LA
%

We will show that, under weak assumptions, emptiness
for database-driven systems is decidable over Fraissé classes.
The weak assumptions are that membership in the Fraissé
class is decidable, and that if the schema contains function
symbols, then sets of elements of bounded size cannot gen-
erate databases of unbounded size via images of functions.

Let C be a database and S a subset of its domain. We
say that S generates C if there is no proper substructure
C’ C C that contains S. A database is called n-generated
if its domain has a subset of size n that generates it. The
blowup function of a Fraissé class C is the function

blowup, : N — N U {co}

that maps n € N to the least upper bound on the size of
n-generated databases in C. Note that in the absence of
function symbols in the schema, any n-generated database
has size n and therefore blowup,(n) = n.

THEOREM 5. Let C be a Fraissé class with membership in
PSPACE. Emptiness of database-driven systems is decidable
for C in space

log(n) - poly(blowup (2k))

where n is the number of control states and k is the number
of registers in the database-driven system.

PRrROOF. We describe a nondeterministic algorithm for the
emptiness problem. A configuration (4, g, val) of the system
is called small if the database A belongs to C and is gen-
erated by the contents of the registers as described by val.
Note that the size of A is bounded by blowup, (k) and by
our assumption on membership in C, testing A € C requires
space polynomial in blowup, (k). Consider two small config-
urations

(Aold7 qold, Valold) (Anewy Qnew Valnew)-

We say that there is a sub-transition between them if there
is a database A € C and two embeddings

fold : Aold — A fnew : Anew — A
such that

(A7 qold, fold S Valold) (A7 Qnew fncw o Valncw)

is a transition of the system. Checking if there is a sub-
transition requires space polynomial in blowup (2k) because
the class is closed under embeddings and we can therefore
assume that the database A is generated by the images of
the valuations fo1a © valola and fhew © valpew. This leads to
the following nondeterministic algorithm.

1. Nondeterministically guess a small configuration where
the state is initial.

2. If the state of the current configuration is final, then
terminate and accept. Otherwise, nondeterministically
guess a new small configuration accessible from the
previous one by a sub-transition. Repeat step 2.

The space consumption of the algorithm is as required
by the theorem. The proof of its correctness is based on
the fact that the class C is closed under embeddings and
under amalgamation. In particular, from a run of our al-
gorithm we construct a run of the system by amalgamating
the databases that appear in the small configurations.

Completeness. Consider an accepting run of the system,
driven by some database A € C:

(Ay qo, ValO)(A7 qi1, Vall) e (Ay qn, Valn)

Let B; be the substructure of A generated by the content of
the registers at step i. By closure under embedding, B; € C

for all i. Moreover A witnesses the fact that there is a sub-
transition from (Bi,qi,vali) to (Bi+1,qi+1,val,’+1). Hence
our algorithm has an accepting run.

Soundness. Assume that our algorithm has a run:

(B07 qo, Valo)(Bh CI17V3«11) e (Brw dn, Va'l’ﬂ)

By induction on n we exhibit a database B and embeddings
fi : B; — B such that

(]qu07 fO o Valo)(B7q17 fl ° Vah) e (B7Qi,fn o Valn)

is a valid run of the database-driven system. For n = 0 we
take B = By and fo the identity.

Assume we have B for the run until step (n — 1) and
consider (B, gn,val,). By definition there is a database
A and embeddings ¢g,—1 : Bhn—1 — A and g, : B, — A
such that there is a transition from (A, gn—1,gn—1 0 val,—1)
to (A, gn,gn o valy). But we also have an embedding fn—1 :

B,—1 — B. By closure under amalgamation, we get a database

A’ and embeddings f : A — A’ and g : B — A’ with good
commuting properties. It is now easy to verify that A’ is
the database we where looking for with embeddings g o f;
for i < n and f o g, for i = n.

This proves the correctness of the algorithm. [

Observe that the algorithm does not use the joint embed-
ding property. There are two (related) reasons why we use
the joint embedding property: first, it is part of the classical
definition of a Fraissé class; second it is necessary for the
Fraenkel-Mostowski approach described in the Section 4.5.

4.2 Semi-Fraissé classes

For some of the classes we are interested in, Theorem 5
will not work, because the classes are not closed under amal-
gamation.

Ezxample 4. Consider graphs that are 2-colorable or, equiv-
alently, have no odd-length cycle. This class is HOM (H)
where H is a 2-clique, over the schema Y consisting of one
binary relation.

