Definability equals recognizability
for graphs of bounded treewidth *

Mikotaj Bojariczyk

Michat Pilipczuk

Institute of Informatics, University of Warsaw

{bojan,michal.pilipczuk}@mimuw.edu.pl

Abstract

We prove a conjecture of Courcelle, which states that a graph
property is definable in MSO with modular counting predicates
on graphs of constant treewidth if, and only if it is recognizable in
the following sense: constant-width tree decompositions of graphs
satisfying the property can be recognized by tree automata. While
the forward implication is a classic fact known as Courcelle’s
theorem, the converse direction remained open.

Categories and Subject Descriptors F.4 [Theory of Computation)]:
Mathematical Logic and Formal Languages

Keywords treewidth, tree decomposition, Monadic Second-Order
Logic, recognizability, Simon’s factorization forest

1. Introduction

Classical results of Biichi, Trakhtenbrot and Elgot say that for finite
words, languages recognised by finite automata are exactly those
definable in Monadic Second-Order logic MSO. Courcelle’s theo-
rem shows the right-to-left inclusion holds for graphs of bounded
treewidth: if a property of graphs can be defined in MSO with quan-
tification over edge subsets and modular counting predicates —
henceforth called counting MSO on graphs — then for every k there
is a tree automaton recognising tree decompositions of width k of
graphs satisfying the property. A corollary is that model checking
counting MSO on graphs of constant treewidth can be done in linear
time, which is one of the foundational results in parameterized com-
plexity. For more details, we refer the reader to the monograph of
Courcelle and Engelfriet [7] devoted to MSO on graphs.
Courcelle’s theorem, stated as above, generalizes only one
direction of the equivalence between MSO and automata. The
converse question is whether one can use counting MSO to define any
property of graphs that is recognizable for constant treewidth, where
recognizability is defined by, say, the finiteness of the index of an
appropriate Myhill-Nerode relation. In the case of words (or trees),

*M. Bojannczyk is supported by the ERC Consolidator Grant LIPA. This
work was partially done while Mi. Pilipczuk held a post-doc position at
Warsaw Centre of Mathematics and Computer Science. Mi. Pilipczuk is
also supported by the Foundation for Polish Science (FNP) via the START
stipend programme.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissi .org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

LICS ’16, July 05-08, 2016, New York, NY, USA

Copyright (© 2016 held by owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4391-6/16/07. .. $15.00

DOI: http://dx.doi.org/10.1145/2933575.2934508

this is the ‘easy’ direction: a formula of MSO can guess an accepting
run of an automaton, by labelling nodes with states. Surprisingly,
the generalization of this implication to graphs of constant treewidth
remained open for the last 25 years.

This problem, known as the Courcelle’s conjecture, was initially
formulated by Courcelle in the very first paper of his monumental
series The monadic second-order logic of graphs [4]. The fifth paper
of the series [5] is entirely devoted to its investigation and contains a
proof for graphs of treewidth 2. Since then, the conjecture has been
confirmed for graphs of treewidth 3 [12], for k-connected graphs of
treewidth k [12], for graphs of constant treewidth and chordality [1],
and for k-outerplanar graphs [10]. There were also two claims of a
significant progress on the general case. First, Kabanets [11] claimed
a proof for graphs of bounded pathwidth, and then a resolution of
the full conjecture was claimed by Lapoire [14]. Unfortunately, both
these works are published only as extended conference abstracts,
and no verified journal version has appeared. The proofs of Kabanets
and Lapoire are widely regarded as unsatisfactory; cf. [1, 7, 8, 10].
In particular, the problem is stated as open both in the monograph
of Courcelle and Engelfriet [7] and of Downey and Fellows [8].

The issue at the heart of Courcelle’s conjecture is that an MSO
formula is applied to the graph alone, without access to any pre-
defined tree decomposition. Hence, one cannot simply guess a run
of a tree automaton, because there is no tree. As Courcelle puts it
in [5], It is not clear at all how an automaton should traverse a
graph. A “general” graph has no evident structure, whereas a word
or a tree is (roughly speaking) its own algebraic structure. Hence,
the natural approach to proving the conjecture is to find, using MSO
and the graph structure only, some tree decomposition of bounded
width. This strategy, proposed by Courcelle [5], was used in all the
previous work on Courcelle’s conjecture. We also use this strategy.

Our main result is that there exists an MSO transduction that,
given a graph of treewidth k encoded as a relational structure,
outputs an encoding of a tree decomposition of width f(k), for
some function f. Informally speaking, an MSO transduction guesses
existentially a number of vertex and edge subsets, and based on them
defines a tree decomposition. Different guesses may lead to different
decompositions, but provided the input graph has treewidth at most
k, the output for at least one guess will be a tree decomposition of
width bounded by f (k). The precise statement is in Section 2.2.

Acknowledgment. We would like to thank Christoph Dittmann
and Stephan Kreutzer for many helpful discussions.

2. Overview

The main technical result of this paper, stated in Theorem 2.4, is
that using MSO one can compute a tree decomposition of a graph.
This section describes the proof plan. We explain what it means to
compute something in MSO, and divide Theorem 2.4 into lemmas.

2.1 Tree decompositions

In this section we define tree decompositions and show how we
represent them for the purposes of MSO. Similar formalisms were
used in the previous works, cf. [5, 10, 12], but we choose to introduce
our own language for the sake of being self-contained.

Logical terminology. Define a vocabulary to be a set of relation
names with associated arities (we do not use functions or constants).
A logical structure over a vocabulary consists of a universe supplied
with interpretations of relations in the vocabulary. We use logical
structures to model things like graphs and tree decompositions.

Graphs as logical structures. We model (undirected) graphs as
logical structures, where the universe consists of both vertices
and edges, and there is a binary incidence relation incident(v, e)
which says when a vertex v is incident with an edge e. The
edges can be recovered as those elements of the universe that are
second arguments of the incidence relation, and the vertices can be
recovered as those elements of the universe that are not edges. We
do not allow multiple edges connecting the same pair of vertices,
i.e., all graphs considered in this work are simple, unless explicitly
stated. We choose this encoding so that set quantification in MSO
can capture sets of edges as well.

Tree decompositions. We begin by defining tree decompositions.
Define an in-forest to be an acyclic directed graph where every node
has outdegree at most one. We use the usual tree terminology: root,
parent, and child. Every connected component of an in-forest is a
tree with exactly one root (vertex of outdegree zero).

Definition 2.1. A tree decomposition of a graph G is an in-forest ¢
whose vertices called nodes, and a labelling of the nodes by sets of
vertices in G, called bags, subject to the following conditions:

e for every edge e of GG, some bag contains both endpoints of e;
e for every vertex v of G, the set of nodes in ¢ that are labelled by
bags containing v is nonempty and connected in ¢.

Note two minor changes with respect to the classic definition:
tree decompositions are rooted, and we allow them to be forests,
instead of just trees. Both changes are for convenience only and
bear no significance for our results. We write z, y, z for nodes and
u, v, w for vertices. Below we introduce some terminology for tree
decompositions, inspired by Grohe and Marx [9].

Definition 2.2. Let z be a node in a tree decomposition . The
adhesion of x is the intersection of the bags of z and its parent; if x
is a root the adhesion is empty. The margin of x is its bag minus its
adhesion. The cone of x is the union of the bags of the descendants
of x, including . The component of x is its cone minus its adhesion.
If the decomposition ¢ is not clear from the context, we write t-cone,
t-adhesion, etc.

