
Efficient evaluation for a temporal logic
on changing XML documents∗

Mikołaj Bojańczyk
University of Warsaw

bojan@mimuw.edu.pl

Diego Figueira
University of Warsaw

University of Edinburgh
dfigueir@inf.ed.ac.uk

ABSTRACT
We consider a sequence t1, . . . , tk of XML documents that is
produced by a sequence of local edit operations. To describe
properties of such a sequence, we use a temporal logic. The
logic can navigate both in time and in the document, e.g. a
formula can say that every node with label a eventually gets
a descendant with label b. For every fixed formula, we pro-
vide an evaluation algorithm that works in time O(k·log(n)),
where k is the number of edit operations and n is the maxi-
mal size of document that is produced. In the algorithm, we
represent formulas of the logic by a kind of automaton, which
works on sequences of documents. The algorithm works on
XML documents of bounded depth.

Categories and Subject Descriptors
F.4.1 [Mathematical logic and formal languages]: Tem-
poral logic; H.2.3 [Database management]: Languages—
Query languages

General Terms
Theory, Algorithms, Languages

Keywords
Incremental evaluation, XML, temporal logic

1. INTRODUCTION
In this paper, we model an XML document as a finite un-

ranked tree over a finite alphabet. Suppose that an XML

∗We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Sev-
enth Framework Programme for Research of the European
Commission, under the FET-Open grant agreement FOX,
number FP7-ICT-233599.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

document is modified by a sequence of local update oper-
ations. Each update adds, removes or relabels a node of
the document. We want to know if these updates preserve
some correctness constraint. This kind of problem is called
incremental evaluation. Suppose, for instance, that the cor-
rectness constraint is given by a DTD, or more generally a
regular language of unranked trees. This problem is solved
by an algorithm of Balmin, Papakonstantinou and Vianu [4].
The algorithm maintains a data structure, and every update
on the tree requires an update to the data structure that is
done in time

poly(Q) · log2(n)

where Q is the state space of the automaton for the correct-
ness constraint and n is the size of the current document. If
the correctness constraint is given by an XPath query, the
translation from the query into a tree automaton can re-
sult in a state space Q that is exponential in the size of the
XPath query. The problem has been addressed by [6], which
provides algorithms that work directly with XPath queries.

A limitation of incremental evaluation, as described above,
is that the property talks only about the current version of
the XML document. In this paper, we study properties that
compare versions of the document in different times. Here
are some examples:

1. Every order node eventually gets an approved child.
That is, if at some time i a node x has tag name order,
then at some time j ≥ i node x has a child with tag
name approved.

2. Every node with one child gets a second child in at
most two steps. That is, if at some time i, a node x
has one child, then node x has at least two children in
any time j ≥ i+ 2.

To express these examples, we need a logic or formalism that
is evaluated not in a single document, but in a sequence of
documents

t1, . . . , tk.

We use the name document evolution for such a sequence. In
this paper we define a logic for document evolutions, which
captures the two examples given above. We then study the
evaluation problem for formulas ϕ of the logic:

• Input. A document evolution t1, . . . , tk.

• Output. Does ϕ hold in the document evolution?

As in incremental evaluation, the document evolution on the
input is not an arbitrary sequence of documents, but a se-
quence where t1 is an empty document and ti+1 is obtained
from ti by doing a local update that consists of adding, re-
moving or relabeling a single document node. In this case,
the size of document ti is bounded by i. If the updates
consist exclusively of adding nodes, then after time k the
combined size of the documents t1, . . . , tk is quadratic in k.

We want an algorithm that works well for large XML doc-
uments, with millions of nodes or more. For documents of
this size an algorithm that is linear in the combined size of
the documents t1, . . . , tk, and therefore quadratic in k, may
be impractical. However, when the document evolution is a
result of local updates, there is no reason to read the whole
document ti for every i ∈ {1, . . . , k}, because this document
is almost identical to ti−1. The principal contribution of this
paper is an algorithm for the evaluation problem that runs
in time

O(k · log(n)),

where k is the duration of the document evolution and n is
the maximal document size (of course n ≤ k). We present
the algorithm only for XML documents of bounded depth,
although we believe it should work for documents of un-
bounded depth.

To the best of our knowledge, the problem of efficiently
evaluating logics on document evolutions has not been stud-
ied before. In this paper, we try to optimize the data com-
plexity of the problem, and we assume that the formula of
the logic is fixed. Unfortunately, the query complexity of our
algorithm is very bad: the constant hidden in the expression
O(k · log(n)) is nonelementary in the size of the formula of
the logic. That is why this paper is more like a proof of
concept: even when the correctness property compares dif-
ferent versions of the document, it is still possible to have
an algorithm with very good data complexity.

In this paper, we only talk about the tag names and tree
structure of XML documents. That is, we model an XML
document as an unranked tree over a finite and fixed alpha-
bet (the tag names). Any additional data in the document,
such as attribute values, is ignored. Logics and automata
that talk about such additional data are a lively research
topic, see the survey [13], and in the future we would like to
extend our results to the richer logics. Note that for logics
that depend on attribute values, such as XPath, the incre-
mental evaluation problem seems to be difficult already for
formulas that talk about only the current state of the doc-
ument. In particular, we are not aware of any algorithm
that would be significantly faster than simply reevaluating
the XPath query on every new version of the document. By
significantly faster we mean an algorithm that would require
polylogarithmic time per update operation. Observe that in
the presence of additional data, an evalution algorithm for
XPath (without any time aspects, just evaluating a query in
a given document) with linear data complexity has appeared
only recently [8].

Related work. As already mentioned, [6] studies the prob-
lem of incrementally maintaining the result set of a XPath
query on a changing XML document. Algorithms are pro-
vided for several fragments of XPath. The queries from [6]
talk only about the current document, and cannot study the
change of the structure of the document in time.

There have been efforts to extend the XPath query lan-
guage to make it time-aware [9]. In this work we choose to
work with a temporal logic to talk about different instants
of the evolution of a document.

In a similar setup, there have been works on the incremen-
tal maintenance of the validity of regular languages [4, 5],
where the validity of an XML Schema, a DTD or a special-
ized DTD is checked to be preserved throughout the docu-
ment evolution.

Abiteboul, Herr and Van den Bussche [3] study the ex-
pressive power of some of the logics we work with.

The model of evolution of documents is also related to
regular model checking [2]. In this field, the evolution of
the document is dictated by a regular transducer, whereas
here updates can occur anywhere and in any order, in an
incremental way. In this context, [1] treats a logic similar
to ours, LTL(MSO), where first and second order variables
are interpreted over positions of the document, and tempral
operatores are used to navigate the word in time.

2. TWO LOGICS
In this section, we define the logics that we use to describe

document evolutions. As presented in the introduction, the
update operations are: adding and removing nodes, as well
as relabeling. In order to simplify the complicated evalua-
tion algorithm, and the definitions of the logics, for the most
part of the paper we only use relabeling, and do not add or
remove nodes. In particular, all documents in a document
evolution will have the same nodes. In Section 7, we come
back to the implementation of adding and removing nodes.

Fix an input alphabet A. We deal with finite, unranked,
sibling-ordered trees with nodes labeled by A. The domain
of a tree is the tree without the labels. A document evolution
is a sequence of trees t1, . . . , tk. The number k is the duration
of the document evolution, and the number n of nodes in the
domain is the document size of the evolution. We work with
the assumption that all documents have the same domain.
This assumption is made for technical reasons to simplify the
algorithm, but this assumption can be lifted, as explained
in Section 7. Throughout the paper, we will preserve the
convention that n refers to the document size and that k
refers to the duration. We use x, y, z to refer to nodes in the
domain and variables i, j to refer to moments in time.

In this section we define two logics to describe document
evolutions. The first logic is a variant of first-order logic.
The second logic is a variant of temporal logic. The eval-
uation algorithms of this paper are for the temporal logic,
and the first-order logic is described mainly to provide some
background.

First-order logic. A document evolution t1, . . . , tk with
domain X can be treated as a relational structure. The
elements of the structure are pairs

(x, i) ∈ X × {1, . . . , k}.

The relational structure is equipped with the following pred-
icates. For each letter a ∈ A in the input alphabet, we have a
unary predicate a, which holds for an element (x, i) if node
x has label a in the document ti. There are three binary
relations:

• The descendant order ≤desc which ignores the time
coordinate of its arguments and compares the nodes

for descendant relationship.

• The document order ≤doc which ignores the time co-
ordinate of its arguments and compares the nodes for
document order relationship. This corresponds to the
total order induced by the preorder visit of the tree.

• The time order ≤t which ignores the node coordinate
of its arguments and compares the times.

Because the predicates above ignore one of the coordinates,
they are not antisymmetric when k ≥ 2 or n ≥ 2. Using
these predicates, we can write formulas of first-order logic to
express properties of document evolutions. For instance, the
following formula says that once a document node gets label
a, none of its descendants ever have label b afterwards. (We
use p, q for the variable names, because x, y, z are reserved
for positions, and not space/time pairs.)

∀p∀q.
`
a(p) ∧ p ≤t q ∧ p ≤desc q

´
⇒ ¬b(q) (1)

Two-dimensional temporal logic. We now define a logic
with temporal syntax, with operators that travel in the time
dimension and the space dimension. In particular, formu-
las of this logic will have no variables. We use the name
two-dimensional temporal logic for this logic. This is the
principal logic studied in the paper.