This class is not closed under amalgamation. Indeed,
there is an odd-length cycle in every solution of the instance
of amalgamation depicted in Example 3.

A solution to the problem is to consider not 2-colorable
graphs, but 2-colored graphs, i.e. graphs with a 2-coloring.
This corresponds to considering an extended schema I', with
the original binary edge relation, and two unary predicates
denoting the colors. The 2-clique H lifts to a canonical graph
H over this schema, where each node gets a different color.
The class HOM (H) is now closed under amalgamation, and
is Fraissé.

In the example above, we added some structure to the
databases in order to recover amalgamation. We formalize
this strategy below. Let G be a database over a schema I
and let X be a subset of the schema I'. The X-projection
3(G) of G is the same as G, only the interpretation is re-
stricted to the smaller schema. The >-projection of a class C
of databases over I', denoted by 3(C), is defined pointwise.

The proof of the following lemma is fairly simple as quantifier-

free formulas are invariant under extending the domain or
the schema. For a class of databases C, by substructures(C)
we denote the smallest class of databases containing C that
is closed under embeddings.

LEMMA 6. LetC be a class of finite databases over a schema
3. Suppose that D is a Fraissé class over a schema I’ D X,
such that

C C X(D) C substructures(C).

Then emptiness of database-driven systems over C is decid-
able with the same complexity bounds as over D.

A class C for which there exists a Fraissé class D that satisfies
the assumptions of the above lemma will be called a semi-
Fraissé class. In Example 4, the class HOM(H) is semi-
Fraissé, as witnessed by HOM (H).

4.3 HOMs are Semi-Fraissé

As a simple application of the method, we prove Theo-
rem 4. By Theorem 5 and Lemma 6 it is a consequence of
the following lemma:

LEMMA 7. IfH is a finite database, then HOM(H) is a
semi-Fraissé class.

PrOOF. The schema I' is the schema 3 extended by a
family {h}nrem of unary predicates, one for each element
of the domain of H. We may view the database H as a
database H over the extended schema I', where a node h € H
gets the color h. It is easy to see that HOM(H) is the -
projection of HOM (]I:]I) To complete the lemma, we prove
that HOM(H) is Fraissé.

We only show here amalgamation, the other two proper-
ties being trivial. Consider an instance Ap, Az, C of amal-
gamation. The desired structure D is simply constructed
from the disjoint union of A; and A2 by identifying the im-
ages of C. It remains to show that D € HOM(H). This
is witnessed by the mapping sending each node of D to its
color. The reader can verify that this mapping is a homo-
morphism. []

Note that the schema of H in the proof of Lemma 7 contains
no function symbols, hence we have blowup; o ¢y (1) = 7,
and the complexity is PSPACE as desired.

4.4 Data values

In this section we show how Theorems 3 and 4 extend to
databases whose nodes are additionally equipped with data
values, and where the transition systems may test equality
and inequality of data values. The method is again very gen-
eral — the data values themselves may carry some structure;
we only require that the data values come from a homoge-
neous relational structure. After introducing some prelimi-
nary notions, we describe this general setting.

Homogeneous structures. The notion of homogeneity comes
from model theory. An infinite structure F over a schema
3. is called homogeneous if every isomorphism f : F; — Fo
between two finite sub§tructures Fy,F2 of F can be extended
to an automorphism f of F.

Homogeneous structures abound; important examples in-
clude:

— The set of natural numbers, with the equality relation
denoted ~, denoted (N, ~);

— The rational numbers, with the linear ordering, denoted

(@ <).

A theorem of Fraissé (see [7, Chapter 6] and also Sec-
tion 4.5) says that we can associate to every Fraissé class an
infinite countable structure, called the Fraissé limit of the
Fraissé class which is a homogeneous structure.

Data values. Fix a homogeneous structure F, whose ele-
ments will model data values. We assume that the schema
of F is purely relational, i.e. does not contain function sym-
bols. For instance F could be the structure (N, ~) or (Q, <).

Consider a finite database A over a schema ¥. Let X :
A — F be any labeling of the nodes of A by elements of
F. We denote by A ® A the (finite) database extending A
by symbols from the schema of F, which are interpreted in
A ® X via the mapping A: if R is a relation symbol in F, then

(A®) E R(z1,...,21) < FERA(x1), ..., \(zx)).

