
Tree-walking automata

Mikołaj Bojańczyk ?

Warsaw University

Abstract. A survey of tree-walking automata. The main focus is on
how the expressive power is changed by adding features such as pebbles
or nondeterminism.

1 Introduction

A tree-walking automaton is a sequential device that can recognize properties
of trees. The control of the automaton is always located in a single node of the
tree; based on local properties of this node, the automaton chooses a new state
and moves to a neighboring node. Tree-walking automata have been introduced
already in a 1971 paper of Aho and Ullman [1]. The purpose of this paper is
to survey the different types of tree-walking automata, with a special focus on
expressive power.

A tree-walking automaton can be easily simulated by a branching bottom-
up tree automaton, therefore tree-walking automata recognize only regular tree
languages. However, the converse inclusion has been a notorious open problem
for many years1; only recently did [2] establish that tree-walking automata are
strictly less expressive than branching automata. Other fundamental proper-
ties have also been shown but recently: deterministic tree-walking automata are
closed under complement [11], and recognize fewer languages than nondetermin-
istic ones [3]. These results are described in the first part of this survey, although
the difficult non-definability proofs are omitted.

A problem with tree-walking automata, and also the reason why they are less
expressive than branching automata, is the they easily get lost in a tree. One
solution to this problem, due to Engelfriet and Hoogeboom [7], is to allow the
automaton to mark tree nodes with pebbles. Although automata with pebbles
are still not as strong as branching automata, they form an interesting and
robust class of regular tree languages, which is connected to transitive closure
first-order logic. A second part of this survey describes the various types of
pebble automata, together with recent results on their expressive power.

Most of the proofs here are just informal sketches, intended to give an idea
of the type of methods used.

I would like to thank Thomas Colcombet, Anca Muscholl, Damian Niwiński,
Luc Segoufin and Balder ten Cate for their helpful comments.
? Supported by Polish government grant no. N206 008 32/0810.
1 A footnote in the original paper [1] on tree-walking automata states that Michael
Rabin has shown that tree-walking automata do recognize all regular tree languages.



2 Tree-walking automata

Trees in this paper are binary, labeled, and finite. In other words, each node has
either a left child and a right child, or is a leaf with no children at all. Each node
also has a label, taken from a finite alphabet Σ.

A tree-walking automaton is a sequential device that can recognize properties
of trees. At any given moment, the automaton is located over a node of the input
tree, and assumes one of a finite number of control states. It can do a number of
tests: “is the current node a leaf?”, “is the current node a left (resp. right) child?”
and “is the label of the current node a?”. Based on the result of these tests, the
automaton updates its state, and executes one of the commands: “accept the
tree”, “reject the tree”, “go to the parent” and “go the left (resp. right) child”. ‘

A run of the automaton in a given input tree is described as follows. A
configuration is pair (q, v), where v is a node of the tree, called the current node,
and q is a state taken from a finite state space Q. In such a configuration, the
automaton can execute a transition, taken from a finite set of allowed transitions,
of the form: “if the current state is p and the current node satisfies T (a boolean
combination of tests), then execute command C and change the state to q”. A
run is any sequence of configurations that is consistent with the transition table
of the automaton. The automaton accepts a tree if there is some accepting run,
i.e. a run that begins in the initial configuration—consisting of a designated
initial state and the root of the tree—and ends with an “accept” command. Note
that a tree may be accepted even if some runs end with a reject command. In
particular, the reject command is redundant, but it will be convenient to simplify
some of the constructions below. The tree language recognized by an automaton
is defined to be the set of trees it accepts. A tree-walking automaton is called
deterministic if in every configuration, there is at most one transition that can
applied. Otherwise, the automaton is nondeterministic.

Formally, a tree-walking automaton is given as a tuple

A = 〈Q,Σ, qI , ∆〉 ,

where Q is state space, Σ is the input alphabet for labels of tree nodes, qI ∈ Q
is the designated initial state and ∆ is the set of transitions.

We begin with a very simple example automaton, which does a depth-first
search through all the tree nodes, and accepts if all nodes have label a:

Example 1. The automaton has three states p, pleft , pright . It will visit each non-
leaf node three times: for the first time in state p, then in state pleft once it has
finished inspecting the left subtree, and finally in state pright one it has finished
inspecting the right subtree. We only present two sample transitions:

– If the state is pright , the label is a, the node is a left (resp. right) child and
not a leaf, then go to the parent and change the state to pleft (resp. pright).

– If the state is pright , the label is a and the node is neither a left nor right
child (i.e. it must be the root), then accept the tree.