In the two-dimensional temporal logic, a formula is eval-
uated in a pair

(x, i) ∈ X × {1, . . . , k}

of a document evolution of document domain X and dura-
tion k. Instead of quantifiers, formulas use modal operators
such G for Globally or U for Until. For instance the property
from example (1) is stated as

GdescGt(a⇒ GdescGt¬b).

In the formula above, we begin in the root node in the first
document. We then use the GdescGt operators to say that
a ⇒ GdescGt¬b occurs in all descendants in all later times,
and likewise for the smaller formula.

We believe that when describing document evolutions, it
is important to allow past operators in the space dimension
(i.e. descendants and preceding nodes in document order).
For example, consider an XPath unary query α, which se-
lects a position x in a document if it has an ancestor with
label a. In XPath syntax this query looks like this:

//a//∗

One might want to say that for every document node x and
time i, if node x has label b in time i, then at all later times
the node x satisfies the XPath query α

GdescGt(b⇒ Gtα).

In the particular example of α, we can write F−1
desca to search

for an ancestor of the current node in the current document.
We now provide the formal syntax and semantics of the

temporal logic. As remarked above, a formula of the logic is
evaluated in a pair (x, i) of a document evolution t1, . . . , tk.
We fix this document evolution in the definition below.

• For every letter of the alphabet, a is a formula. This
formula is true in (x, i) if node x has label a in docu-
ment ti.

• Boolean connectives are allowed, with the usual se-
mantics.

• If ϕ,ψ are a formulas, then ϕUdescψ is a formula, which
is true in (x, i) if there exists a node y >desc x such that
ϕ is true in all the pairs (z, i) with x <desc z <desc y
and ψ is true in the pair (y, i). Observe that we use the
strict until operator, which does not use the current
position. Often, one uses the non-strict until, which is
defined by

ψ ∨ (ϕ ∧ (ϕUdescψ)).

The strict until allows one to define all other operators
as derived constructs:

Xdescϕ
def
= ⊥Udescϕ Fdescϕ

def
= (>Udescϕ) ∨ ϕ

Gdescϕ
def
= ¬Fdesc¬ϕ

• If ϕ,ψ are formulas, then ϕU−1
descψ is a formula, which

is the inverse of the Udesc operator. This operator is
often called since. As in the previous item, we can
define all sorts of derived operators.

• Let ≤sib be sibling order, where x ≤sib y if x and y are
siblings, and x is to the left of y. If ϕ,ψ are formulas,
then ϕUsibψ and ϕU−1

sibψ are formulas, defined in the
same way as before, for the sibling order ≤sib.

• Finally, we allow an until operator Ut that works in
the time dimension, i.e. ϕUtψ holds in (x, i) if there is
a time moment j > i such that ϕ is true in the pairs

(x, i+ 1), . . . , (x, j − 1)

and ψ is true in the pair (x, j).

Observe that we do not allow a since operator in the time
dimension. Such a logic would make perfect sense, but we do
not know how to extend our evaluation algorithm to cover a
since operator in the time dimension. In fact, it seems that
the two dimensional temporal logic with since and until is
strictly more expressive than with only until, the witness
property being “there is a time moment i such that t1 = ti”.

As far as the space dimension is concerned, our logic be-
haves like two-way CTL. Two-way CTL is first-order com-
plete, see [12]. We could even allow more powerful opera-
tions in the logic. This is because our evaluation algorithm
represents the formula as an alternating automaton. Then,
our algorithm works even if we make tests for any regular
properties at fixed time moments.

3. EVALUATION
The subject of this paper is evaluation of logical formulas

on document evolutions. We are not interested in the satis-
fiability problem, because it is undecidable for all the logics
described here, by using a document evolution to describe a
run of a Turing machine.1

The evaluation problem for a logical formula ϕ is stated
as follows.

• Input. A document evolution t̄.

1In fact, it has been shown that the two-dimensional tempo-
ral logic is undecidable even if we only allow future modali-
ties in both dimensions [10].

• Output. Does the formula hold in t̄?

When measuring the complexity of the problem, we use two
parameters of the document evolution t̄: the document size
n and the duration k.

First-order logic. In this paper, we are mainly interested
in the logics that are temporal in at least one of the two
dimensions of space and time. Why not first-order logic
where the variables range over space/time pairs? A docu-
ment evolution of document size n and duration n = k can
encode any graph with n vertices, since it is essentially an
n× k matrix. Therefore, evaluating first-order logic on doc-
ument evolutions is the same as evaluating first-order logic
on graphs, or arbitrary relational structures for that matter.
The latter is a fascinating and widely studied topic, but it
is not the topic of this paper.

An optimal algorithm for the two-dimensional tempo-
ral logic. There is a simple optimal algorithm for the two-
dimensional logic.

Theorem 1. The evaluation problem for two-dimensional
temporal logic can be solved in time O(k · n).

Proof. Suppose that X is the domain of the document
evolution. By induction on the size of a formula ϕ, we show
that the set of pairs

(x, i) ∈ X × {1, . . . , k}

in a document evolution t1, . . . , tk that satisfies ϕ can be
computed in time

O(|ϕ| · n · k).

Suppose that we want to compute the pairs where ϕUtψ is
satisfied. For document node x ∈ X, we scan the document
evolution from time k to time 1. Using the precomputed
information on ϕ and ψ we can compute the bigger formula.
A similar argument works for the other operators. For the
space operators, one needs to do a bottom-up or top-down
pass through the trees.

Observe that the algorithm above would also work if we
allowed a since operator in the time dimension. The since
operator will be a problem in our later algorithm.

If the document evolutions are arbitrary sequences of doc-
uments, with no restriction on small differences between con-
secutive documents, then this naive algorithm is optimal.
All n · k positions of the document evolution must be read
for some queries, e.g. the query “all nodes in all times have
label a.”

Incremental evaluation. The incremental evaluation prob-
lem is a variant of the evaluation problem, where we as-
sume that the document evolution is the result of applying
a sequence of local updates to an initially empty document.
Here empty means that all nodes have the same blank label.
Formally speaking, the input of the incremental evaluation
problem consists of: a tree domain X, a duration k ∈ N, an
initial letter a ∈ A and a sequence of pairs

(a1, x1), . . . , (ak−1, xk−1) ∈ A×X.

Given this input, we define a document evolution t1, . . . , tk
as follows. The first document t1 has all nodes labeled by a.

Once ti has been defined, ti+1 is defined as ti with position
xi changing label to ai. A document evolution obtained
from such a sequence of relabeling operations is called an
incremental document evolution.

In the (general) evaluation problem, reading the input re-
quires time n · k. In the incremental evaluation problem,
reading the input requires time k, so the simple lower bound
of O(n · k) does not hold any more. The principal contribu-
tion of this paper is that the incremental evaluation problem
can be solved more efficiently, as stated in the following the-
orem.

Theorem 2 (Main Theorem). Fix a formula ϕ of the
two-dimensional temporal logic. The incremental evaluation
problem, on a document evolution of document size n and
duration k can be solved in time O(k · log(n)).

In the theorem above, the constant in the O notation de-
pends on the formula ϕ. As a function of ϕ, the constant
grows faster than any tower of exponentials. That is why
this paper is intended more as a proof of concept, the con-
cept being that the incremental evaluation problem can be
done in time smaller than the obvious O(n · k).

4. AN AUTOMATON MODEL
In this section we define an automaton model that accepts

or rejects document evolutions. This automaton can capture
the two-dimensional temporal logic, and even some exten-
sions. Our evaluation algorithm works with the automaton.

Regular queries. A regular tree language is like a boolean
query for trees: it says yes or no to each tree. In this paper
we also use unary queries, binary queries and so on. An m-
ary query over trees, with input alphabet A, is a function f
which maps every tree over alphabet A to a set of m-tuples
of nodes in the tree. An example of a binary query is one
that maps a tree to the set of all pairs of nodes (x, y) such
that there is an even number of a’s on the shortest path
from x to y.

We will be using regular queries, which are queries that
can be defined by formulas of MSO logic with free individ-
ual variables, see e.g. [11]. Regular queries can also be de-
scribed in other ways, different than MSO formulas, e.g. by
automata or monoids. The way we describe regular queries
is not very important for our evaluation algorithm (actually,
the algorithm uses monoids as its internal representation).
In particular, the bad query complexity of our algorithm
is not due to the use of MSO in the automaton, the al-
gorithm would have nonelementary complexity even with
regular queries represented in some less succint way, e.g. by
monoids.

Document update processing automata. We now intro-
duce the automaton model, which we call a document update
processing automaton. Such an automaton, call itA, is given
by the following ingredients.

• An input alphabet A.

• A set of states Q, an initial state q0 and a set of ac-
cepting states F ⊆ Q. The states are partitioned into
Q∃ and Q∀. (This is a kind of alternating automaton.)

• A finite set ∆ of transitions of the form (q, ϕ, p) where
q, p ∈ Q and ϕ is a binary regular query over input
alphabet A.