The schema of A ® A is therefore the union of the schema
of A and the schema of F. The database A ® A can be seen
as a database whose nodes are additionally labeled by data
values, and the database contains relation symbols from F
allowing to compare the data values. If C is a class of finite
databases, then by C ® F we denote the class of databases
of the form A ® A, where A € C and A is a mapping from A
to F. By C©F we denote subset of C ® F consisting of those
databases A ® A, where the mapping A is injective, i.e. each
node gets a different data value!.

Ezample 5. Let t be a finite tree and let Treedb(t) be
the corresponding database. Let A: ¢ — N be a labeling
of the nodes of ¢ by natural numbers. Then the database
Treedb(t) ® A can be seen as a tree equipped with data val-
ues (or attributes); two nodes x,y store the same attribute
if x ~y.

Ezample 6. Let G be a finite graph and let A\: G — N be
an injective labeling of G by natural numbers. Then the
database G® A can be seen as a graph whose nodes are
natural numbers: because A is injective, we can identify a
node z with the number A(z). If G denotes the class of all
graphs, then the structures in G ® (N, ~) can be interpreted
as graphs on natural numbers. Similarly, the structures in
GO(Q, <) can be interpreted as graphs on rational numbers;
in particular, their nodes are linearly ordered.

Using the theorem of Fraissé and a construction for com-
bining two Fraissé classes into one class, we can obtain the
following proposition whose proof is omitted here.

PROPOSITION 1. LetF be a purely relational homogeneous
structure, such that deciding whether a finite database em-
beds into F can be done in PSPACE. Then, for any Fraissé
class C (over any schema), the classes CQF and COF are
Fraissé classes, with the same blowup function as C.

As a consequence of Proposition 1 and Lemma 7 we get
the following extension of Theorem 4.

COROLLARY 8. The following problem is decidable in PSPACE:

— Input. A relational database H a database-driven sys-
tem over the union of the schemas of H and F.

'We consider the two variants ® and ® because in relational
databases, we want every value to be unique — to avoid re-
dundancy — while in XML databases, attributes are used for
identifying distinct nodes. See Examples 5 and 6.

— Output. Is there a database (A® \) € HOM(H) O F
and an accepting run of the system driven by A?

Special cases of this result — without the condition A €
HOM(H) — have been proved earlier for F = (N, ~) in [5]
and F = (Q, <) in [4].

Our abstract machinery applies also to database-driven
systems, where the databases are trees with data values.

THEOREM 9. The following problem is decidable:

— Input. A tree automaton defining a language L of
trees labeled by an alphabet A, and a database-driven
system over the schema TreeSchema(A) U {~}.

— Output. Is there a treet € L, a labeling A of t by ele-
ments of N, and an accepting run of the system driven
by Treedb(t) ® A?

For a fixed tree automaton, the problem is PSPACE-complete.
When both the tree automaton and the system are input, the
problem is in EXPSPACE.

Remark 1. Theorem 9 works for any countable homoge-
neous structure F such that testing whether a given finite
database A embeds into F can be done in PSPACE. For in-
stance (N, ~) could be replaced by (Q, <). Actually it only
matters that substructures(F) is a Fraissé class. In particu-
lar, as

substructures((N, <)) = substructures((Q, <)),

the result also hold for F = (N, <). Similarly, by considering
semi-Fraissé classes instead of Fraissé, the result also works
with (N, <) augmented with constants, thus capturing the
setting of [9].

4.5 Fraenkel-Mostowski sets

In this section, we comment on a bigger picture that con-
tains Theorem 5, but also implies other results, such as
emptiness of database-driven systems with pushdowns. To
simplify the discussion, we only focus on decidability and not
on complexity. The bigger picture is called nominal sets, or
Fraenkel-Mostowski sets.

The Fraissé limit. We begin by observing that instead of
talking about a class of finite databases, we can talk about
a single limit structure (which is usually infinite so it should
not be called a database). The theorem of Fraissé says that
if C is a Fraissé class, then there exists a single countable
(but usually infinite) homogeneous structure F — the Fraissé
limit of C — such that the databases in C are exactly the
finitely generated substructures of F. Fraissé limits have
many good model-theoretic properties, for instance they are
w-categorical.

What is the connection with database-driven systems? A
run of a database-driven system is finite, and therefore visits
only finitely many elements of a database with its registers.
It follows that a database-driven system has a run driven by
some finite database in C if and only if it has a run driven
by the Fraissé limit of C. Therefore, instead of studying
emptiness over a class C, we could study emptiness of a
system that uses registers to store elements of the Fraissé
limit.