Note that the margins of the nodes of a tree decomposition form
a partition of the vertex set of the underlying graph.

A path decomposition is the special case when the forest is a set
of paths. The width of a tree or path decomposition is the maximum
size of its bags, minus 1. The treewidth of a graph is the minimum
possible width of its tree decomposition, likewise for pathwidth.
The treewidth and pathwidth of a graph G are denoted by tw(G)
and pw(G), respectively.

Tree decompositions as logical structures. A tree decomposition
is represented as a logical structure as follows. The universe of the
logical structure consists of the vertices and edges of the underlying
graph, plus the nodes of the tree decomposition. The vocabulary,
which we call the vocabulary of tree decompositions, consists of:

node incident bag parent
——

a unary predicate binary predicates

The predicate incident describes the incidence relation in the under-
lying graph. The predicate node(x) says that z is a decomposition
node, bag(v, z) says that vertex v is in the bag of node x, and
parent(z, y) says that node x is the parent of node y.

MSO interpretations. We now define what it means to produce a
tree decomposition (or some other structure) using MSO. We do this
by using three types of basic operations on logical structures defined
below, called copying, coloring, and interpreting. All three types
describe binary relations on logical structures: copying is a function,
coloring is a relation, and interpreting is a partial function.

1. Copying. Define the k-copy of a logical structure 2 to be k
disjoint copies of 2, with the following fresh predicates added
to the vocabulary:

copy(a,b) , layer,(a), ..., layer,(a).

The binary predicate copy checks whether two elements are
copies of the same element of the original structure, whereas the
unary predicate layer, checks whether an element belongs to the
i-th copy (called also the ¢-th layer).

2. Coloring. Define an k-coloring of a structure 2l to be any
structure obtained from 2(by adding new unary predicates
Xi,..., X to the vocabulary and interpreting them as any
subsets of the universe.

3. Interpreting. The syntax of an interpretation consists of an input
vocabulary 3., an output vocabulary I" and a family of MSO
formulas

{Wdom7 Wuniv} @] {Q@R}REI’V

over the input vocabulary ¥. The formula ¢4om has no free
variables, the formula sy has one free variable, and each
formula ¢ r has as many free variables as the arity of R. The free
variables in all of these formulas range over elements, not sets of
elements. If 2{ is a logical structure over the input vocabulary >
that satisfies ¢4om, we define the output logical structure, which
is over the output vocabulary I, as follows. The universe is the
universe of 2l restricted to elements satisfying ¢uniy and each
relation R of the output vocabulary is interpreted as those tuples
in the universe which make ¢r true. If p4om is not satisfied in
2, then the output of the interpretation is undefined.

Definition 2.3. An MSO transduction is a finite composition of
the three types of operation defined above (treated as relations be-
tween logical structures), together with prescribed input and output
vocabularies. If coloring is not used, we talk about a deterministic
MSO transduction. If Z is an MSO transduction, and 2/ is a structure
over the input vocabulary, then by Z(2() we denote the output of Z,
defined as the set of all structures over the output vocabulary that
are in relation defined by Z with 2.

The definition above is equivalent to the one in [6]; this equiva-
lence follows from [6, Theorem 1.39]. The crucial property of MSO
transductions is the Backwards Translation Theorem [6, Theorem
1.40], which says that if Z a MSO transduction and v is an MSO
sentence over the output vocabulary, then

{2 : at least on structure in Z(2l) satisfies 1)}

is a set of structures over the input vocabulary that is definable in
MSO. Using this result, we may apply MSO transductions to enrich
the input structure with MSO-definable objects, and any property
that can be defined in MSO afterwards, can be also defined directly
in the input structure.

2.2 The main result

We are now ready to state our main technical result, which says that
an MSO transduction can compute tree decompositions for graphs

of bounded treewidth. We use the name transduction from graphs
to tree decompositions if the input vocabulary is the vocabulary of
graphs {incident(z, y)} and the output vocabulary is the vocabulary
of tree decompositions defined previously.

Theorem 2.4. There is a function f: N — N such that for every
k € N there exists an MSO transduction I from graphs to tree
decompositions, such that every graph G satisfies:

(1) Every output Z(G) represents a tree decomposition of G of
width at most f (k).
(2) If G has treewidth at most k, then the output Z(G) is nonempty.

We actually believe that a stronger variant of the above theorem
holds, with f being the identity. In other words, we believe that
there is an MSO transduction which inputs a graph of treewidth k,
and produces a tree decomposition of width k. In order to prove
the stronger version, it would be sufficient to show that for every
k < K/, there is an MSO transduction which realizes the following
task: given a tree decomposition of width k', produce, if possible,
a tree decomposition of width k for the same graph. Our idea for a
proof of this statement is to take a closer look at the algorithm of
Bodlaender and Kloks [2] that solves exactly this task, and try to
simulate it using a deterministic MSO transduction. We expand this
topic in the concluding section of the full version of the paper.

The proof of Theorem 2.4 consists of two steps, described below.

The special case of bounded pathwidth. The first step is to prove
a weaker variant of the theorem. This variant has exactly the
same statement, except that in condition (2) the assumptions are
strengthened to requiring that the pathwidth of the graph is at most k.
This weaker variant, Lemma 2.5 below, is proved in Section 4.

Lemma 2.5. There is a function f: N — N such that for every
k € N there exists an MSO transduction L from graphs to tree
decompositions, such that every graph G satisfies:

(1) Every output Z(G) represents a tree decomposition of G of
width at most f (k).
(2) If G has pathwidth at most k, then the output T(QG) is nonempty.

There are two crucial ingredients in the proof of Lemma 2.5.

The first ingredient is that for path decompositions, we can use
semigroup theory. Specifically, we use Factorisation Forest Theorem
of Imre Simon [15]. The application of this result is the cornerstone
of our approach, and it enables us to recursively decompose any
graph of pathwidth & into constant-size pieces using only f (k) levels
of recursion — a number that depends on k alone, and not on the
size of the graph. Lemma 2.5 then follows by verifying that each
level incurs a fixed blow-up of the width of tree decompositions that
we are able to describe in MSO.

The second ingredient is the definition of a guidance system,
which is a combinatorial object used to describe additional struc-
ture in a graph, e.g., a tree decomposition, in a way that can be
guessed by an MSO transduction. Guidance systems are introduced
in Section 3, and are used throughout the whole paper to describe
“MSO-guessable” tree decompositions.

Tree decompositions with bags of bounded pathwidth. In the
second step, presented in Section 5, we show that there is an MSO
transduction which inputs a graph of treewidth at most k, and
outputs a tree decomposition of the graph where the bags are maybe
arbitrarily large, but have pathwidth bounded by 2k + 1, in the
following sense. For a node «x in a tree decomposition ¢, define its
marginal graph to be subgraph of the underlying graph induced
by the margin of x, with edge uv added for every pair of vertices
{u, v} that appear together in the adhesion of some child node of .

Lemma 2.6. For every k € N, there exists an MSO transduction B
from graphs to tree decompositions such that for every graph G the
following holds:

(1) Every output B(G) represents a sane tree decomposition of G.