An input for the automaton is a document evolution

t̄ = t1, . . . , tk

with domain X, where the trees are over alphabet A. The
automaton accepts the document evolution if player ∃ wins
the following perfect-information, finite duration, two-player
game, call it GAt̄ . Positions of the game are triples of the
form (q, x, i) where q ∈ Q is a state of the automaton, x ∈ X
is a node, and i ∈ {0, . . . , k} is a moment in time. The
interpretation of i is that we are about to read the tree ti+1.
The initial position is (q0, root, 0), i.e. the game starts in the
initial state, in the root, and before reading the first tree in
the document evolution. When in a game position (q, x, i)
with i < k, the player who owns state q chooses a new game
position (p, y, i+ 1) such that

(q, ϕ, p)

is a transition of the automaton and ϕ selects the pair (x, y)
in the document ti+1. When a game position of the form
(q, x, k) is reached, the game is finished, and player ∃ wins if
q is accepting, otherwise ∀ wins. A position in the game is
called winning for ∃ if he can win the game starting in that
position.

From two-dimensional logic to dupa automata

Proposition 3. For every formula ϕ of the two-dimensional
temporal logic there is a document update processing automa-
ton that accepts the same document evolutions.

Proof. States of the automaton are subformulas, so the
size of the automaton is quadratic in the formula. The trans-
lation is as usual when going from temporal logic to an al-
ternating automaton.

Ordered automata. We say a transition (p, ϕ, q) in a docu-
ment update processing automaton is a local transition if the
formula ϕ only selects pairs of the form (x, x) in every tree
(in wich case, ϕ is essentially a unary query). An automaton
is called ordered if there is a ranking function Ω : Q → N
on its states such that performing any transition preserves
or decreases the rank, and performing a non-local transition
decreases the rank. It is possible that several states have the
same rank, in which case the states can be connected only
by local transitions. Observe that the automaton produced
in Proposition 3 is an ordered automaton, the ranking func-
tion refers to the size of the subformula corresponding to the
current state.

The principal technical result of this paper is that ordered
document update processing automata can be evaluated ef-
ficiently.

Theorem 4. Fix an ordered document update processing
automaton. Whether or not the automaton accepts a docu-
ment evolution of duration k and tree length n can be tested
in time O(k · log(n)).

Thanks to Proposition 3, the theorem above also yields
an evaluation algorithm for the two-dimensional temporal
logic, of same complexity, as stated in Theorem 2.

The evaluation algorithm is described in Sections 5 and 6.
Due to the complicated structure of the algorithm, we de-
scribe it for the case of words (which can be seen as the
special case of trees with only one path). In Section 7 we
comment on how to extend the algorithm for trees.

5. LOCAL ORDERED AUTOMATA
In this section we show how to evaluate a local automaton,

which is a document update processing automaton where
only local transitions are allowed. In the next section, the
ideas on local automata are extended to the general case of
ordered automata with non-local transitions.

As mentioned before, we describe the algorithm for words
and not trees. In particular, the tree domain is now given by
just specifying the word length n, in which case the domain
is {1, . . . , n}. We will prove the following theorem in this
section.

Proposition 5. Fix a local automaton. The automaton
can be evaluated on incremental document evolutions of word
length n and duration k in time O(k · log(n)).

Actually, we prove a slightly stronger result. We will cre-
ate a data structure such that for every node x ∈ {1, . . . , n},
one can tell in time O(log(n)) if the automaton accepts the
word if it begins in the initial state in node x. So, in a sense,
we evaluate the local automaton for all nodes in the word
simultaneously.

We fix for the rest of this section a local automaton. We
also fix an input to the automaton, i.e. an incremental doc-
ument evolution

w1, . . . , wk ∈ An.

Our goal is to determine if the automaton accepts this word.
In the algorithm, we will refer to the differences between suc-
cessive words wi and wi+1, so we assume that the incremen-
tal document evolution is given by a sequence of relabeling
operations.

Monoids for queries. In this section, we assume that all of
the transitions are local, i.e. every transition is of the form

(p, ϕ, q)

where ϕ only selects tuples of the form (x, x) in every word.
Therefore, we will simply treat ϕ as a unary query. Instead
of MSO logic, we use monoids to describe regular queries.
We describe the monoid approach to unary queries below.

Suppose that

α : A∗ →M

is a monoid homomorphism. The unary α-type of a node x
in a word a1 · · · an is the triple

(α(a1 · · · ax−1), ax, α(ax+1 · · · an)) ∈M ×A×M.

We say the homomorphism α recognizes a unary query ϕ(x)
if there is a set of triples

H ⊆M ×A×M

such that a node x is selected by the query ϕ in a word w if
and only if the unary α-type of x in w belongs to H. For ev-
ery unary MSO query there exists a monoid homomorphism
that recognizes it. The monoid M might be nonelemen-
tary in the size of the query. (This translation of MSO into

monoids is not the only reason for bad query complexity, our
algorithm has nonelementary query complexity even when
the monoids M are small.)

We fix a single monoid homomorphism α : A∗ → M that
recognizes all the queries that appear in the transitions of the
automaton. This can be done by using the direct product
of all the monoids for all the queries. When referring to
unary types, we omit the name of α, because it is the only
homomorphism we use.

Zones. We begin by introducing some notation. We write
x, y, z for positions in the words, i.e. for elements of {1, . . . , n}.
A zone is defined to be any connected set of positions, i.e. a
zone is a set {x, x + 1, . . . , y} for 1 ≤ x ≤ y ≤ n. We write
X,Y for zones, and we also allow an empty zone. If X is
a zone and w is a word with n positions, then w|X is the
word obtained from w by only keeping positions from X.
The type of a zone X in a word w is defined to be α(w|X).
Zones X1, . . . , Xm are called consecutive if the last node in
zone X1 is the predecessor of the first node in X2, and so on
until Xm−1 and Xm.

The environment of a zone X inside a zone Y ⊇ X is the
difference Y −X. Such an environment is the union of two
disjoint zones, the one to the left of X and the one to the
right of X. The type of such an environment is the pair of
types of these two disjoint zones. We write

Externals
def
= M2

for the set of possible types of such environments. The ex-
ternal type of a zone X is the type of its environment with
respect to the set {1, . . . , n} of all word positions. We write
τ, σ for external types. For i = 1, 2, we write τ(i) for the
i-th coordinate of an external type τ . We can also insert one
external type inside another

inσ(τ)
def
= (τ(1) · σ(1), σ(2) · τ(2)) ∈ Externals.

The idea is that if X ⊆ Y ⊆ Z and σ is the type of the
environment Y − X, and τ is the type of the environment
Z − Y , then inσ(τ) is the type of the environment Z −X.

Histories. We write i, j for times, which are elements of
{1, . . . , k}. A time interval is defined like a zone, but for
times. For a time i ∈ {1, . . . , k} we write

ext(X, i) ∈ Externals

for the external type of a zone X in the word wi. Consider
a zone X and a time interval I = {i, . . . , j}. We define the
external history of the interval X in time interval I, denoted
history(X, I), to be the sequence

ext(X, i), . . . , ext(X, j)

of external types of X in the times from the interval I. Since
we only talk about external histories, we simply write history
from now on. We only use the value history(X, I) when the
zone X does not change labels in the time interval I. To
underline this requirement, we assume that history(X, I)
is undefined otherwise. We write Histories for the set of
possible histories, this set includes the undefined history ⊥.

5.1 The history toolkit
We define some operations on histories. These operations

will be used by the algorithm as a black box.

Monoid operations on histories. There is an empty his-
tory:

empty ∈ Histories (2)

The simplest operation we can do on histories is concatenate
them. When histories are represented as sequences of exter-
nal types, this operation is simply sequence concatenation.
Later, we represent histories in a more concise way, and the
operation becomes less trivial, so we give it a name:

concat : Histories ×Histories → Histories. (3)

Applying a history to a node. For a node x and a time i,
we define Pxi ⊆ Q to be the set of states q such that the
game position (q, x, i) is winning in the game GAw̄ . Recall
that (q, x, i) describes the situation between words wi and
wi+1. The principal goal of our algorithm is to design an
algorithm and data structure, so that after the algorithm
terminates, each set Px0 can be computed in time O(log(n))
by using the data structure.

Generally speaking, our algorithm will be processing the
words in the time evolution in reverse order, beginning with
wk and ending with w1. All the information gathered by
the algorithm will be propagated from later times to earlier
times. We say that a node x does not change label in time
i if the label of x is the same in words wi and wi+1.

Lemma 6. Suppose that in the time interval {i, . . . , j},
the label of a position x is constantly a ∈ A. Then the set
Px(i−1) is uniquely determined by: the label a, the set Pxj
and history({x}, {i, . . . , j}).

Proof. Consider first a history of length one, i.e. j = i.
Let history({x}, {i}) be (σ, τ). Then the α-type of x in wi
is (σ, a, τ). The set Px(i−1) contains the states q such that
either

• q is owned by player ∀ and for every transition (q, ϕ, p),
if (σ, a, τ) satisfies ϕ then p ∈ Pxi, or

• q is owned by player ∃ and there is a transition (q, ϕ, p)
such that (σ, a, τ) satisfies ϕ, and p ∈ Pxi.

These conditions are necessary and sufficient for (q, x, i− 1)
being an accepting position in the automaton’s game.

For longer histories, the lemma is obtained by iterating
the statement for histories of length one.

We denote the function that realizes the dependency from
the above lemma by

apply : Histories → A× P (Q)→ P (Q). (4)

That is, this function is defined so that, under the assump-
tions of the lemma, we have

Px(i−1) = apply(history({x}, {i, . . . , j}))(a, Pxj).