Fraenkel-Mostowski sets and their automata. Automata
that store values from a Fraissé limit in their registers have
already been studied in [2], as part of a more general frame-
work called Fraenkel-Mostowski sets. From the results in [2]
it follows that emptiness for such automata is decidable,
which implies the decidability result in Theorem 5. (We
included a proof of Theorem 5 to make this paper self-
contained, and also to get the precise complexity.) Apart
from finite automata with registers, the Fraenkel-Mostowski
framework contains other computational devices with decid-
able emptiness, which can then be used to get decidability
results for extensions of database-driven systems. The re-
sults concerning these devices include:

— Emptiness is decidable for pushdown automata, which
are allowed to store elements of a Fraissé limit both in
their state and on the pushdown, see [2]. This implies
decidable emptiness for a natural pushdown extension of
database-driven systems.

— Emptiness is decidable for tree automata, where a config-
uration can have more than one successor configuration.
This implies decidable emptiness for a natural branching
extension of database-driven systems.

— Under additional assumptions, which hold for regular tree
languages but not for equivalence relations and HOMs,
even certain alternating automata have decidable empti-
ness [1]. This implies decidable emptiness for a certain
alternating extension of database-driven systems.

We would like to point out that the first two results (push-
down automata and tree automata) can be easily obtained
without using the abstract framework of Fraenkel-Mostowski
sets (this is no longer true for alternating automata, where
the proof is quite involved and follows the lines of [3]). We
believe, however, that seeing database-driven systems as a
special case of automata in Fraenkel-Mostowski sets gives a
uniform explanation for the decidability results. We plan to
given a more detailed discussion of the Fraenkel-Mostowski
connection, including a precise definition of the extended
database-driven models, in the full version of this paper.

S. REGULAR TREE LANGUAGES

In this section, we prove Theorem 3, which is the main
technical result of the paper. The theorem says that empti-
ness is decidable for database-driven systems over regular
tree languages. Since the proof is quite technical, we begin
by illustrating the main ideas in the case of words.

5.1 Regular Word Languages

Like in the case of trees, to a word w over an alphabet A,
we associate a database Worddb(w), where the domain is the
positions of the word, there are unary predicates {a(z)}qca
for the labels, and a binary predicate x < y for the natural
order on word positions. Call WordSchema(A) the schema
of this database.

THEOREM 10. The following problem is PSPACE-complete.

- Input. A regular word language L C A*, given by an
NFA, and a database-driven system over the schema
WordSchema(A).

— Output. Is there a word w € L and an accepting run
of the system driven by Worddb(w) ?

The rest of Section 5.1 is devoted to showing the above
theorem. Fix a regular word language L C A*. Let Q be
the states of an NFA that recognizes L. Define

Worddb(L) = {Worddb(w) : w € L}.

For a class of databases C, let C* denote the closure of C
under disjoint unions. The point of studying C* is that it
is guaranteed to have the joint embedding property. In the
specific case of C = Worddb(L), the disjoint union is defined
so that positions from different words are incomparable with
respect to <.

We will prove that Worddb(L)™ is a semi-Fraissé class, and
therefore has decidable emptiness for database-driven sys-
tems. The following lemma reduces emptiness from Worddb(L)
to Worddb(L)*.

LEMMA 11. For every database-driven system S, there is
a database-driven system S*, such that emptiness of S over
Worddb(L) is equivalent to emptiness of S* over Worddb(L)™.

PROOF SKETCH. Define the system S* as extending S
with a new register. The idea is that this new register stores
some position of the word. The new register does not change
contents during the whole run, and all other registers are re-
quired to be comparable with the new register in the order
<. Apart from this, the other registers behave as in the sys-
tem S. Even when driven by a disjoint union of words, the
registers will only use positions from one of the words. [

From this point, our aim is to prove that Worddb(L)* is a
semi-Fraissé class. In particular, we do not consider database-
driven systems any more.

Fix an automaton A recognizing the language L. We as-
sume the automaton does not contain useless states: every
state in the automaton is reachable from some initial state,
and that from every state an accepting state can be reached.
We also assume that for each state q of the automaton, there
is a unique letter a that can be read in that state, i.e. a
unique letter such that the automaton contains transitions
of the form p = ¢ (the state g is not unique, of course).
This assumption can be enforced by splitting each state into
one copy for each letter of the input alphabet. Denote by —
the one-step reachability relation on states in the automa-
ton, i.e. p — g holds if there is a transition p = ¢. Let
—7 be the transitive closure of this relation, i.e. reachabil-
ity via nonempty words. We will be interested in strongly
connected components of this relation, which we call com-
ponents. We adopt the convention that if a state ¢ is not
reachable from itself, then it is also in a component, which
contains only the state q. Thanks to this convention, the
components form a partition of the states of the automaton.
We denote components by I'.