(2) If G has treewidth at most k, then B(G) contains at least one
tree decomposition where all marginal graphs have pathwidth
at most 2k + 1.

In Lemma 2.6 we use a technical notion of a sane tree decompo-
sition, which is defined below.

Definition 2.7. A tree decomposition ¢ of a graph G is called sane
if the following conditions are satisfied for every node x:

(a) the margin of x is nonempty;

(b) the subgraphs induced in G by the cone of = and by the
component of = are connected;

(c) every vertex of the adhesion of = has a neighbor in the compo-
nent of x.

Intuitively, saneness means that the decomposition respects the
connectivity of subgraphs corresponding to its subtrees. Indeed, it
is straightforward to see from the definition, that all the marginal
graphs of a sane decomposition are nonempty and connected. A
similar notion of internal connectivity was used by Lapoire [14].
The following lemma, which may be considered folklore, shows
that any tree decomposition can be sanitized. The lemma is colored
red because its proof is deferred to the full version, we use this
convention throughout this extended abstract.

Lemma 2.8. Suppose t is a tree decomposition of a graph G. Then
there exists a sane tree decomposition s of G where every bag in
s is a subset of some bag in t. In particular, if tw(G) < k, then G
admits a sane tree decomposition of width at most k.

Proof of Theorem 2.4. The proof of Theorem 2.4 is a combination
of Lemmas 2.5 and 2.6. This requires some technical care, but does
not involve any substantially new ideas; a complete proof is in the
full version of the paper.

2.3 Courcelle’s conjecture

In this section we use Theorem 2.4 to prove the conjecture of
Courcelle mentioned in the introduction. We use a syntax slightly
different than Courcelle.

Definition 2.9. Define an interface graph to consist of an arity
k € N, an underlying graph G called the underlying graph and
an interface mapping, which is an injective partial function from
{1,2,...,k} to vertices of the underlying graph. If image of
1 € {1,2,...,k} under the interface mapping is defined, it is called
the ¢-th interface vertex. Then ¢ is the name of this interface vertex.

Interface graphs of arity k are called k-interface graphs. If G and
H are k-interface graphs, then their gluing G @ H is the k-interface
graph defined as follows. The underlying graph is the disjoint union
of the two underlying graphs, with the interface vertices having
the same names in G and H being fused. In other words, for any
name ¢ € {1,2,...,k} that is used both in G and in H (i.e. is in
the intersection of the domains of the interface mappings), we fuse
the corresponding ¢-th interface vertices in G @ H. If this process
creates any parallel edges, we remove the duplicates. The names of
the interface vertices in G @ H are inherited from the arguments.
We illustrate this definition with the following example:

2
e X

— \ ./ ?
\ \
e
N
In Courcelle’s syntax from [5], the gluing essentially corresponds
to substituting H for the hyperedge consisting of the interface
vertices inside G.

Recognisability. Let 11 be a property of graphs. We say that two
k-interface graphs G and G2 are Il-equivalent if

G1 @ H satisfies I1 iff Go @ H satisfies II.

holds for every k-interface graph H. This is an equivalence relation
on k-interface graphs. If there are finitely many equivalence classes,
then we say that II is k-recognisable. Finally, we say that II is
recognisable if it is k-recognisable for every k. This is equivalent to
Definition 1.12 in [5].

Courcelle’s conjecture. In what follows, we consider the logic
counting MSO which is the extension of MSO on graphs by predicates
of the form “the size of set X is divisible by m” for every constant m.
The following result was stated as Conjecture 1 in [5].

Theorem 2.10. If a property of graphs that have treewidth bounded
by a constant is recognisable, then it is definable in counting MSO.

As mentioned in the introduction, the converse implication
was proved by Courcelle in [4]. In his later work [5], Courcelle
proposed the following approach to proving Theorem 2.10. Call
a property of graphs I1 strongly context-free if (informally), given
any graph G from II, some constant-width decomposition of G can
be nondeterministically defined in MSO. If we prove that the class
of graphs of treewidth k is strongly context-free (which is stated
as Conjecture 2 in [4]), then Theorem 2.10 would follow from the
following lemma.

Lemma 2.11. Let k € N and let I1 be a k-recognisable property of
graphs. There is a formula of counting MSO over the vocabulary of
tree decompositions which is true in exactly those structures which
represent a tree decomposition of width k where the underlying
graph satisfies 11.

Lemma 2.11 is essentially proved in [5] (cf. Theorem 4.8
therein); for completeness we give a proof adjusted to our notation
in the full version of the paper. The statement that the class of graphs
of treewidth at most £k is strongly context-free is, up to insignificant
differences in definitions, equivalent to our Theorem 2.4. Hence, we
can complete the proof of Theorem 2.10 as Courcelle suggested.

Proof of Theorem 2.10. Let 11 be a property of graphs of treewidth
at most k. Apply Theorem 2.4 to k, yielding an MSO transduction,
which maps graphs of treewidth at most & to tree decompositions
of width at most f (k). Apply Lemma 2.11 to f(k) and the property
II, yielding a formula of counting MSO which tests II on tree
decompositions of width at most f (k). The result follows by using
the Backwards Translation Theorem. O

We believe that a stronger statement holds, namely: if IT is a
property of graphs of treewidth k, then already being k-recognisable
implies definability in counting MSO. This claim would follow from
the stronger version of Theorem 2.4 described after its statement.

3. Guidance systems

In this section, we introduce guidance systems. The definition is a
variant of the guidance systems defined in [3]. Guidance systems

are used in the proofs of Lemmas 2.5 and 2.6, which are found in
Sections 4 and 5.

Definition 3.1. A guidance system A over a graph G is a family of
in-trees (i.e. connected in-forests), where each in-tree is obtained by
orienting the edges of some subgraph of GG. For a vertex u, define

A(u) = {v : some tree from A contains v and has root v}.

A coloring of a guidance system is an assignment of trees to colors
so that trees with the same color have disjoint vertex sets.

Example 3.2. Let G be an undirected cycle of length six, with
vertices called {0, 1,...,5}, and edges being neighbor modulo 6.
Consider the following guidance system

A={u—u+l—-u+2:ue{0,...,5}}

where addition is modulo 6. This guidance system is 3-colorable:

color 1 @\
LA %

color 2

T,

For this guidance system,

A(u) = {u,u+1,u+2 mod 6} foru € {0,...,6}.

Guidance system are used to recognize sets of vertices in a graph,
in the sense defined below.

Definition 3.3. Let G be a graph. A set of vertices X is said to be
captured by a vertex u in a guidance system A if X C A(u) holds.
A family of sets of vertices is said to be captured by A if each set is
captured by some vertex.

From adhesions to a tree decomposition. In Lemma 3.4 below,
we show that in order to produce a sane tree decomposition with
an MSO interpretation, it suffices to capture all its adhesions with
a bounded number of colors. Note that in the lemma below we
do not restrict the sizes of bags in the tree decompositions; e.g., a
decomposition with all vertices in one bag has no adhesions and
therefore falls into the scope of the lemma.

Lemma 3.4. For every k € N there is an MSO transduction from
graphs to tree decompositions which maps every graph G to all
sane tree decompositions of G whose family of adhesions can be
captured by a k-colorable guidance system over G.