Inheriting the history of a parent. Let Y be a zone that
contains X. Suppose that in the time interval I, the input
labels of Y −X did not change, and therefore constantly had
the same type σ ∈ Externals. In this case,

history(X, I) = inσ(history(Y, I))

where the operation

inσ : Histories → Histories (5)

is defined by inσ(τ1, . . . , τm) = inσ(τ1), . . . , inσ(τm).

5.2 The algorithm
We now present our algorithm. It uses a fairly natu-

ral divide-and-conquer approach (not for nothing there is
log(n)). The crux is an efficient implementation of opera-
tions on histories, which is described in later sections.

We define logarithmic zones as follows: the set of all po-
sitions of {1, . . . , n} is a logarithmic zone; and if X is a
logarithmic zone of w and x ∈ X is in the middle of X then
X∩{1, . . . , x} and X \{1, . . . , x} are both logarithmic zones.
The properties of these zones are: they are either disjoint or
one is included in the other, each position is included in a
logarithmic number of them, and there are linearly many of
them. We write parent(X) for the smallest logarithmic zone
Y) X and Logs for the set of all logarithmic zones.

The history tree. We first define the data structure used by
our algorithm. An instance D of the data structure consists
of four labelings:

D.lastupdate : Logs → {0, . . . , k}
D.lastlabel : {1, . . . , n} → A× P (Q)

D.history : Logs → Histories

D.monoid : Logs →M

Because the logarithmic zones have a tree structure, and be-
cause the component D.history is the most important one,
we use the name history tree for such an instance D.

We will first compute a history tree for time k, and then
will compute it for times k − 1, k − 2, . . . , 0. A history tree
D is called correct at time moment i ∈ {0, . . . , k} if the
following conditions hold. (The idea is that D describes the
situation between words wi and wi+1.)

1. For every logarithmic zone X and its parent Y ,

D.lastupdate(X) ≥ D.lastupdate(Y).

In other words, zones intervals are more up to date than
smaller zones. (Because the algorithm starts in k and
progresses towards 0, information about a smaller time
is more up to date.) We say a zone X is up to date (at
moment i) if

D.lastupdate(X) = i.

We require that the root logarithmic zone {1, . . . , n} is
up to date.

2. Labels cannot change between the current time i and the
last update. That is, for every logarithmic zone, all of its
input labels have stayed the same in the time interval

{i, . . . , D.lastupdate(X)}

3. For every logarithmic interval X, the value D.monoid(X)
stores the monoid element corresponding to X at the time
of its last update:

D.monoid(X) = α(wD.lastupdate(X)|X)

In fact we have that D.monoid(X) = α(wj |X) for every
i ≤ j ≤ D.lastupdate(X) since wj |X remains unchanged.

4. Suppose that X is a logarithmic interval, and Y is its
parent. Then D.history(X) stores the value

history(X, {D.lastupdate(Y), . . . , D.lastupdate(X)− 1}).

In the case when D.lastupdate(Y) = D.lastupdate(X) the
above history is empty.

5. Suppose that x is a node and let

j = D.lastupdate({x}) and (a, P) = D.lastlabel(x).

Then the label of x in word wj is a and Pxj = P . Together
with condition 2 this means that the input label of x is a
during the interval {i, . . . , j}.

The algorithm. The algorithm begins with a history tree
Dk that is correct and up to date for time moment i = k.
Then for each time moment i ∈ {k−1, . . . , 0}, the algorithm
calculates a history tree Di that is correct for time moment i.
The algorithm that maintains this invariant will manipulate
histories. In our complexity analysis, we will use the history
operations

empty concat apply inσ

described in Section 5.1 as black boxes, with unit cost in the
algorithm. Later, we will show how the operations can be
implemented in constant time.

Lemma 7. Dk can be computed in time O(n).

It is safe to assume k > n, because otherwise our algorithm
can ignore the positions where no labels are updated. There-
fore, the O(n) precomputation cost of Dk will be amortized
by the algorithm’s O(k · log(n)) complexity.

Lemma 8. Let Di be a history tree that is correct for time
i. Let x be a position. We can compute a history tree D′i
that is also correct for time i and which is up to date at the
zone {x}. This computation can be done in time O(log(n)),
assuming the history operations have unit cost.

Proof. Consider the logarithmic zones that contain x:

{x} = X0 (X1 (· · · (Xm.

We will compute history trees

D(m), D(m−1), . . . , D(0) = D′

which are all correct for time i, and such that

D(r).lastupdate(Xr) = i for r ∈ {0, . . . ,m}.

Furthermore, a constant number of operations on the history
tree D(r) are sufficient to compute D(r−1). The statement
of the lemma then follows, because m is logarithmic in n.

For the induction base, we simply use D(m) = Di, be-
cause item 1 of the correctness conditions says that the root
logarithmic zone is always up to date.

The rest of the proof is devoted to the induction step.
Suppose we computed D(r+1) and we want to compute D(r).
We simply make the zone Xr up to date in D(r) by setting

D(r).lastupdate(Xr) := i

and keeping the value of lastupdate unchanged for other log-
arithmic zones. What else do we need to change in D(r) to
make this history tree correct for time i? We examine the
conditions of correctness item by item.

1. Item 1 holds because the zones Xr+1, . . . , Xm are al-
ready up to date in D(r+1), and the root zone is un-
changed.

2. We have decreased the value of D(r).lastupdate(Xr),
which makes item 2 even more true.

3. Let use j for the previously used time in Xr, i.e.

j = D(r+1).lastupdate(Xr).

We know from item 2 applied to D(r+1) that no posi-
tions have been changed in the zone Xr between the
current time i and time j, so we can keep

D(r).monoid(Xr) := D(r+1).monoid(Xr).

4. For this item, we change the histories in at most three
zones. For the history of Xr, we use the empty history,
because Xr is now up to date:

D(r).history(Xr) := empty.

Suppose that r > 0. In this case, Xr has two children
zones, call them Y0 and Y1 from left to right. (One of
the children is Xr−1, but this plays no role in our ar-
gument.) The condition in item 4 could now be invalid
for the two zones Y0, Y1, because we have changed the
update time of their parent Xr. For l ∈ {0, 1} let jl be

D(r).lastupdate(Yl) = D(r+1).lastupdate(Yl).

To make the history tree D(r) correct, we should have

D(r).history(Yl) = history(Yl, {i, . . . , jl − 1}),

so we need to compute the history on the right of the
above equation. What we have from the history tree
D(r+1) is two histories:

history(Yl, {j, . . . , jl − 1}) history(Xr, {i, . . . , j − 1}).

However, we know that from time i to j the external
type of Yl inside Xr was the same, call this external
type τl. The value of this external type is taken from
the monoid part of the history tree:

τ0 = (1, D(r).monoid(Y1)) τ1 = (D(r).monoid(Y0), 1).

By applying the inτl operation, we can compute the
history of Yl between times j and i as follows:

history(Yl, {i, . . . , j − 1}) =

inτl(history(Xr, {i, . . . , j − 1})).

Then, the value of D(r).history(Yl) should be set to

concat(D(r+1).history(Yl), inτl(D
(r+1).history(Xr))).

5. Let y be any position. If we have the equality

D(r).lastupdate({y}) = D(r+1).lastupdate({y}),

then no change in D(r).lastlabel(y) is required preserve

item 5, because of correctness of D(r+1). The only case
when the equality above can fail is when y = x and
r = 0. We study this case below.

Let j = D(1).lastupdate({x}). By correctness of D(1)

we know that

D(1).lastlabel(x) = (a, Pxj)

where a is the label of x in time j. To make item 5
true, we need to have

D(0).lastlabel(x) = (a, Pxi),

which requires knowing the set of states Pxi. By the
previous item, we have the history

D(0).history({x}) = history({x}, {i, . . . , j − 1}).

Therefore, we can apply the history above to the pair
(a, Pxj) and get the set Pxi from

apply(D(0).history({x}))(D(1).lastlabel(x)).

A similar proof yields the following lemma.

Lemma 9. Let x be the position where wi+1 differs from
wi. Let D′i+1 be a history tree that is correct for time i + 1
and up to date at x. We can compute a data structure Di
that is correct for time wi. This computation can be done in
time O(log(n)), assuming the history operations have unit
cost.

By applying the two lemmas in alternation, we can com-
pute successively data structures

Dk, D
′
k, Dk−1, D

′
k−1, . . . , D

′
1, D0.

This takes O(k · log(n)) time, and O(k · log(n)) history op-
erations. If we implement histories in a naive way, by writ-
ing down a history as a list of pairs, each of the operations
will take time linear in the length of the list. This will
be a problem for the algorithm, which would run in time
O(k · n · log(n)).

The essence of the algorithm is to implement histories so
that the operations can be done in constant time. This will
be done in Section 5.3.

5.3 A constant time implementation of histo-
ries

History congruence. Recall the operations on histories that
were used as black box operations in the algorithm from the
previous section.

empty ∈ Histories

concat : Histories ×Histories → Histories.

apply : Histories → A× P (Q)→ P (Q).

inσ : Histories → Histories

A history congruence is an equivalence relation∼ on Histories
that is a congruence with respect to all the above opera-
tions. Formally speaking, a history congruence must satisfy
the following conditions whenever h ∼ h′

concat(g, h) ∼ concat(g, h′) for all g ∈ Histories

concat(h, g) ∼ concat(h′, g) for all g ∈ Histories

apply(h) = apply(h′)

inσ(h) ∼ inσ(h′) for all σ ∈ Externals

If ∼ is a history congruence, then the history operations
can be applied to equivalence classes of ∼. The family of
equivalence classes together with the history operations on
equivalence classes is denoted by Histories/∼.