We define a pre-run of the automaton to be an input word,
together with a labeling of positions by states, where posi-
tion x gets the state after reading it. (In particular, the first
state of the run, before reading any position, does not ap-
pear in the labeling.) A pre-run, call it p, is interpreted as
a database, denoted by Rundb(p) as follows:

— There are the original predicates {a(x)}aca and z < y
for the input word. In other words, Rundb(p) extends
the database Worddb(w), where w is the input word in
the run.

— There are unary state predicates {q(z)}qcq for the states
in the run.

— For each component I' of the automaton, there is a unary
function leftrmost(z) that maps a position z to the left-
most position before x that has a state in component
I. If there is no such appearance, then leftmosty(x) is
z. Likewise, we have a rightmosty(x) unary function®.
We use the name pointers for the leftmost and rightmost
functions.

Define C to be the closure under substructures of

{Rundb(p) : p is a run.}.
ProPOSITION 2. C is closed under amalgamation.

Before showing the proposition, we show how it implies
Theorem 10.

PROOF OF THEOREM 10. The theorem will follow from
the items below thanks to Lemmas 6 and 11.

1. It is not difficult to see that the projection assump-
tion (when projecting a pre-run to its input word) in
Lemma 6 is satisfied:

Worddb(L)* € WordSchema(C)* C
C substructures(Worddb(L)™)

2. C™ is a Fraissé class. The class C* is closed under sub-
structures by definition. It is also closed under iso-
morphism. The joint embedding property is easy be-
cause we can simply take disjoint unions®. Closure of
a class under amalgamation is preserved by the opera-
tion C +— C*, and therefore C* is closed under amalga-
mation by Proposition 2. In conclusion, C* is a Fraissé
class, and so Worddb(L)* is a semi-Fraissé class.

3. The blowup of C* is small. There are at most |@Q| com-
ponents in the automaton. Since we have two unary
functions per component, the blowup function for C*
is at most n — 2|Q| - n. This gives the PSPACE com-
plexity bound.

O

We now resume the proof of Proposition 2. We will use
the following characterization of C.

LEMMA 12. Let p be a pre-run, where the states are qi, . . .
listed from left to right. Then_Bundb(',g) € C if and only if

Q1—>+Q2—> T (n

Instead of proving that C is closed under amalgamation,
we prove that it is closed under inclusion amalgamation. An
instance of inclusion amalgamation consists of two databases
A and B that are consistent, i.e. the functions and predicates
are defined the same way on the elements that appear in
both domains. A solution of inclusion amalgamation is a
database C that contains both A and B as substructures.

LEMMA 13. Let C be a class of structures closed under
isomorphism. Then C is closed under amalgamation if and
only if it is closed under inclusion amalgamation.

It would seem more natural to define leftmost, and
rightmosty as nullary functions, i.e. constants. We choose
unary functions for two reasons: to make the tree case more
similar, and to make disjoint unions of runs easier.

3The joint embedding property is the reason why we work
with C* and Worddb(L)* instead of C and Worddb(L).

s qn

PRrROOF OF PROPOSITION 2. The proof is more wordy than
it needs to be, because we want it to have the same structure
as the proof for the more complicated case of trees.

Consider an instance of inclusion amalgamation in the
class C, i.e. two pre-runs p; and p2 such that the databases
Rundb(p:) and Rundb(p2) are consistent and in C. Define
Rundb(p) to be the common part, i.e. the intersection of
the two databases, which is a substructure of both, so it
also belongs to C.

We need to show a database in C that contains both
Rundb(p:1) and Rundb(p2) as substructures. The proof is by
induction on the number of elements in p; not in p. In the
induction base Rundb(p;) is a substructure of Rundb(ps),
and we already have a solution to amalgamation.

For the induction step, suppose that y is in the domain of
p1, but not in p. Choose y so that its preceding position in
p1, call it z, is already in p. The situation is illustrated in
the following picture:

@» OO O

o o

In the picture, the positions of p; are colored, the positions
of ps have a black border, the positions of p are colored and
have a black border. To advance the induction, we add y to
p2, as in the following picture:

QQQQ

Define a pre-run ph, by adding position y (with its state and
input label) to p2 right after x, with the same state as y.
We claim that

1. Rundb(ph) € C;
2. Rundb(p2) C Rundb(p5);
3. Rundb(p1) and Rundb(pj) are consistent.

If we prove the claims above, then we are done. This is
because Rundb(p1) and Rundb(p5) are an instance of in-
clusion amalgamation with a smaller induction parameter.
The induction assumption says that some database in C con-
tains both Rundb(p1) and Rundb(p3), and therefore it also
contains Rundb(p1) and Rundb(p2).