The proof of Lemma 3.4 is actually quite non-trivial. We use
the connectivity conditions given by saneness in order to be able to
guess the bags of a sane tree decomposition. Also, instead of the
original graph, we need to work with the graph obtained by turning
all adhesions into cliques. This structure can be constructed by an
MSO transduction which guesses a guidance system that captures
all the adhesions. The fact that the guidance system can be colored
using few colors is necessary for it to be guessable in MSO.

Stability under small modifications. In Lemma 3.5 below, we
show that the number of colors needed to capture a family of sets by
a guidance system is stable under removing or adding vertices. If G
is a graph, we write G — u for the subgraph induced by removing u
from the vertices.

Lemma 3.5. Let G be a graph, let X be a family of subsets of
vertices, and let u be a vertex.

(1) If every set in X is contained in some connected component of

G and

X—u¥ (X - {ul:Xex}
is captured by a k-colorable guidance system over G, then X is
captured by a (k + 1)-colorable guidance system over G.

(2) If every set from X is contained in some connected component
of G — wand X is captured by a k-colorable guidance system
over G, then X is captured by a 2k-colorable guidance system
over G — u.

4. Graphs of bounded pathwidth

In this section we prove Lemma 2.5, which says that an MSO
transduction can transform a graph of bounded pathwidth into a tree
decomposition. Our proof relies on the guidance systems defined in
the previous section. We first outline the plan. In Section 4.1, we
define a graph parameter called guided treewidth. In Section 4.2 we
show that bounded pathwidth implies bounded guided treewidth. A
combination of this result with the fact that guidance system can be
expressed in MSO (Lemma 3.4) yields Lemma 2.5.

4.1 Guided treewidth

The following definition can be seen as a new graph parameter.

Definition 4.1. Define the guided treewidth of a graph G, denoted
by gtw(G), to be the smallest k& such that there exists a tree
decomposition of G where all bags are captured by some k-colorable
guidance system over G.

Note that if a bag is captured by a k-colorable guidance system,
then it has size at most k. Hence, the guided treewidth of a graph is
an upper bound on its treewidth. Since adhesions are contained in
bags, tree decompositions whose bags are captured by a k-colorable
guidance system fall into the scope of Lemma 3.4, and can be
produced by an MSO transduction.

The goal of this section is to show that bounded pathwidth
implies bounded guided treewidth, and therefore, by the above
discussion, tree decompositions of graphs of bounded pathwidth can
be produced by an MSO transduction. To illustrate guided treewidth,
we show an example where a poorly chosen tree decomposition
needs a large number of colors to be captured.

Example 4.2. Consider a cycle with vertices {1, ..., 2n}. For this
cycle, consider a path decomposition with n — 1 bags, where the
i-th bag contains vertices ¢, ¢ + 1, 2n — ¢, and 2n — ¢ + 1. A picture
for n = 5 is in the left panel of the figure below:

(2) bag1
(3) bag2
© © (4) bag3
bag 1
bag 4
oo () 9
bag 2 (1) (6) bag5s
© © (7) bagé6
bag 3 ®
bag 7
oo ?
bag 4 (9 bag8
Q& (9 bag9

The path decomposition above has suboptimal width, but could be
made optimal by adding a clique of size 4 to the graph. It is easy to
see that any guidance system capturing this decomposition requires
a number of colors that is linear in n, because such a guidance

system has to contain a set of trees of linear size that all share one
of the arcs (v1, van), (Van, V1), (Vn, Unt1), OF (Vnt1,Un).

To fix the problem we use a different path decomposition, with
2n — 2 bags, such that the u-th bag contains {1, u,u + 1}. This
decomposition is depicted in the right panel of the figure above. To
capture its bags, we use a 3-colorable guidance system colorable.
The first color is used to describe a directed path

2—+3—--—=2n—1

The remaining two colors are used alternately to connect each vertex
with its successor, similarly as in Example 3.2. Concluding, each
cycle admits a tree (even path) decomposition that can be captured
by a 3-colorable guidance system.

In the next section, we strengthen the result from the above
example, and show that bounded pathwidth implies bounded guided
treewidth. Before passing to the next section, we show that guided
treewidth is robust with respect to graph operations like disjoint
union (denoted W) or adding/removing a single vertex. The proof is
a simple application of Lemma 3.5.

Lemma 4.3. Let G, G’ be graphs and let u be a vertex in G. Then

gtw(GWG) = max(gtw(Q),gtw(G")) (1)
gtw(G) < gtw(G—u)+1 (@)
gtu(G—u) < 2-gtw(Q) 3)

4.2 Guided treewidth is bounded by pathwidth

We now state and prove the main result of Section 4, which is that
bounded pathwidth implies bounded guided treewidth.

2
Lemma 4.4. There exists a function f(k) € 2277 Such that
gtw(G) < f(pw(G))

Note the asymmetry in the lemma: we assume bounded path-
width, but produce a tree decomposition. It can be easily seen that
Lemma 2.5 follows by combining Lemma 4.4 with Lemmas 2.8
and 3.4. A full argument is in the full version of the paper.

The rest of Section 4 is devoted to proving Lemma 4.4. In
Section 4.2.1 we define bi-interface graphs, which give an alternative
algebraic definition of pathwidth. Then, in Section 4.2.2, we use the
Factorization Forest Theorem to prove Lemma 4.4.

for every graph G.

4.2.1 Bi-interface graphs

Recall the interface graphs as defined in Section 2.3. In our approach
to pathwidth, we use such an enriched version of this definition,
where a graph is supplied with two sets of interfaces: left and right.
Here is the formal definition.

Definition 4.5. A bi-interface graph consists of an arity k € N, an
underlying graph G, and two partial injective functions left, right
from {1,...,k} to the vertices of G. We use the name i-th left
interface for left(i), likewise for the i-th right interface. Moreover,
we require that if a vertex is simultaneously an ¢-th left interface and
a j-th right interface, then ¢ = j.

Thus, the interface names of a bi-interface graph of arity k are
numbers between 1 and &, however not all of them need to be used.

In Section 2.3 we showed how to glue interface graphs. For bi-
interface graphs we use a similar notion, which is probably best seen
in a picture, see Figure 1. Here is the formal definition. Let G, G2
be two bi-interface graphs of the same arity k. Define their gluing
G19Gs: as follows. Take the disjoint union of the underlying graphs,
and fuse the i-th right interface of G; with the i-th left interface of
G2, whenever both are defined. As before, remove the duplicates
whenever any parallel edge is created in this operation. As the left
interface function take the left interface function of G+, and as the

right(1) left(1) right(1)

left(1) ? right(1) left(1)

left(2) —>

/
left(3) —> @~ \.—> right(3) left(3)

Gl G2

N
right(2)

—

\
>
right(3) left(3) —> @~ N right(3)
G1® G2

Figure 1: Two bi-interface graphs and their gluing. The interface nodes are red, the incoming/outgoing arrows indicate left/right interfaces,
respectively. Some of the interfaces are undefined, e.g. the second left interface in G1, and the first left and right interfaces are equal.

right interface function take the right interface function of Go. It is
easy to verify that if G; and G2 were both bi-interface graphs of
arity k, then G1 @ G, is also a bi-interface graph of arity k. Note
that in G1 @ G2 we forget the information about the right interfaces
of G and the left interfaces of Ga.