Lemma 10. Suppose that ∼ is a history congruence. Then
Histories can be replaced by Histories/∼ in the algorithm,
and the computed values for Di.lastlabel({x}) will be the
same.

Proof. The algorithm accesses the histories only using
the operations.

The constant time implementation of histories is based on
the following lemma.

Lemma 11. There is a history congruence where the num-
ber of equivalence classes is finite and depends only on the
automaton, and not its input (not on n or k).

The idea of the proof is that two histories are considered
equivalent if they induce the same mapping:

τ ∈ Externals 7→ apply(inτ (h)) : A× P (Q)→ P (Q).

6. NON-LOCAL ORDERED AUTOMATA
In this section we generalize the algorithm from the previ-

ous section to deal with non-local transitions in an ordered
automaton.

The difficulty in this section is a new notion of history. A
history is still used to store information about environments
of zones, but this information is now more complex.

6.1 Preliminaries
Fix an ordered document update processing automaton.

Assume that the maximum rank given by the function Ω of
the automaton is t. We define the sets of states

Q1 ⊆ Q2 ⊆ · · · ⊆ Qt where Qi
def
= {q ∈ Q | Ω(q) ≤ i}.

Binary types. The automaton now includes non-local tran-
sitions, which are of the form (q, ϕ, q′) where ϕ is a binary
regular query that may select nodes (x, y) of the word with
x 6= y. As in the previous section, we use monoids to recog-
nize queries. For unary queries, we use the notion of type of
a node x as in the previous section. We write Unarytypesα
to denote the set of unary α-types, we omit the index α
when the homomorphism α is clear from the context.

We extend the notion of type to pairs of nodes. Suppose

α : A∗ →M

is a monoid homomorphism. We define the binary α-type of
two nodes x and y in a word w as the element of

Binarytypesα
def
= M ×A×M ×A×M × {<,>,=}

containing the three types of the three infixes of the word
{1, . . . , i − 1}, {i + 1, . . . , j − 1}, {j + 1, . . . , n}, where i =
min(x, y), j = max(x, y), and the labels of positions i and
j. The last component says whether x = y, x < y or x > y.
We write typeα(x, y, w) ∈ Binarytypesα to denote the binary
type of x and y on w. For every regular binary query ϕ
there is a homomorphism α and a set F ⊆ Binarytypesα
that recognizes ϕ, that is, that (x, y) is selected on w by ϕ
if and only if typeα(x, y, w) ∈ F .

We fix a homomorphism α that recognizes all the binary
queries in the transitions of the automaton. We omit the
index α from the notation.

Node profiles. As in Section 5, the goal of the algorithm is
to compute the sets Pxi for positions x and times i.

Suppose that a node x does not change its label between
in times I = {i, . . . , j}. Due to non-local transitions, it is
not enough to know the sequence of external types of x in
order to update it from Pxj to Px(i−1). There may be a
state q in Px(i−1) that is triggered by some q′ ∈ Pyi via a
non-local transition from some other node y. Due to these
issues, we store more information in our data structures. We
describe this information below, starting with the simplest
brick: profiles of nodes.

Consider a node x ∈ {1, . . . , n}, a time i ∈ {1, . . . , k} and
a rank l ∈ {1, . . . , t}. By induction on the rank l, we define
the rank l profile of node x in time i to be the following
information, which is denoted by πl,ix :

• The type of node x in the word wi;

• the set of states in Pxi ∩Ql;

• for every binary type τ ∈ Binarytypes, the set of rank
l− 1 profiles of nodes y in time i such that the binary
type of x and y in wi is τ .

When the rank l is not specified, it assumed to be the max-
imal rank l = t. Observe that the information in πix also
describes other nodes than x, due to the third item of the
definition. Since the definition is recursive, a rank l pro-
file can be seen a tree of depth t where edges correspond
to Binarytypes elements, and nodes with a subtree of depth
l are described by the accepting states from Ql. The data
type where rank l profiles live is denoted by Nodeprofiles l,
and it is described below:

Nodeprofiles
def
= Nodeprofilest

Nodeprofiles1

def
= Unarytypes× P (Q1)

Nodeprofiles l+1

def
= Unarytypes× P (Ql+1)×Neighboursl

Neighboursl
def
= Binarytypes→ P (Nodeprofiles l)

Note that from πl,ix we can deduce πl
′,i
x for all l′ < l, because

Ql
′
⊆ Ql. The size of the data type Nodeprofiles l+1 is expo-

nential in the size of Nodeprofiles l, hence the nonelementary
query complexity of our algorithm.

Zone profiles. We define the profile of a node x relative to
a zone X 3 x by taking wi|X as the whole word. All the
elements from Unarytypes and Binarytypes are relative, and
the neighbours are limited to the zone X. This profile is
denoted by πix∈X .

The profile of a zone X in time moment i is just the set
of node profiles (relative to X) of nodes in X. We use the
symbol Π to denote zone profiles. Following the same nota-
tion introduced before, Πl,i

X is the zone profile of the zone X
at time moment i containing the information of the states
from Ql.

Πl,i
X

def
= {πl,ix∈X : x ∈ X} ∈ Zoneprofiles l

def
= P (Nodeprofiles l)

Πi
X

def
= Πt,i

X ∈ Zoneprofiles
def
= Zoneprofilest

The following lemma shows that zone profiles are compo-
sitional with respect to union of consecutive zones.

Lemma 12. There is an associative concatenation opera-
tion on profiles (Π1,Π2) 7→ Π1 · Π2 such that for two con-
secutive zones X1 and X2, we have

ΠX1∪X2 = ΠX1 ·ΠX2 .

One step computation.

Lemma 13. Suppose that the nodes of the word are parti-
tioned into three consecutive zones X1, X,X2. Suppose also
that in time i − 1 the labels of zone X do not change. For
every node x ∈ X, the node profile πi−1

x∈X depends only on:

Πi
X1 Πi

X2 and πix∈X

Actually, the dependency is even a bit more fine grained. If
we want to know the rank l profile πl,i−1

x∈X , we only need the
profile of the same rank in the current node, but profiles of
smaller rank in the surrounding zones:

Πl−1,i
X1

Πl−1,i
X2

and πl,ix∈X .

The idea is that any dependency on nodes that are different
from x requires using a non-local transition, which decreases
the rank. However, since we do not need the more fine
grained dependency, we use the dependency as stated in
Lemma 13, which does not indicate ranks.

Observe that we do not need the profiles πix′∈X of other
elements x′ ∈ X since all the information relevant to X
is inside πix∈X . Let us fix the term Externalzoneprofiles to
name zone profiles of the environment of zones.

Externalzoneprofiles
def
= Externalzoneprofilest

Externalzoneprofiles l
def
= Zoneprofiles l × Zoneprofiles l

We define the ext function to work with Externalzoneprofiles.

ext(X, i)
def
= (Πi

X1 ,Π
i
X2) ∈ Externalzoneprofiles

for (X1, X2) the environment of X in wi. By Lemma 13,
there exists a function

update : Externalzoneprofiles → Nodeprofiles → Nodeprofiles

such that the following holds.

πi−1
x∈X = update(ext(X, i), πix∈X)

This function can be extended to zones

update : Externalzoneprofiles → Zoneprofiles → Zoneprofiles

by lifting the previous definition to sets of profiles, and we
then have

Πi−1
X = update(ext(X, i),Πi

X) .

6.2 Histories
We now generalize the notion of histories, as they were

defined in Section 5, to the non-local case. Let i ≤ j be
times and let X be a zone, with (X1, X2) its environment.
Suppose that the labels of X do not change in times i, . . . , j
(and therefore they are the same as in the word wj+1). We
define the history of X between i and j, denoted by

history(X, {i, . . . , j}),

to be the following sequence:

ext(X, i), ext(X, i+ 1), . . . , ext(X, j) ∈ Externalzoneprofiles.

We write Histories for the set of possible histories. We next
define the apply and in functions on Histories.

Lemma 14. Suppose that in time interval {i, . . . , j}, the
labels of a zone X do not change. Then the zone profile Πi−1

X

is uniquely determined by Πj
X and history(X, {i, . . . , j}).

Proof. By iterating the function

update : Externalzoneprofiles → Zoneprofiles → Zoneprofiles.

for each item on the list in the history.

Let the dependency in the above lemma be realized by the
function:

apply : Histories → Zoneprofiles → Zoneprofiles

That is, under the assumptions of the lemma we have

Πi−1
X = apply (history(X, {i, . . . , j})) (Πj

X).

In the algorithm for local transitions from Section 5, one
important part has to do with the possibility to compute,
given the history h of a zone X in an interval {i, . . . , j}
(and assuming that there were no changes on X between
times i and j), the history h′ of a smaller zone X0 ⊆ X
having as environment inside X the subzones X1 and X2.
In the previous section, this was obtained simply with inσ(h)
where σ ∈ Externals corresponds to the types of (X1, X2).
But here the operation is somewhat more complicated, since
to obtain the history h′ we need at the same time to update
the zone profiles of X1 and X2 to the time j − 1 (remember
that a history element is from Externalzoneprofiles), then to
time j − 2 until we update it to time i. Thus, in some sense
the apply() and inσ() functions of the previous section are
done simultaneously for the non-local automata. Another
issue to solve is that in order to update the zone profile of,
say X1, we need the updated profiles of X0, X2. But these
need at the same time the updated profile of X1. However,
this will not be a problem because of the ordered condition
we impose to the automaton.