Let T be the component of the state in y. Consider the
values of the pointers leftmost;. that are assigned to the
position x in the three databases Rundb(p), Rundb(p1) and
Rundb(pz). Because the databases are consistent, these are
all the same position, i.e.

leftmostf(x) = leftmostf! (z) = leftmosty? (x)

Call the position above yiest, it is before y in p;. Likewise,
we define a position yright-

To prove Rundb(py) € C, we use Lemma 12. By this
lemma, in the run ps, all positions between yierr and Yrighs
have states in component I'. The position y is added between
these positions, so it does not violate the condition from
Lemma 12.

To prove Rundb(p2) C Rundb(p), we only need to show
that the functions in Rundb(p3) are defined the same way

for the positions from Rundb(pz). This is not difficult to
see, because in Rundb(p5) there is one new position, which
is both followed and preceded by states in the same com-
ponent. The same argument shows that Rundb(pi) and
Rundb(p5) are consistent. []

5.2 Proof Strategy for Regular Tree Languages

We now resume the proof of Theorem 3, which says that
emptiness is decidable for database-driven systems over reg-
ular tree languages. We use the same proof strategy as for
words. For a tree language L, define

Treedb(L) = {Treedb(t) : t € L}.

Like in the case of words, we will have a class C that repre-
sents substructures of runs.

5.3 Tree automata and their components

We begin by presenting the model of tree automata that
we use. Out of the many equivalent models of automata on
unranked trees, we choose a model where the runs are easier
to pump.

A tree automaton consists of:

— An input alphabet A. The automaton is used to accept
or reject trees labeled by A.

— A set of states Q. A run of the automaton over an input
tree is a labeling of the tree nodes by states from Q,
subject to some local consistency requirements described
below.

— As in the word case, we assume that for each state ¢,
there is a unique input letter a that can be used in that
state.

— The automaton has distinguished subsets of: leaf states,
which are the only states allowed for leaves, root states,
which are the only states allowed for the root, and right-
most states, which are the only states allowed for right-
most children.

— A binary first-child relation — firstchia On states. In a run,
if a node has state g and its leftmost child has state p,
then p — firstchita ¢ holds.

— A binary next-sibling relation —yestsibiing On states. In a
run, if a node has state ¢ and its next sibling has state p,
then p —pcatsiviing ¢ holds.

A tree is accepted by the automaton if it admits some run
(we do not distinguish between runs and accepting runs).
Let us fix for the rest of Section 5 a tree automaton as de-
scribed above, which recognizes a tree language L.

Components. Define two binary relations on states of the
automaton: a relation

d
lef _+

nextsibling

—h

that corresponds to following sibling, and a relation
d
—v éf (— firstchild © H:;eztsibling)+

that corresponds to descendant. We use the name descen-
dant component for strongly connected components of the
relation —,, and the name horizontal component for strongly
connected components of the relation —. Again, we adopt
the convention that when a state is not reachable from itself

by —w, then it still forms a (singleton) descendant compo-
nent, likewise for horizontal component. We distinguish two
kinds of descendant components:

— A descendant component I is called branching if in some
run, some node with state in I' has two children with
states in I.

— A descendant component I' is called linear otherwise.
This means that in every run, every node with state in I"
has at most one child with a state in I".

For a descendant component, define a set of states left(I")
as follows. Suppose that in some run, a node z has two
descendants y and z, such that z is before y in document
order, and is not on the path from x to y. If the states in
z and y are in I', then we put the state in z into the set
left(T"). The set right(I") is defined similarly.

5.4 The classc

We are now ready to define the class C, which contains
databases representing runs.

The pointers. Define a pre-run to be any tree where each
node is labeled by a letter a € A, as well as a state ¢ € Q
such that a is the unique letter that can be read in state q.
A pre-run need not satisfy the consistency conditions in the
definition of a tree automaton run. A node x in a pre-run
is called component mazimal if none of its children have a
state in the same descendant component. For a pre-run p,
we define Rundb(p) to be the following database.

— We have the standard database Treedb(t) for the input
tree t: the node labels, the descendant order, the docu-
ment order, and the closest common ancestor function.