The gluing operation defined above is associative, turning the set
of bi-interface graphs of arity k into a semigroup. A product

Gid...0G,

in this semigroup is essentially the same thing as a path decompo-
sition, where the bags are the bi-interface graphs G1, .. ., Gy, and
the interface functions say how the bags are connected. Hence the
following lemma, whose straightforward proof is omitted.

Lemma 4.6. A graph has pathwidth at most k if, and only if it is
the underlying graph of a bi-interface graph of the form

Gi...2G,
where each G; has arity k and at most k + 1 vertices.

Abstraction. Call two bi-interface graphs isomorphic if there is
a bijection between their vertex sets that respects graph edges
and the name of each interface. For a graph G and a subset of
vertices X, by the torso of G with respect to X we mean a graph
on vertex set X where two vertices are adjacent if they can be
connected in G by a path whose internal vertices do not belong to
X. Define the abstraction [G] of a bi-interface graph G to be the
isomorphism type of the bi-interface graph obtained by taking the
torso of the underlying graph with respect to the interface vertices,
and preserving the interface functions. Here is a picture of a bi-
interface graph and its abstraction:

left(1) T right(1) left(1) ———» right(1)
right(2) right(2)
left(3) 4,." right(3)

G [G]

Define Ay to be the possible abstractions of bi-interface graphs

left(3) —» right(3)

of arity k. This is a finite set of size 20(*) The abstraction
function G — [G] is compositional in the sense that [G1 @ G2]
is uniquely determined by [G:] and [G2]. This means that A
can be uniquely endowed with a multiplication operation which
makes the abstraction function a semigroup homomorphism from
bi-interface graphs of arity k to Aj. From now on we will treat Ay,
as a semigroup, and the abstraction function as a homomorphism.

4.2.2 Simon’s Factorization Forest Theorem

‘We now recall Simon’s Factorization Forest Theorem from semi-
group theory, whose application is the cornerstone of our proof
of Lemma 2.5. Intuitively, the theorem says that if h is a homo-
morphism from words into a finite semigroup .S, then every word
can be recursively factorised until reaching single letters, with the

depth of the factorisation depending only on the size of .S, and each
factorisation step respecting h in some way.

We write 7 for the semigroup of nonempty finite words over
alphabet X with concatenation. Let S be a finite semigroup and let

h:3t > 8

be a semigroup homomorphism. We define two types of factoriza-
tions for a word u € X7,

e Binary: a factorization into two factors

U = Ujus.

e Unranked: a factorization into an arbitrary number of factors
U=Up...Un,
such that all factors w1, . . ., u, have the same image under h.

The h-rank of a word v € X7 is the natural number defined by
induction on the length of u as follows. Single letters have rank 1.
For a longer word w, its h-rank is

1+ min max
u=uy...un i€{1,...,n}

h-rank of u;

where the minimum ranges over factorizations (either binary or
unranked) of w into nonempty factors. Using binary factorizations
only, it is easy to see that every word has h-rank that is at most
logarithmic in its length. Imre Simon proved that thanks to the
unranked factorisations, one can achieve constant rank.

Theorem 4.7 (Factorisation Forest Theorem [15, 13]). Ifh: ¥+ —
S is a semigroup homomorphism with S finite, then every word in
St has h-rank at most 3|S)|.

The original result there is actually slightly stronger: in the
unranked factorisations only idempotent values in the semigroup can
be used. We will not use idempotence. The bound 3|S] is from [13],
improving on the original exponential bound of Simon [15]. The
word forest in the theorem’s name is because the definition of rank
implicitly uses a tree structure of factorisations.

‘We now return to the proof of Lemma 4.4, which says that guided
treewidth is bounded by a function of the pathwidth. Consider the
semigroup homomorphism

h:ST = Ay,

where X is the set of arity-k bi-interface graphs with at most k£ + 1
vertices, and h is the homomorphism that glues a word to a single bi-
interface graph and takes its abstraction. We will show that for every

Gl"'GnEZ+

the guided treewidth of the corresponding glued graph is at most
exponential in the h-rank of the word. More precisely:

gtw(G1 @ - @ G,,) < 20 (hrank(@1 -+ Cn))) 4

By Lemma 4.6 and the Factorisation Forest Theorem, every graph
of pathwidth k can be obtained from some word in ¥ with h-rank

bounded by 3|Ag| = 200%) thus proving Lemma 4.4. It remains
to show (4). For this, we use induction on the h-rank. The induction
base follows from the observation that the guided treewidth of a
graph is at most the number of its vertices, which follows directly
from claim (2) of Lemma 4.3. For the induction step, we use the
Binary and Unranked lemmas stated below.

Lemma 4.8 (Binary). If G1, G2 are arity-k bi-interface graphs, then
gtu(G1 @ G2) < k + 2° - max(gtw(G1), gtw(Ga)).

The Binary Lemma, used for binary factorizations, follows
immediately from Lemma 4.3. In the proof, we observe that gluing
two bi-interface graphs can be modelled as follows: (i) remove from
both graphs the interface vertices that are going to be fused, (ii) take
the disjoint union, and (ii) reintroduce the removed vertices.

For unranked factorisations, we use the following lemma.

Lemma 4.9 (Unranked). Let G1,Ga,...,G, be bi-interface
graphs of arity k which all have the same abstraction. Then

,,,,,

The proof of the Unranked Lemma is more involved and pre-
sented in the following section.

4.2.3 Proof of the Unranked Lemma

We begin by introducing some notation. If Gq,...,G, are bi-
interface graphs of the same arity and ¢ € {1,...,n}, then there is
a natural injective mapping column; that associates the vertices of
G; with the corresponding vertices of its copy in G1 @ - - - & G,,.
Let us call this function the i-th column function, and its image the
i-th column. Here is a picture that illustrates columns:

Y Y TR TREY NS
> \\\ Q \\
e, e, ‘e er e

9 ~— \/
- /\</.*/ /\¢7\‘/l/\.—>
——— e e e e s

column 1 column 2 column 3 column 4

We begin by observing that if we glue many copies of the same
bi-interface graph, then vertices in the same column can either be
connected by a path visiting few columns, or not at all. Here, by a
path staying within a set of columns we mean that the vertex set of
the path is contained in the union of these columns.

Lemma 4.10. Let G be a bi-interface graph. If two vertices of

n times
ndef o
G"=Go---0G.

are in the same column i € {1, ... ,n} and can be connected by a
path, then they can also be connected by a path that stays only in
columns j satisfying |j — i| < k*, where k is the arity of G.

‘We now show that if we glue many bi-interface graphs which
are not necessarily equal but have the same abstraction, then there
is a guidance system, colorable by a small number of colors, which
takes each vertex to the reachable interfaces from its own column.

Lemma 4.11. Let G1,Ga, ..., G, be bi-interface graphs with the
same arity k and the same abstraction, and such that the left and
right interfaces are disjoint. Consider the gluing

G:Gl@@Gn

Fori € {1,...,n} and a vertex w in the i-th column, define I;(u)
to be those interface vertices of the i-th column which are reachable

from u by a path in G. Then there is a guidance system A\ over G,
which can be colored by at most 4k(k? 4 1) colors, such that

Ii(u) C A(u) foreachi € {1,...,n} and w in the i-th column.

The next step is to prove the Unranked Lemma in the special case
where the bi-interface graphs have disjoint left and right interfaces.
The proof is an application of Lemma 4.11, which ensures us that
connections that have to be realized by the sought guidance system
have a local character.