Lemma 15. Let Y be a zone partitioned into three consec-
utive zones X1, X,X2. Suppose that in time interval {i, . . . , j}
the labels of zone Y do not change. Then

history(X, {i, . . . , j})

is uniquely determined by

history(Y, {i, . . . , j}) Πj
X1

Πj
X2

Πj
X .

Let the operation that realizes the dependency of the
above lemma be denoted by

in : Histories → Externalzoneprofiles

→ Zoneprofiles → Histories.

That is, under the assumptions of the lemma we have

history(X, {i, . . . , j}) =

in (history(Y, {i, . . . , j})) (Πj
X1

) (Πj
X2

) (Πj
X).

6.3 The algorithm
The high level structure of the algorithm is the same as in

Section 5. We keep a tree of histories and update one branch
with each iteration, performing O(log(n)) operations. The
main difference is that we also retain the profiles of each of
the logarithmic zones, which become necessary to transfer a
history of a zone to a history of a smaller zone.

The history tree. We also maintain a structure as the one
showed previously. An instance D of the data structure
consists of the following labeling.

D.lastupdate : Logs → {0, . . . , k}
D.lastprofile : Logs → Zoneprofiles

D.history : Logs → Histories

Note that instead of using D.lastlabel and D.monoid we
have a D.lastprofile which contains the profile of the loga-
rithmic zone. In particular it contains the label and external
value for each node.

As before, we first compute a history tree for time k, then
for times k− 1 and so on, down to 0. We call a history tree
correct at time moment i ∈ {0, . . . , k} if conditions 1, 2, and
4 of the previous definition of correctness hold (with the new
notions of history) and

6. D.lastprofile(X) is the updated zone profile of X, i.e.,
after applying D.history(X) to it. Suppose that X ∈
Logs and let

j = D.lastupdate(parent(X)) and

Π = D.lastprofile(X) ,

then Π is equal to the zone profile Πj
X of X in the time

moment j. If X is the root, then it is the zone profile at
time moment i: D.lastprofile(X) = Πi

X .

Like with the algorithm of previous section we begin with
a history tree D0 that is correct for time moment i = k and
then for each time moment i = k−1, . . . , 0 the algorithm cal-
culates the history tree Di that is correct for time moment i.
The algorithm manipulates histories and zone profiles. Here
we use as black boxes the following operations on histories
that have unit cost in the algorithm.

empty concat apply in

emtpy and concat have the exact same definition as in the
previous section: the empty history and the concatenation
of histories. apply and in follow the definitions seen in Sec-
tion 6.2.

One states analogues of Lemmas 8 and 9 for the new set-
up, with the exact same statements, only with the new no-
tion of history tree. Then, one proves that the history op-
erations can be implemented in constant time, also using a
history congruence.

7. IMPROVEMENTS

7.1 Offline vs online
There are two ways of looking at the incremental evalua-

tion problem, when the input is a document evolution

w1, . . . , wk.

In the offline view, the algorithm begins its work once all of
the document evolution is known.

In the online view, the words of the document evolution
come one at a time, and the algorithm should do logarithmic
processing for each word, without knowing the words that
are going to come in the future.

Is our algorithm offline or online?
The answer depends on the order in which the words come,

or equivalently stated, the direction of time in the temporal

logic. As we had defined the temporal logic, time flows to the
right, with the first time moment being 1 and the last time
moment being k. As the reader will recall, our algorithm
begins by analyzing time k, then k − 1 and so on down to
1. An inspection of the algorithm reveals that operations
of the algorithm when doing step i do not depend on the
part of the document evolution w1, . . . , wi−1. Therefore, our
algorithm actually is an online algorithm, assuming that the
flow of time in the logic or automaton works in the opposite
direction as the development of the document evolution.

Summing up, our algorithm is online (i.e. it does a log-
arithmic computation per each new word of the document
evolution, and the computation does not depend of the words
that are about to come in the future) if the temporal logic
uses past operators on the time dimension, and not future
operators. Although future operators are more common in
temporal logics (which is why we defined the logic with fu-
ture operators), it seems that past operators might actually
be a better idea for the application at hand.

7.2 Insertion and deletion
In our evaluation algorithm we dealt with only one kind of

update operation: relabeling. In this section we show that
the algorithm still works if we allow insertions and deletions.

In the presence of insertions and deletions, one has to take
care to distinguish between a node and its distance from
the beginning of the word. For instance, suppose that we
start with a word a and then apply the operation “insert a
node with label b before the first position”. The resulting
document evolution is a, ba. However, the first and only
node in the word a corresponds to the second node in the
word ba, and not the first one.

To solve the issue presented above, we redefine a word as a
connected graph where every node has outdegree and inde-
gree at most one, and the nodes are labeled by letters from
the alphabet. This way, we can assume that every node has
a unique identifier, and the identifier does not change even
if the distance of the node from the beginning of the word
changes as a result of an insertion or deletion. A document
evolution is a sequence of such words, which share nodes
with the same identifiers.

Using identifiers, we adapt the semantics of the tempo-
ral and first order logic to document evolutions that include
insertions and deletions. In the first-order logic, the quan-
tifiers range over pairs (identifier/time), and not (distance
from beginning/time) pairs. In the temporal logic, a modal-
ity that stays in a node stays in an identifier. For instance,
the formula ¬Xt> says that the current node will be deleted
in the next time moment. Another example is the formula

Gt
`
(¬Xt>)⇒ a

´
,

which says that the label of the current node is a just before
it gets deleted (if it gets deleted).

Thanks to the insertion and deletion operations, we may
assume that an incremental document evolution begins in
an empty word.

Theorem 16. Suppose that, apart from label changes, we
also allow insertions and deletions as update operations. For
any fixed formula ϕ of the temporal logic, the incremental
evaluation problem can be solved in time O(k · log(k)), where
k is the number of updates.

The same online/offline remarks as in the previous section

apply to the algorithm above. That is, it works online if the
words are given in reverse order, or the temporal logic uses
past instead of future operators in the time dimension. (But
not both changes simultaneously.)

7.3 Trees
In the previous sections, we have described the evalua-

tion algorithm for ordered document update processing au-
tomata, assuming input document evolution was a sequence
of words. What about the trees?

Bounded depth trees. One solution is to reduce trees to
words. For a tree t, we define its word representation word(t),
which is like the text representation of an XML tree. If the
labels of t areA, then the labels of word(t) are {open, close}×
A. Every node of t corresponds to two nodes in w, one with
an opening tag and one with a closing tag. If the depth of
the tree is known in advance, and can be encoded in the
states of the automaton, then this representation can be de-
coded by document update processing automata, as stated
in the following lemma.

Lemma 17. Fix d ∈ N. For any document update pro-
cessing automaton on trees A, one can compute a document
update processing automaton on words Ad such that A ac-
cepts a document evolution (consisting of trees)

t̄ = t1, . . . , tk

if and only if Ad accepts the document evolution

word(t̄) = word(t1), . . . , word(tk),

provided all the trees in t̄ have depth at most d.

From the lemma above, it follows that all results on eval-
uation can be transferred from the bounded depth words to
bounded depth trees.

Unbounded depth trees. We believe that, after some mod-
ifications, our algorithm can actually work directly on trees,
without the need for the reduction t 7→ word(t). That is,
we believe that Theorem 16 holds for trees, without any re-
striction on the depth. The idea is to use forest algebra [7],
instead of monoids. Observe that this would improve the al-
gorithm of Balmin, Papakonstantinou and Vianu [4] in two
ways: first, a more general problem is considered, and second
the data complexity per update is improved from O(log2(n))
to O(log(n)). On the other hand, the query complexity of
our algorithm is very bad.

8. CONCLUSIONS
We have designed an algorithm for evaluating a logic that

inspects documents evolutions. The logic has operators that
travel in the time dimension, and operators that travel in the
space dimension. The algorithm works in time O(k · log(k))
where k is the length of the document evolution.

Below we list some topics for future work. We would like
to investigate a logic with past and future operators on the
time axis. We would also like to investigate a hybrid logic,
where quantifiers are used for the space dimension and tem-
poral operators are used for time dimension. Finally, we
would like to improve the query complexity of the algorithm,
possibly at the cost of using weaker logics.

9. REFERENCES
[1] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson,

Julien d’Orso, and Mayank Saksena. Regular model
checking for LTL(MSO). In CAV, volume 3114 of
Lecture Notes in Computer Science, pages 348–360.
Springer, 2004.

[2] Parosh Aziz Abdulla, Bengt Jonsson, Marcus Nilsson,
and Mayank Saksena. A survey of regular model
checking. In CONCUR, volume 3170 of Lecture Notes
in Computer Science, pages 35–48. Springer, 2004.

[3] Serge Abiteboul, Laurent Herr, and Jan Van den
Bussche. Temporal connectives versus explicit
timestamps to query temporal databases. J. Comput.
Syst. Sci., 58(1):54–68, 1999.

[4] Andrey Balmin, Yannis Papakonstantinou, and Victor
Vianu. Incremental validation of XML documents.
ACM Trans. Database Syst., 29(4):710–751, 2004.

[5] Denilson Barbosa, Alberto O. Mendelzon, Leonid
Libkin, Laurent Mignet, and Marcelo Arenas. Efficient
incremental validation of XML documents. In ICDE,
pages 671–682, 2004.