2



Note how in the above example we test if a node is a left or right child.
Wouldn’t it be enough to simply have the test “is the current node the root?”.
As shown by Kamimura and Slutzki in [10], this weaker type of automaton
cannot recognize the language “all nodes have label a”. Indeed, assume to the
contrary, that this language is recognized by an automaton of the weaker type.
Consider a balanced binary tree (i.e. all leaves have the same depth) where all
nodes have label a. We claim that for every state q and nodes v, w of the same
depth, if there is an accepting run of length n that begins in (q, v), then there is
also an accepting run of length n that begins in (q, w). This claim is proved by
induction on n; the lack of the test is crucial, since otherwise the claim would
not work when v would be a right child, and w a left child. If the balanced tree
is large enough, the claim implies that any accepting run of this automaton can
be modified into one where some leaf is not visited. This unvisited leaf can then
be given label b, a contradiction.

Example 2. We will now present a more elaborate example of a tree-walking
automaton. The alphabet is {∨,∧, 0, 1}, and the language consists of the trees
that are properly formed logical expressions (i.e. 0, 1 in the leaves, and ∨,∧
elsewhere) that evaluate to 1. The idea is to use the following recursive algorithm
for evaluating the expression in a subtree, where tail recursion has been removed.

First, evaluate the expression in the left subtree. If the result is 1, and the
label in the current node is ∨, then the right subtree need not be inspected,
and the result 1 can be returned. If the result is 0 and the label in the current
node is ∧, then the right subtree need not be inspected, and the result 0 can be
returned. Otherwise, the result for the current subtree is the same as the result
for the right subtree.

Thanks to the optimization, the above procedure can be realized by a tree-
walking automaton. This automaton will have a state p that is used to enter a
subtree for the first time, and four other states that will be assumed just after
coming back from a subtree. Each of these four states is of the form pj,i, where
j ∈ {left , right} says which subtree has just been evaluated, and i ∈ {0, 1} is the
value of that subtree. We just present two sample transitions of this automaton:

– If the state is pleft,0, the label is ∧, and the current node is a left (resp. right)
child, then go to the parent and change the state to pleft,0 (resp. pright,0).

– If the state is pright,i, for i ∈ {0, 1}, and the current node is a left (resp. right)
child, then go to the parent and change the state to pleft,i (resp. pright,i).

In the second transition above, the automaton reasons that if it has entered the
right subtree, then the value of the left subtree must have been irrelevant.

2.1 Relationship to branching automata

Another automaton model for trees is a (deterministic bottom-up) branching
automaton. An automaton of this type does a single bottom-up pass through
the tree, during which it evaluates each tree to a state. The automaton has
a finite set of states Q, and a finite set of transitions of two possible forms: “a

3



subtree is evaluated to state q if it has only one node with label a” or “a subtree is
evaluated to state q if its root label is a, its left subtree is evaluated to q0 and its
right child is evaluated to q1”. Note how the second transition involves branching,
i.e. the subcomputations on the left and right subtrees are done in parallel. The
automaton accepts a tree if it evaluates it to one of the designated accepting
states F ⊆ Q. We use here the deterministic variant, where the transitions are
such that every tree is evaluated to exactly one state. Like for word automata,
the subset construction can be used to convert a nondeterministic branching
automaton into an equivalent deterministic one.

Branching automata are the standard model for recognizing tree languages,
and the name regular tree language is applied to tree languages that can be
recognized by a branching tree-walking automaton. The class of regular tree
languages enjoys all the closure properties of regular word languages, e.g. union,
intersection and complementation.

Below we show that tree-walking automata can be compiled into branching
automata, and therefore correspond to a subclass of regular languages. As we
will see later on, this subclass is proper.

Fact 1 Every tree-walking automaton is equivalent to a branching one.

Proof
The branching automaton will calculate loops. A loop is a run that begins and
ends in the same node, but not necessarily in the same state. Fix a tree-walking
automaton A with states Q. Given a tree t, let At (resp. Bt, Ct) be the set of
pairs (p, q) ∈ Q2 such that A admits a loop in the root of t with source state p
and target state q, assuming that the root of t is treated by the tests in the run as
a left child (resp. right child, root). In the above, we only consider loops where
the automaton does not try to leave the tree t by doing a “go to the parent”
command in the root node. These triples of subsets can be used as states of a
bottom-up branching automaton, since the triple assigned to a tree only depends
on the root label, and the two triples assigned to its left and right subtrees. �

The exponential blowup in the above construction is optimal, for the same
reason as for two-way word automata. Consider for instance the set of trees
where every label appears either zero or at least two times. This language is
recognized by a tree-walking automaton with a state space linear in the size of
the alphabet, while any branching bottom-up automaton needs a state space
exponential in the size of the alphabet. This example can be modified to work
with a one-letter alphabet.

The price for this succinctness is the complexity of emptiness (deciding if
the automaton accepts at least one tree). Emptiness for branching automata is
a special case of reachability in and-or graphs (the “or” stands for choosing a
root label and transition, the “and” stands for having both subtrees accepted),
a problem in PTime. This contrasts with tree-walking automata:

Theorem 2
Emptiness for tree-walking automata is ExpTime-complete.

4



Proof
The upper bound follows by translating a tree-walking automaton into a branch-
ing automaton of exponential size, and then doing a PTime emptiness test.