Lemma 4.12. Let G1,Ga, ..., G, be bi-interface graphs of arity
k which all have the same abstraction, and such that the left and
right interfaces are disjoint. Then

gtu(G1 @ - ®G,) <4k(k*+1)+4". max gtu(G,).

ie{l,...,n}
We now finish the proof of the Unranked Lemma. Let

GEGI & ®Gn
be a gluing of bi-interface graphs of the same arity & and the same
abstraction. Define Uj; to be the vertices in G; that are both left and
right interfaces at the same time and define H; to be G; with U;
removed. Consider the gluing

Hdéle @@Hn
By the assumption that the abstractions of all of G, ..., G, are the
same, it follows that the image of U; under the ¢-th column function
is the same set, independent of ¢, and this set has at most k vertices.
Therefore, H is equal to G with at most k vertices removed. By
claim (2) of Lemma 3.5 we infer that

gtu(G) < gtw(H) + k. (5)

The left and right interfaces are disjoint in each Hj;, and these graphs
also have the same abstraction, so we can use Lemma 4.12 to get:
gtu(H) < 4k(k* +1) + 4% {max , gtw(H;). (6)
ie{1,..., n
Finally, each Hj is obtained from G; by removing at most k vertices,
and hence we can apply claim (3) of Lemma 3.5 to infer that

gtw(H;) < 2% - gtw(G;). ™)

By combining (5), (6), and (7), we obtain the desired upper bound
on the guided treewidth of G.

5. Graphs of bounded treewidth

In this section we prove Lemma 2.6. Our strategy is to show the
following result on guidance systems.

Lemma 5.1. Let G be a graph of treewidth at most k. Then G
admits a tree decomposition t° with the following properties:

(a) every marginal graph has pathwidth at most 2k + 1;
(b) the family of adhesions of t° can be captured by a guidance
system colorable with 4k> + 2k colors.

From the lemma above, we can deduce Lemma 2.6 as follows.
Take interpretation Syxs | o5, from Lemma 3.4. Lemma 5.1 implies
that if the treewidth of the input graph is at most k, then at least one
output of Sy.3, o, satisfies the conditions of Lemma 2.6.

The rest of Section 5 is devoted to proving Lemma 5.1. In Sec-
tion 5.1, we prove a “local” variant of the lemma, which provides
one step of the construction. In Section 5.2, we iterate the local vari-
ant to construct a global decomposition, thus proving Lemma 5.1.

5.1 A local variant of Lemma 2.6

In this section, we state and prove Lemma 5.2, which can be seen
as a local variant of Lemma 5.1. We begin with some hypergraph
terminology, which is used in its statement and proof.

Hypergraphs. A hypergraph consists of a set of vertices together
with a multiset of nonempty subsets of the vertices, called the
hyperedges. Note the use of multisets: hyperedges can appear
multiple times. If H is a hypergraph, the hypergraph induced by a
subset of vertices X, denoted by H[X], is the hypergraph where the
vertices are X and the hyperedges are intersections of the original
hyperedges with X, with the empty ones removed. A path in a
hypergraph is a sequence

(u17617u2’ cee 7uP7eP7uP+1)7

where u; are pairwise different vertices, e; are pairwise different
edges, and vertices u;, u;41 are contained in hyperedge e; for each
i =1,2,...,p. Vertices u1 and up+1 are the endpoints, and the
path is said to go from wu; to up,41. Each vertex u; and hyperedge
e; is said to be traversed by the path. Connected components in a
hypergraph are defined by path-connectedness in a natural manner.
Tree decompositions of hypergraphs are defined as for graphs,
except that every hyperedge must be contained in some bag.

Prefixes and their torsos. Let t be a sane tree decomposition of a
graph G. A prefix of t is a set of nodes Z in ¢ that is closed under
taking ancestors. If Z is a prefix, define 0Z to be the nodes of ¢ that
are not in Z, but their parent is in Z. For a prefix Z, define

hypertorso(t, Z)

to be the hypergraph obtained by taking the subgraph of G induced
by the union of the bags in Z, and then for every z € 0Z a
hyperedge for the adhesion of z. When adding hyperedges, we
respect multiplicities, i.e. if » nodes in Z have the same adhesion,
then this adhesion is used n times in hypertorso(t, Z).

We are now ready to state the local version of Lemma 5.1.

Lemma 5.2. Let t be a width k sane decomposition of a connected
graph G. Let u, v be vertices in the root bag (note that there is a
unique root due to connectedness). Then there exists a nonempty
prefix Z of t with the following properties:

(a) the pathwidth of hypertorso(t, Z) is at most 2k + 1, and

(b) the vertices w and v can be connected by two paths in
hypertorso(t, Z) such that if a hyperedge is traversed by both
paths, then it is an edge of G.

The rest of Section 5.1 is devoted to proving the above lemma.
The proof uses a Menger style argument, so we begin by defining
terminology for hypergraph networks.

Networks. Define a network to be a connected hypergraph together
with two distinguished different vertices, called the source and
the sink. We extend all notation from hypergraphs to networks in
a natural manner. A cutedge in a network is a hyperedge which
appears in every path from the source to the sink; equivalently, the
removal of a cutedge makes the source and the sink fall into different
connected components. The following claim is straightforward.

Lemma 5.3. In every network one can order all of the cutedges
info a sequence (e1, . .., ep) such that every path from the source
to the sink visits the cutedges in this order.

The sequence (eq, .. ., ep) yielded by Lemma 5.3 will be called
the cutedge sequence of a network. Define a cutedge component in
a network to be a connected component of the hypergraph obtained
by removing the cutedges. The following claim is straightforward.

Lemma 5.4. Consider a network. Let (e, . .., ep) be its cutedge
sequence, and define e, ep+1 be the singletons of the source and
the sink, respectively. Then every cutedge component intersects
exactly one or exactly two among elements eg, e1, . .., €p,ept1. In
the former case, the intersected e; is a cutedge; i.e. i is not equal to
0 or p+ 1. In the latter case, the two intersected elements must be
consecutive in the sequence.

The above lemma motivates the following terminology for a
cutedge component. If it intersects two consecutive elements e;
and e;41 in the cutedge sequence extended by the singletons of
the source and the sink, then it is called an (e;, e;41)-bridge. If
a cutedge component is not a bridge of any kind, and therefore it
intersects exactly one cutedge e;, then it is called an e;-appendix.
This terminology is illustrated in Figure 2.

. =0 e,
€ .',.2 €

source ’ T Y - C sink

Figure 2: A network. The yellow hyperedges are the cutedges. The
red hyperedges are those that contain bridges, the blue ones are those
that contain appendices. Note the vertex in e3 which participates in
no blue or red hyperedges, this vertex is a singleton es-appendix.

The following lemma is proved by applying Menger’s theorem,
forevery i € {0,1,...,p}, to the union of all (e;, e;+1)-bridges.

Lemma 5.5. In every network one can find two paths from the
source to the sink, such that a hyperedge is traversed by both paths
if, and only if it is a cutedge.