[6] Henrik Björklund, Wouter Gelade, Marcel Marquardt,
and Wim Martens. Incremental XPath evaluation. In
ICDT, pages 162–173, 2009.

[7] M. Bojańczyk and I. Walukiewicz. Forest algebras. In
Automata and Logic: History and Perspectives, pages
107–132. Amsterdam University Press, 2007.

[8] Miko laj Bojańczyk and Pawe l Parys. XPath evaluation
in linear time. In PODS, pages 241–250, 2008.

[9] Ghislain Fourny, Daniela Florescu, Donald Kossmann,
and Markos Zacharioudakis. A time machine for XML:
PUL composition. In XML Prague, 2010.

[10] David Gabelaia, Agi Kurucz, Frank Wolter, and
Michael Zakharyaschev. Products of ’transitive’ modal
logics. J. Symb. Log., 70(3):993–1021, 2005.

[11] Leonid Libkin. Logics for unranked trees: An
overview. Logical Methods in Computer Science, 2(3),
2006.

[12] Bernd-Holger Schlingloff. Expressive completeness of
temporal logic of trees. Journal of Applied
Non-Classical Logics, 2(2), 1992.

[13] Luc Segoufin. Automata and logics for words and trees
over an infinite alphabet. In CSL, pages 41–57, 2006.

APPENDIX
A. IMPORTANCE OF THE ORDER

In this section we provide some evidence that the order,
in ordered automata, is important. The evidence is the fol-
lowing implication: If we could evaluate document update
processing automata in time O(k · log(n)) without the or-
der assumption, then we would get an implausibly fast al-
gorithm for evaluating cellular automata. Consider a one-
dimensional cellular automaton, with cell colors C, given by
a function

f : (C ∪ {`})× C × (C ∪ {a})→ C .

We can extend this function in the natural way to configu-
rations

f : C∗ → C∗

Consider an input word w ∈ C∗ and a duration k ∈ N.
Suppose that we want to compute the value of the first cell
in the word fk(w). It seems unlikely that there is a better
algorithm than computing all the cells on which this cell de-
pends, which takes time O(k·n). The following lemma shows
that evaluating cellular automata can be reduced to evalu-
ating document update processing automata, and therefore
it is unlikely that the O(k · log(n)) works without the as-
sumption on order.

Lemma 18. Let f be a one-dimensional cellular automa-
ton f with cell colors C and let c ∈ C. One can compute a
document update processing automaton Af,c such that any
word w ∈ C∗, the automaton AC accepts the document evo-
lution

w̄ =

k-timesz }| {
w, . . . , w

if and only if fk(w) has c on the first cell position. In the
above, the word w is treated as a tree with a single path.

B. APPENDIX TO SECTION 5

B.1 Proof of Lemma 7
The history tree Dk is built bottom-up. We first define

Dk for all the leaves, and we continue by levels up to the
root.

We start with the singleton zones {x} for every node x
of wk. We define Dk.lastlabel({x}) = (a, F), where a is
the label of node x in wk and F is the set of accepting
states of the automaton. We define Dk.monoid({x}) =
α(a), Dk.lastupdate({x}) = k andDk.history({x}) = empty.

Once we have computed Dk for all the tree nodes of depth
at least l + 1 > 0, we compute the logarithmic zones of
depth l by combining pairs of logarithmic zones of depth
l + 1 in order, from left to right. For each such logarithmic
zone X we define Dk.lastupdate(X) = k, Dk.history(X) =
empty and Dk.monoid(X) to be the product of the monoid
elements of its children logarithmic zones.

B.2 Proof of Lemma 9
Suppose that the label of x in wi is a. Consider all the

logarithmic zones that contain x,

{x} = X1 (X2 (· · · (Xm

We first precompute the following information. For every
Xj we compute the external type σj of Xj in wi. This can
be done in linear time in m.

We iterate from X1 up to Xm making updates to the
history tree. We first start with X1 = {x}. We update
D′.lastlabel(x) to

apply(D′.history({x}))(a,R)

whereD′.lastlabel(x) = (a′, R). We also updateD′.monoid({x})
to α(a) and D′.lastupdate({x}) to i.

For any other Xj with j > 1 we proceed as follows. Sup-
pose Y is the right sibling ofXj−1, i.e. such that parent(Xj−1) =
parent(Y) = Xj and Y is to the left of Xj−1. We then up-
date D′.monoid(Xj) to

D′.monoid(Xj−1) ·D′.monoid(Y)

and D′.lastupdate(Xj) to i. Finally, we need to propa-
gate this changes by using the history on Y . We then
update D′.history(Y) to conc(D′.history(Y), τ) with τ =
in(D′.monoid(Xj−1),1)(σj), where σj is the already precom-
puted the external type of Xj in wi. A similar update oc-
currs if Y is a left sibling of Xj−1.

B.3 Proof of Lemma 11
To a history h we associate the mapping

τ ∈ Externals 7→ apply(inτ (h)) : A× P (Q)→ P (Q)

which we call its signature of h and denote by sigh.
Consider the equivalence relation on histories which con-

siders two histories equivalent if they have the same signa-
ture. There are finitely many equivalence classes because
there are finitely many signatures. We will prove that this
equivalence is a history congruence. We need to show the
following items.

• The signature of the concat(g, h) depends only of the
signatures of g and h.

τ ∈ Externals 7→
`
a ∈ A 7→ fa,τ)

where fa,τ : P (Q) → P (Q) is the composition of the
functions

sigh(τ)(a) : P (Q)→ P (Q) sigg(τ)(a) : P (Q)→ P (Q).

• The value of apply(h) depends only on the signature of
h. Indeed,

apply(h) = sigh(σ)

where σ is the empty external type (1, 1).

• For any external type σ, the value of inσ(h) depends
only on the signature of h. Indeed, the signature of
inσ(h) is the function

τ ∈ Externals 7→ sigh(inσ(τ)).

C. APPENDIX TO THE SECTION ON NON-
LOCAL TRANSITIONS

Proof of Lemma 12.
Given two zone profiles ΠX1 and ΠX2 with X1 and X2

consecutive zones, we write ΠX1 · ΠX2 for the zone profile
ΠX1∪X2 . This is an operation that depends solely on the
information contained in ΠX1 and ΠX2 .

ΠX1 ·ΠX2

def
= out(1,τ2)(ΠX1) ∪ out(τ1,1)(ΠX2)

where τ1 is the zone type of ΠX1 , and τ2 that of ΠX2 (these
are the monoid’s identity if the zones are empty), and out(τ1,τ2)(Π)
is defined as follows by induction on l of the type Zoneprofiles l
of Π. Assume Π ∈ Zoneprofiles,Πl ∈ Zoneprofiles l.

out(τ1,τ2)(Π)
def
= out(τ1,τ2)(Π

t)

out(τ1,τ2)(Π
1)

def
= {((τ1 · σ1, σ2 · τ2), ρ) | ((σ1, σ2), ρ) ∈ Π1}

out(τ1,τ2)(Π
l+1)

def
= {((τ1 · σ1, σ2 · τ2), ρ, f ′) | ((σ1, σ2), ρ, f) ∈ Πl+1,

f ′ = [(σ′1, σ
′
2) 7→ out(τ1,τ2)(f(τ1 · σ′1, σ′2 · τ2))]}

Proof of Lemma 15.
We give a rough idea of how in can be defined, which

realizes the dependency stated in the Lemma. Given a one-
element history h = (Πt,i+1

X1
,Πt,i+1

X2
) and Πt,i

Y1
,Πt,i

Y0
,Πt,i

Y2
three

consecutive zone profiles, we can calculate in(h)(Πt,i
Y1
,Πt,i

Y2
)(Πt,i

Y0
)

defined as

in(h)(Πt,i
Y1
,Πt,i

Y2
)(Πt,i

Y0
) = (Πt,i+1

X1
·Πt,i+1

Y1
,Πt,i+1

Y2
·Πt,i+1

X2
)

with

Π0,i+1
Y0

= Π0,i
Y0

Π0,i+1
Y1

= Π0,i
Y1

Π0,i+1
Y2

= Π0,i
Y2

τ l−1
0 = (Πl−1,i+1

X1
·Πl−1,i+1,

Y1
,Πl−1,i+1,

Y2
·Πl−1,i+1

X2
)

Πl,i+1
Y0

= updatel(τ
l−1
0)(Πl,i

Y0
)

τ l−1
1 = (Πl−1,i+1

X1
,Πl−1,i+1,

Y0
·Πl−1,i+1,

Y2
·Πl−1,i+1

X2
)

Πl,i+1
Y1

= updatel(τ
l−1
1)(Πl,i

Y1
)

τ l−1
2 = (Πl−1,i+1

X1
·Πl−1,i+1

Y1
·Πl−1,i+1,

Y0
,Πl−1,i+1

X2
)

Πl,i+1
Y2

= updatel(τ
l−1
2)(Πl,i

Y2
)

for every l ∈ {1, . . . , t}. This definition can be extended to
any number of history items by iterating the above defini-
tion.

C.1 The algorithm
As stated in Section 6.3, we show that the analogues of

Lemmas 8 and 9 hold for the new notion of history tree.

Lemma 19. Let Di be a history tree that is correct for
time i. Let x be a position. We can compute a history tree
D′i that is also crrect for time i and which is up to date at
x. This computation can be done in time log(n), assuming
the history operations have unit cost.