— For each state g, there is a unary function leftmost ()
defined as follows. If x is a component maximal node,
then leftmost,(z) maps = to the leftmost child with a
state in ¢. If x is not component maximal, or it has no
children with state ¢, then the function is “undefined”,
which is encoded by leftmost,(z) = .

— In the same way, we define a function rightmost (), but
for the rightmost child with a state in I.

— For each descendant component I', there is a unary func-
tion ancestormostr(x), whose value is the last node on
the path from x to the root that has label ¢. If there is
no such node, then the function is “undefined”; which is
encoded by ancestormostr(z) = x.

— Suppose that x is a node whose state is in a linear de-
scendant component I'. Then descendantmost(x) maps x
to the unique descendant of x that has a state in I', and
has no children with states in I'. If the state of x is not
in a linear descendant component, then the function is
“undefined”, which is encoded by down(z) = x.

The class C. Define C to be the closure under substructures
of the class

{Rundb(p) : p is a run of the automaton}.

In other words, a database belongs to C if it can be extracted
from a run (not a pre-run) so that nodes are extracted to-
gether with the values of their pointers. Following the same

proof as in Theorem 10, to prove Theorem 3, it will be suffi-
cient to prove the following results, whose proofs are omitted
here.

LEMMA 14. The blowup function for C* isn +— c-n, where
the constant c is exponential in the state space Q.

PRrROPOSITION 3. C is closed under amalgamation.

6. UNDECIDABLE MODELS

We consider in this section several ways of extending the
model. In most cases, the extensions lead to undecidabil-
ity. For instance, if the trees are additionally equipped with
the child relation or the sibling relation, then the emptiness
problem becomes undecidable, even for a fixed tree language.
A more interesting question is what happens if we extend the
expressive power of the logics used for describing the tran-
sitions of the system. These extensions also quickly lead to
undecidability.

6.1 Child and sibling axes

Adding axes such as next sibling or child leads to unde-
cidability. The reason is that already for unary words with
the successor relation on positions, we get undecidability.
More precisely, a unary word w can be viewed as a struc-
ture whose domain is the set 1,2,...,|w| of positions of w,
and succ(z,y) holds if y —z = 1.

Fact 15. Let L be any infinite set of words over the unary
alphabet, viewed as structures over the schema consisting
of the binary symbol succ. Then, the following problem is
undecidable.

— Input. A database-driven system over the schema
consisting of succ.

— Output. Is there a word w € L and an accepting run
of the system driven by the word w?

PRrROOF SKETCH. Using one register, the system can sim-
ulate a counter of a counter machine: a transition can in-
crement or decrement the counter using the relation succ.
There are no zero tests, but this can be simulated by keep-
ing one register z that is never changed (using zold = Znew
as a conjunct in all rules); then a zero test of the counter is
simulated by the formula = = z. Since the halting problem is
undecidable for two-counter machines, the fact follows. [

It follows immediately from Fact 15 that in the presence of
the child or next sibling axis it is undecidable whether a
database-driven has an accepting run.

The sibling axis.

We show that even extending the set of predicates by the
sibling relation also leads to undecidability. Formally, we
model a tree ¢t as a database with two predicates: the clos-
est common ancestor A and the transitive, symmetric and
irreflexive binary sibling relation (the document order nor
the unary predicates are needed for this undecidability re-
sult).

Fact 16. There exists a regular tree language L over a
unary alphabet, such that the following problem is undecid-
able:

— Input. A database-driven system over the schema
consisting of A and sibling.

— Output. Is there a tree t € L and an accepting run of
the system driven by the tree t?

PRrOOF SKETCH. The language L is defined as the set of
trees of the form ¢,,, where n € N and t,, is the tree depicted
in the left-hand side of the figure below, of height n.

Told

% “Ynew

t, = %
E : xncw/

The reduction is again from counter machines. We show
that a system can simulate a counter using a register x.

To simulate incrementation of the counter, the machine
uses an auxiliary register y (see right-hand side of the figure
above), and follows a transition whose guard is the following
formula:

(:Cold = (mncw A yncw)) A Siblz‘ng(mncw, yncw)

These conditions guarantee that Tnew is a child of zo1a (they
do not guarantee that xnew is the left child, as is the case in
the figure, but this is not necessary).

Decrementation of a counter is obtained by swapping “old”
with “new” in the guard. As in the proof of Fact 15, using
additional counters, one can simulate zero tests. This way,
a database-driven system using the predicates A and the
successor relation can simulate a counter machine. []

Remark 2. We don’t know whether emptiness is decidable
for database-driven systems over the schema consisting of
the sibling relation, the document order and the vertical
order, but not the closest common ancestor.