The invariant. To prove Lemma 5.2, we will start with a prefix of
the decomposition that contains only the root, and keep on extending
the prefix until it satisfies condition (b). While extending the prefix,
we will preserve an invariant which implies condition (a). We now
describe the invariant. Let ¢, u, v be as in Lemma 5.2. For a prefix
Z of t, consider the network obtained from hypertorso(¢, Z) by
choosing wu as the source and v as the sink. We will maintain the
invariant that this network is k-thin in the sense defined below.

Definition 5.6. Consider a network with hypergraph H and cutedge
sequence (e1,...,ep); we follow the convention that eg, ept1
denote the singletons of the source and the sink, respectively. Define
V; to be the union of the vertex sets of all (e;, e;4+1)-bridges, for
i = 0,1,...,p, and W; to be the union of the vertex sets of all
ei-appendices, for i = 1, ..., p. The network is called k-thin if:

(a) for every ¢ € {0,1,...,p}, the induced hypergraph H[V;]
admits a path decomposition of width at most 2k + 1 where the
first bag contains e; N V; and the last bag contains e;11 N V;;

(b) for every ¢ € {1,2,...,p}, the induced hypergraph H[W;]
admits a path decomposition of width at most k£ where the first
bag contains e; N W;.

The following lemma shows that our invariant implies condi-
tion (a) in Lemma 5.2. The proof is a simple surgery on decomposi-
tions certifying thinness.

Lemma 5.7. A k-thin network has pathwidth at most 2k + 1.

Before finishing the proof of Lemma 5.2, we show that thinness
is preserved under a certain kind of replacements. Let H, K be
hypergraphs such that the intersection of their vertex sets is equal
to a hyperedge e of H. Define H[e — K] to be the following
hypergraph. The vertex set is the union of the vertex sets in H, K.
The hyperedges are the multiset union of the hyperedges in H, K,
with the hyperedge e removed. The following lemma shows that
the above defined replacement preserves k-thinness of networks,
assuming that e is a cutedge and K is small. The proof is a technical,
though conceptually simple analysis of the relationship between
cutedges before and after the replacement.

Lemma 5.8. Consider a k-thin network with hypergraph H. Let
K be a connected hypergraph with at most k + 1 vertices, with
no hyperedge larger than k, and such that the intersection of the
vertices of H and K is equal to some cutedge e of H. Then the
hypergraph He — K], with the same source and sink as in H, is
also a k-thin network.

We are now ready to prove Lemma 5.2.

Proof. For aprefix Z of the tree decomposition ¢, define the network
of Z to be the network obtained from hypertorso(t, Z) by choosing
the source to be u and the sink to be v. This is indeed a network: the
underlying hypergraph is connected because G itself is connected.

Initially, choose Z to be the prefix that contains only the root
node of ¢t. We will maintain the invariant that the network of Z is
k-thin. The invariant is clearly satisfied by the initial choice, because
the root bag has size at most k£ + 1, and adhesions have sizes at most
k (due to the saneness of t).

By Lemma 5.7, the invariant implies condition (a). We show
below that if Z is a prefix satisfying the invariant, then either it
satisfies condition (b), in which case we are done, or one can add
a node to the prefix while maintaining the invariant. Since the tree
decomposition ¢ has a finite number of nodes, this process has to
stop at some moment, thus proving the lemma.

Let then Z be a prefix such that the network of Z is k-thin.
Apply Lemma 5.5, yielding two paths from the source to the sink in
the network of Z, such that the only hyperedges traversed by both
paths are the cutedges of the network of Z. If all these cutedges
are original edges of (G, then we are done, because Z satisfies
condition (b). Otherwise, there is some cutedge e in the network
of Z that is not an edge of GG. By definition of the network of
Z, the cutedge e corresponds to the adhesion of some z € 0Z.
Again by definition, the network of Z U {z} is obtained from the
network of Z by: adding the bag of z to the vertices, removing
the hyperedge e, and adding a hyperedge for every adhesion of
a child of z. We now verify that this process is a special case of
the replacement in Lemma 5.8. Indeed, if we define hypergraph
K = hypertorso(t., {z}), where ¢ is the subtree of ¢ rooted at z,
then the network of Z U {z} is obtained from the network of Z by
replacing e by K. Observe that K has at most k + 1 vertices, has no
hyperedge larger than k due to the saneness of ¢, and is connected,
again due to the saneness of . Hence Lemma 5.8 ensures us that the
network of Z U {z} is also k-thin. O

5.2 Decomposition into low pathwidth parts

In this section we finish the proof of Lemma 5.1. We heavily use the
notation from Definition 2.2.

Consider a tree decomposition ¢. For a distinguished set X of
nodes in the decomposition ¢, which is required to include all the
roots of ¢, we define a new tree decomposition ¢/x of the same
underlying graph as follows. The nodes of ¢/x are X . For any node
of ¢ that is not in X, assign it to its closest ancestor that belongs to
X, i.e., the ancestor from X for which there is no other node from
X on the unique path between the node and the ancestor. Then the
t/x-bag of anode z € X is the union of the ¢-bags of the nodes
assigned to x, plus the t-bag of z itself.

Lemma 5.1 will be obtained by taking any sane tree decomposi-
tion, and applying the following lemma to every connected compo-
nent. Condition (a) of Lemma 5.1 will follow from Lemma 5.9(a),
while condition (b) of Lemma 5.1 will follow from Lemma 5.10
proved at the end of this section.

Lemma 5.9. Ler t be a width k sane tree decomposition of a
connected graph G. Then one can find a set of nodes X in t, which
includes the root of t, and families of paths {Py}zcx, such that
every x € X satisfies:

Figure 3: Example path in P,. This path contributes to the loads of
nodes y1, Y4, Y5, and yg, but not of z, y2, and ys.

(a) The t/x -marginal graph of x has pathwidth at most 2k + 1.
(b) Every element of P, is a path in G that satisfies:
(i) except for its endpoints, the path visits only vertices from
the t-component of x;
(ii) if y € X is a strict descendant of x, then restricting the
path to the t-component of y yields an interval in the path.
(c) All paths in P, have the same source, which belongs to the
t-margin of x. Conversely, each vertex of the t-adhesion of x is
a target of some path from Py.
(d) The following set of paths has size at most 2k*:

load, ¥ {P € Py : y € X is a strict ancestor of x and

P intersects the t-component of x}.

Proof. Figure 3 illustrates the notions used in the lemma. We prove
the following strengthening of the lemma, with sufficient parameters
to be proved by induction.

(%) Let 2o be a node of ¢, let I be a set of size at most 2k, and let

{(ui,vi) }ier

be a set of node pairs from the adhesion in x¢, with possible

repetitions. One can find a set X 3 z(of nodes in the subtree

of xo, sets {Px }zex and a set of paths {Q; }ier such that

(A) for every i € I, the path Q; goes from u; to v; and satisfies
conditions (b:i) and (b:ii) in the lemma with respect to zo;

(B) every z € X satisfies conditions (a)-(c) in the lemma and
the following variant of (d): the size of load, is at most

2k® — |{i € I: path Q; intersects the t-component of x}|.

The lemma is a special case of (%), by choosing x¢ to be the root
of the tree decomposition ¢, and choosing / to be empty. It remains
to prove (%), which is done by induction on the number of nodes in
the subtree of zg.