Proof. In our structure, in order to make a position x
at time i up to date, we first find the biggest logarithmic
zone X 3 x such that it is not up to date, i.e., such that
Di.lastupdate(X) > i. Suppose Y and Y ′ are the children
logarithmic zones of X. By

in(D.history(X), (∅, D.lastprofile(Y ′)), D.lastprofile(Y))

we obtain the history hY and we define

D.history(Y) = conc(D.history(Y), hY)

and by

in(D.history(X), (D.lastprofile(Y), ∅), D.lastprofile(Y ′))

we obtain the history hY ′ and we define

D.history(Y ′) = conc(D.history(Y ′), hY ′).

Now we define

D.lastprofile(Y) = apply(hY)(D.lastprofile(Y))

and

D.lastprofile(Y ′) = apply(hY ′)(D.lastprofile(Y ′)) .

If X = {x}, we apply the history to the label of x, and define

D.lastlabel(X) = apply(D.history(X))(D.lastlabel(X)) .

Now X is up to date, and we set D.lastupdate(X) = i and
D.history = empty. We iterate at most O(log(n)) times
(i.e., the height of the logarithmic tree) to arrive to the de-
sired state of our structure, where x is up to date.

Lemma 20. Let x be the position where wi+1 differs from
wi. Let D′i+1 be a history tree that is correct for time i and
up to date at x. We can compute a data structure Di that is
correct for time wi. This computation can be done in time
log(n), assuming the history operations have unit cost.

Proof. Consider X1, . . . , Xm the logarithmic zones such
that

• X1 ∪ · · · ∪Xm = {1, . . . , n},
• Xj and Xj+1 are consecutive zones for every j < m,

• there exists some Xr = {x},
• m is minimal.

Then m ≤ log(n). Note that from D′i+1 we have that
D′i+1.lastprofile(Xj) = Πi+1

Xj
for every j ∈ {1, . . . ,m}, this is

granted by D′i+1 being updated for all logarithmic zones con-
taining x at time i+1. Given Πi+1

X1
, . . . ,Πi+1

Xm
and Πi

Xr
we ob-

tain Πi
X1 , . . . ,Π

i
Xm

using the update operation. This is done
in O(m). To obtain Di we modify each D′i+1.lastprofile(Xj)
to Πi

Xj
and D′i+1.history(Xj) to conc(D′i+1.history(Xj), τ),

with

τ = (Πi+1
X1
· · · · ·Πi+1

Xj−1
,Πi+1

Xj+1
· · · · ·Πi+1

Xm
)

These external zone profiles can be computed in O(m). We
first compute Πi+1

X1
· · · · · Πi+1

Xj
for all j in one pass, starting

from j = 1 up to j = m, and then all Πi+1
Xj
· · · · · Πi+1

Xm

from j = m to j = 1 in another pass. Finally, we set
D′i+1.lastupdate(Y) = i for all Y 3 x.

C.2 Constant time implementation of non-local
histories

In a very similar way as for the section on local transitions,
we give a congruence of finite index over Histories.

empty ∈ Histories

concat : Histories ×Histories → Histories

apply : Histories → Zoneprofiles2 → Zoneprofiles2

in : Histories → Externalzoneprofiles

→ Zoneprofiles → Histories

We define a history congruence such that whenever h ∼ h′

concat(g, h) ∼ concat(g, h′) for all g ∈ Histories

concat(h, g) ∼ concat(h′, g) for all g ∈ Histories

apply(h) = apply(h′)

in(h)(τ)(Π) ∼ in(h′)(τ)(Π)

for all τ ∈ Externalzoneprofiles,

Π ∈ Zoneprofiles

Lemma 21. There is a history congruence where the num-
ber of equivalence classes is finite and depends only on the
automaton, and not its input (not on n or k).

Proof. To a history h we associate the signature of h

sigh : Zoneprofiles2 → Zoneprofiles → Zoneprofiles

The idea is that a history signature sigh describes, for a
given zone X, how to split the history into two smaller zones
Y ⊆ X. In order to do this, we need the zone profiles of the
environment of Y in X. Let Y1 and of Y2 be the left and
right environment, such that Y1 ∪ Y ∪ Y2 = X, and let Π1,
Π2 be the two respective zone profiles of Y1 and Y2. Then
sigh(Π1,Π2) is defined as the result of applying the history
that corresponds to Y on Π.

sigh(Π1,Π2)(Π) = apply(in(h)(Π1,Π2)(Π))(Π)

Consider the equivalence relation on histories which con-
siders two histories equivalent if they have the same signa-
ture. There are finitely many equivalence classes because
there are finitely many signatures. We will prove that this
equivalence is a history congruence. We need to show the
following items.

• The signature of the concat(g, h) depends only of the
signatures of g and h.

Π1,Π2 7→ Π 7→ sigg(Π
′
1,Π

′
2)(Π)

where Π′ = sigh(Π1,Π2)(Π) ,

Π′1 = sigh(∅,Π ·Π2)(Π1) and

Π′2 = sigh(Π1 ·Π, ∅)(Π2) .

• The value of apply(h) depends only on the signature of
h. Indeed,

apply(h) = sigh(∅, ∅)

since in(h)(∅, ∅)(Π) = h.

• The value of in(h) depends only on the signature of h.
Indeed, the signature of in(h)(Π1,Π2)(Π) is the func-
tion

(Π′1,Π
′
2) 7→ Π′ 7→ sigh(Π1 ·Π′1,Π′2 ·Π2)(Π′)

D. APPENDIX TO SECTION 7

D.1 Proof of Theorem 16
The basic idea is to rebalance the history trees.
Since the set of positions changes dynamically, our notion

of logarithmic zone will change. A decomposition into zones,
as in the logarithmic zones, will be called a zone tree. A zone
tree for a word w is a family X of zones in w subject to the
following conditions.

• Every two zones in X are disjoint or one is included in
the other.

• The zone with all nodes of the word belongs to X .

• Every singleton zone belongs to X .

• Every non-singleton zone in X is a union of two zones
in X .

There is a natural tree structure on a zone tree, which we
use to talk about things like children zones or the height of
a zone tree. The family of logarithmic zones is a special case
of a zone tree, which has logarithmic height.

We now show how to adapt the evaluation algorithm to
take into account insertion and deletion operations. Suppose
that we have an incremental document evolution

w1, . . . , wk

where the update operations are insertions, deletions and
relabelings. Without loss of generality, we assume that wk
is empty. Our algorithm will process the evolution from last
word to first word. We will compute:

• Zone trees X1, . . . ,Xk for the words w1, . . . , wk of height
at most O(log(k)). These zone trees are balanced in the
sense of AVL trees: for every two siblings, the difference
in depths of their subtrees is in {−1, 0, 1}. Because the
last word wk is empty, the zone tree Xk is empty, too.

• History trees D0, . . . , Dk−1, such that Di is correct in
time i, with Xi+1 playing the role of the logarithmic
intervals.

Maintaining the zone trees. We begin with describing the
zone trees X1, . . . ,Xk. Suppose that we have the zone tree
Xi+1 and we want to compute the zone tree Xi. If the words
wi+1 and wi have the same positions, then we do not need
to do anything. Suppose that wi has a position x, that does
not appear in wi+1 (i.e. there is a deletion between wi and
wi+1). The insertion case is done the same way. Let y be a
position adjacent to x (to the left or right, does not matter).
To all the zones in Xi+1 that contain y we add position x,
and then we add two singletons {x} and {y}. Now we need
to rebalance the tree.

As is known from AVL trees, rebalancing requires a log-
arithmic number of rotations. What is a rotation in the
case of zone trees? We say a zone tree X ′ is obtained from a
zone tree X by a right rotation, if there are three consecutive
zones X1, X2, X3 in the zone tree X such that

X ′ = X − (X1 ∪X2) ∪ {X2 ∪X3}.

In particular, a right rotation removes one zone and adds
another. A left rotation is the inverse operation.

The key property of the zone trees is as follows: the zone
tree Xi is obtained from the zone tree Xi+1 by first removing
O(log(k)) zones, and then adding O(log(k)) zones.

Maintaining the history trees. We now give a very rough
sketch of how the history trees are maintained. Suppose that
we have computed Di and we want to compute Di−1. The
history tree Di+1 consists of mappings defined on the zones
from Xi+1, and the history tree Di consists of mappings
defined on the zones from Xi.

Consider the case when wi has a position x, that does not
appear in wi+1. The case of an insertion from wi to wi+1 is

done the same way, and the case of relabeling was already
studied.

Using the non-local version of Lemma 8, we prepare Di
so that all of the zones from Xi+1 −Xi are up to date. This
requires time logarithmic in the depth of the history tree.
We now need to define the zone profile of the zone {x} in
Di−1. Since the node is new (i.e. it does not exist in wi+1)
and because the zone has one element, this zone profile is
easy to compute (actually, the zone profile a new singleton
zone is always the same). We are still missing the zone
profiles assigned to the zones of Xi − Xi+1. These can be
built using the concatenation operation from Lemma 12.

	Introduction
	Two logics
	Evaluation
	An automaton model
	Local ordered automata
	The history toolkit
	The algorithm
	A constant time implementation of histories

	Non-local ordered automata
	Preliminaries
	Histories
	The algorithm

	Improvements
	Offline vs online
	Insertion and deletion
	Trees

	Conclusions
	References