6.2 Rules that are not existential

A legitimate question is whether one can extend the ex-
pressivity of our model by extending the power of the for-
mulas defining the transitions of the system, for instance by
allowing first-order formulas, while preserving the decidabil-
ity of the emptiness problem.

We have seen in Fact 2 that systems with transitions
guarded by existential formulas can be simulated by sys-
tems where the transitions are guarded by quantifier-free
formulas. However, already allowing boolean combinations
of existential formulas quickly leads to undecidability. For
instance, in the tree case, this is a consequence of Fact 15.
Indeed, using boolean combinations of existential formulas,
one can define the child axis:

child(z,y) <= x=py A —3z: T<yz2=<pYy

6.3 Data tree patterns

We also considered the setting where the queries are data
tree patterns. A data tree pattern selects data values within
a tree, depending on the existence of nodes whose positions
verify the tree pattern (we use an injective semantics for tree

patterns, where each node of the tree pattern must match
a different node of the tree). With our terminology, a tree
pattern is a special case of an existential formula; the hope
being that systems using boolean combination of tree pat-
terns would be decidable.

To make this setting fit into our formalism, we assume the
system is over DataTreeSchema(A) and has rules guarded
by boolean combinations of formulas of the following form
(called tree pattern formulas):

¢(Ul,. .

where the notation 37 implies that the nodes v1,...,v; are
pairwise distinct (to reflect the injective semantics of tree
patterns), and ¢ is a conjunction of conjuncts of the follow-
ing three possible forms:

6(j7newmfold) E|¢U17U27~--7'Ul avl)7

v; ~ Tj, Vi Sy Vj,)‘(vl)

Note that the restriction on ¢ implies that a formula ¢ can-
not (directly) tell whether two registers = and y of the system
point to the same node; it can only test whether they have
the same datavalue.

Ezample 7. Consider trees labeled by {a,b,r}. The fol-
lowing tree pattern:

F0,la, by, ra, o (a(la) Ab(L) A alra) Ab(ry) AT(v)) A
('U = la = lb) A (U =v Ta S Tb) A (un. ~ xold) A

(ua ~ znew)

can be graphically represented as follows (dashed lines rep-
resent descendant relationships):

0]

gﬂ%ggy%w
® ©

THEOREM 17. There is a language of A-labeled trees L
such that the following decision problem is undecidable.

— Input. A database-driven system over the schema
{=Xv,~,{a}taca} where transitions are boolean combi-
nations of tree pattern queries.

— Output. Is there a treet € L and an accepting run of
the system driven by the tree t?

Having described the applications and limitations of our
framework, we end this paper.

7.
1]

2]

3]

[5]

[7]

8]

(10]

REFERENCES

Mikotaj Bojanczyk, Laurent Braud, Bartek Klin, and
Slawomir Lasota. Towards nominal computation. In
Symp. on Principles of Programming Languages
(POPL), pages 401-412, 2012.

Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota.
Automata with group actions. In Symp. on Logic in
Computer Science (LICS), pages 355-364, 2011.
Stéphane Demri and Ranko Lazic. LTL with the freeze
quantifier and register automata. In Symp. on Logic in
Computer Science (LICS), pages 17-26, 2006.

Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor
Vianu. Automatic verification of data-centric business
processes. In Intl. Conf. on Database Theory (ICDT),
2009.

Alin Deutsch, Liying Sui, and Victor Vianu.
Specification and verification of data-driven web
applications. J. Comput. Syst. Sci., 73(3):442-474,
2007.

Alin Deutsch, Liying Sui, Victor Vianu, and Dayou
Zhou. A system for specification and verification of
interactive, data-driven web applications. In Intl.
Conf. on Management of Data (SIGMOD), 2006.

W. Hodges. A shorter model theory. Cambridge
Univerity Press, 1997.

Sheila A. Mcllraith, Tran Cao Son, and Honglei Zeng.
Semantic web services. IEEE Intelligent Systems,
16(2):46-53, 2001.

Luc Segoufin and Szymon Toruniczyk. Automata based
verification over linearly ordered data domains. In
Intl. Symp. on Theoretical Aspects of Computer
Science (STACS), 2011.

Victor Vianu. Automatic verification of
database-driven systems: a new frontier. In Intl. Conf.
on Database Theory (ICDT), pages 1-13, 2009.