Let 2o and {(u;,v;) }ier be as in (x). Choose (u, v) so that

Iy = {’L el: (ui7vi) = (’U,,’U)}

has maximum size. If I is empty, choose Iy to be empty and leave
(u,v) undefined, this corner case will be considered separately.
Since each candidate for (u,v) is in the adhesion of zo, and
adhesions have size bounded by k (due to the saneness of ?), it
follows that Iy has size at least |I|/k>.

Define ¢ to be the subtree of ¢ rooted in xg. Let ¢, be obtained
from ¢y by removing from each bag those vertices of the adhesion
of zo that are neither u nor v. It is easy to see that both ¢y and ¢{
are sane tree decompositions. If u, v are defined, apply Lemma 5.2
to t;, with distinguished vertices u, v, yielding a prefix Z and two
paths in the hypergraph hypertorso(ty, Z); call these paths P* and
P2, Since to and t(, have the same nodes, and these nodes are a

subset of the nodes of ¢, we can view Z as a connected set of nodes
in each of these tree decompositions. In case I is empty and (u, v)
is undefined, we choose Z to be the singleton of the root of ¢.

Let J be the disjoint union of I and the t-adhesion of z¢. For
1 € J, define a path R; in hypertorso(to, Z) as follows:

e For i € I — Iy, define R; to be a path from u; to v;, which does
not visit the ¢-adhesion of = except for its endpoints. Such a
path exists by the saneness of ¢.

Split the set Iy into two parts, with the first part having half the
size (rounded up). For 3 in the first part, define R; to be P!, and
for i in the second part, define R; to be P2

For the remaining 4, i.e. those from the t-adhesion of z¢, do
the following. Independently of 4, choose some vertex w in the
t-margin of o, which is the same as the ¢o-margin of x¢. This is
possible because margins are nonempty in a sane decomposition.
For each i in the adhesion of x, define R; to be a path from
w to 4, which does not visit the adhesion of xo except for its
endpoints. Such a path exists by the saneness of ¢.

By definition, every hyperedge in hypertorso(to, Z) is an edge
of G or corresponds to an adhesion of some z € 9Z. Let z € 0Z.
Define I to be those 7 € J for which path R; uses the hyperedge
corresponding to the adhesion of z. The following claim is the key
step in this lemma, allowing us to apply the induction assumption.

Claim 1. For every z € 0Z, the set I* has size at most 2k>.

The informal reason for the claim is that we have used the two
paths P' and P2, and at most one of them visits the hyperedge
corresponding to the adhesion of z. Since Iy constitutes a 1/k>-
fraction of I, and I, is split in halves with respect to using P* or
P?, we see that around 1 / 2k2-fraction of paths R; for ¢ € I avoid
the adhesion of z. This is enough to amortize for the new paths R;
for ¢ from the t-adhesion of xg.

For i € I?, let u} be the vertex used by the path R; immediately
before the hyperedge corresponding to the adhesion of z, and let vy
be the vertex used immediately after. Take the vertex z, which is a
proper descendant of xo, and the family

{(vaviz)}i612~

and apply to it the induction assumption of (x), yielding
X* APileex= {Qiliers.

For i € J, define Q); to be following path in G. Take the path R;,
which might use hyperedges corresponding to adhesions from 07,
and for every z € 0Z replace the hyperedge corresponding to the
adhesion of z, if it is used, by the path Q7. The following claim
follows directly from the construction and the induction assumption.

Claim 2. For every i € J, the path Q; has the same source and
target as R; and satisfies conditions (b:i) and (b:ii) from the lemma.

‘We now complete the proof of (x). Define

X = {xo}LJ LJ)(?

z2€0Z

Note how the above union is actually a partition. Define

Do {Q; : i in the ¢-adhesion of g} when z = zo
TPz when z € X~.

Finally, define {Q; }icr to be the restriction of the previously defined
family {Q; }ie s to the smaller indexing set I C J.

Let us check that conditions (A) and (B) in the conclusion of
(%) are satisfied by the above choices. Condition (A) is satisfied
thanks to Claim 2. For z € X — {z0}, we check condition (B) in
the following claim, which follows from the induction assumption.

Claim 3. Condition (B) in (%) holds for each x € X — {xo}.

It remains to check condition (B) for g, i.e. to check that x¢
satisfies conditions (a)-(c) and the variant of (d). For (a), we observe
that every path decomposition for hypertorso(t(, Z) is also a path
decomposition of ¢ /x-margin of zo, and therefore the latter graph
has pathwidth at most 2k + 1, by the conclusions of Lemma 5.2. (In
the corner case when I was empty, the ¢/x -margin of zg is the same
as the t-margin, and therefore has size at most k.) For (b), we use
Claim 2. Condition (c) follows by construction. Finally, condition (b)
holds vacuously, because o has no strict ancestors in X . O

To finish the proof of Lemma 5.1, we take t° = t/x for X
yielded by Lemma 5.9, and we need to check that the adhesions of
t° can be captured by a guidance system that uses few colors. This
requires a careful surgery on the paths families { P, }»ex provided
by the lemma. In particular, condition (d) is vital for the bounded
on the number of colors used.

Lemma 5.10. Let t and X be as in Lemma 5.9. The adhesions of
the tree decomposition t/x can be captured by a guidance system
that is colorable with 4k3 + 2k colors.

References

[1] H. L. Bodlaender, P. Heggernes, and J. A. Telle. Recognizability equals
definability for graphs of bounded treewidth and bounded chordality.
Electronic Notes in Discrete Mathematics, 49:559-568, 2015.

[2] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms
for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358—
402, 1996.

[3] M. Bojariczyk and S. Lasota. An extension of data automata that
captures XPath. Logical Methods in Computer Science, 8(1), 2012.

[4] B. Courcelle. The Monadic Second-Order logic of graphs. I. Recog-
nizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990.

[5] B. Courcelle. The Monadic Second-Order logic of graphs V: On
closing the gap between definability and recognizability. Theor:
Comput. Sci., 80(2):153-202, 1991.

[6] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic — A Language-Theoretic Approach, volume 138 of Ency-
clopedia of mathematics and its applications. Cambridge University
Press, 2012.

[7] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-
Order Logic - A Language-Theoretic Approach, volume 138 of Ency-
clopedia of mathematics and its applications. Cambridge University
Press, 2012.

[8] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[9] M. Grohe and D. Marx. Structure theorem and isomorphism test
for graphs with excluded topological subgraphs. SIAM J. Comput.,
44(1):114-159, 2015.

[10] L. Jaftke and H. L. Bodlaender. Definability equals recognizability
for k-outerplanar graphs. In IPEC’15, volume 43 of LIPIcs, pages
175-186, 2015.

[11] V. Kabanets. Recognizability equals definability for partial k-paths. In
ICALP’97, volume 1256 of LNCS, pages 805-815. Springer, 1997.

[12] D. Kaller. Definability equals recognizability of partial 3-trees and
k-connected partial k-trees. Algorithmica, 27(3):348-381, 2000.

[13] M. Kufleitner. The height of factorization forests. In MFCS 2008,
volume 5162 of LNCS, pages 443-454. Springer, 2008.

[14] D. Lapoire. Recognizability equals Monadic Second-Order definability
for sets of graphs of bounded tree-width. In STACS’98, volume 1373
of LNCS, pages 618-628. Springer, 1998.

[15] I. Simon. Factorization forests of finite height. Theor. Comput. Sci.,
72(1):65-94, 1990.