The lower bound is similar to the proof that emptiness for two-way word
automata is PSpace-hard. For word automata, the key point is that by moving
back and forth, a two-way word automaton of O(n) states can detect if two
consecutive configurations c1 · · · cn and d1 · · · dn±1 are consistent with the tran-
sitions of a Turing machine. For tree-walking automata, we can go from PSpace
to ExpTime by encoding the computation tree of an alternating polynomial
space Turing machine. Note that the hardness proof works already for determin-
istic tree-walking automata, or the caterpillar expressions that will be discussed
later on. �

As far as complexity of the emptiness problem is concerned, we lose nothing
by adding alternation to tree-walking automata. In an alternating tree-walking
automaton, sometimes also called an alternating two-way tree automaton, the
transitions are the same, only the acceptance mode is changed to a game, played
by two players ∀ and ∃. An alternating tree-walking automaton accepts a tree
if player ∃ wins the following game. Each game position is a configuration of
the automaton in the tree, starting with the initial configuration. To choose
who does a move, the state space Q is partitioned into two subsets Q∀ and Q∃.
When the state belongs to Q∀, the player ∀ chooses a transition and updates
the configuration, otherwise this is done by player ∃. There are two ways that
player ∃ can win the game: either when an “accept” command is executed, or
when player Q∀ has no possible transition to apply. In all other cases, which
include an infinite play, the player ∀ wins.

Alternating tree-walking automata (even on infinite trees, but here the focus
is finite trees) can also be compiled into branching automata of exponential size,
using a construction similar to the one in Fact 1. Furthermore, alternating tree-
walking automata have the same expressive power as branching automata, since
alternation can be used to simulate branching.

3 Expressive power

Tree-walking automata are notoriously tricky to analyze. Even what seems like
a simple property is non-trivial to prove:

Theorem 3 ([11])
Deterministic tree-walking automata are closed under complementation.

Why is it not enough to swap accept and reject commands? The reason is that
the automaton can also reject by entering an infinite loop. Therefore, the above
theorem follows from:

Proposition 4 ([11]) Every deterministic tree-walking automaton is equiva-
lent to one where each run ends with either an accept or reject command.

5



Proof
The idea originates in an observation of Sipser [15]. Let A be a deterministic
tree-walking automaton, with states Q. Without loss of generality, we assume
that there is only one transition where the accept command can be used, and
this transition requires a state qF to appear in the root ε of the tree. We call
(qF , ε) the accepting configuration; we can furthermore assume that the accepting
configuration admits no other transitions than the accepting one. We will now
define an equivalent automaton B, which ends every run by either accepting or
rejecting.

Fix an input tree t. The idea is that the automaton B does a depth-first
search through the reverse configuration graph of the automaton A. Vertexes in
this graph are configurations of the automaton A on the input tree t. There is
an edge from (p, v) to (q, w) if there is a transition that can take the automaton
A from (q, w) to (p, v). Since the automaton A is deterministic, each vertex in
the configuration graph has indegree at most one. We are only interested in
the connected component of the reverse configuration graph that contains the
accepting configuration. The key insight of Sipser is that this component is a
tree, call it T , and can therefore be efficiently searched in depth-first search
manner. The reason is that the accepting configuration has no incoming edges,
and hence no loop can appear in T . The simulating automaton B does a depth-
first search on the tree T ; if it finds the initial configuration it accepts, otherwise
it rejects. To induce a depth-first search, we establish some arbitrary order on the
transitions of the automaton A, so that the simulating automaton knows which
subtree of T to process first, second, etc. A configuration (p, v) in T is encoded
by a configuration in the tree t, with the current node in v. The simulating
automaton also needs to remember in its state which subtree of T it has just
finished searching. �

Unfortunately, closure under complementation of deterministic tree-walking
automata is a rare instance of good behavior for tree-walking automata. Theo-
rems 5 and 6 below give two instances of bad behavior. A further, only conjec-
tured, instance is:

Conjecture 1. Languages recognized by nondeterministic tree-walking automata
are not closed under complementation.

Theorem 5 ([3])
Tree-walking automata cannot be determinized, i.e. there is a tree language L
recognized by a nondeterministic tree-walking automaton, but by no deterministic
one.

We begin by defining the language L. Consider a tree where all nodes have label b,
except for exactly three leaves, which have label a. The branching structure is
induced by looking at the closest common ancestors of a-labeled leaves, including
the a-labeled leaves themselves. (In the above, closest means deepest in the tree.)
When there are three a’s, there are two possible types of branching structure:

6



aa

b

b

a aa

b

b

a

v

v

x y z x y z

We claim that a nondeterministic tree-walking automaton can tell the difference
between the left and right pictures above, while a deterministic one cannot. More
formally, we claim that Theorem 5 holds for the following language L:

All nodes have label b, except for three leaves x, y, z (from left to right),
which have label a. The closest common ancestor of x and y is not an
ancestor of z.

The negative part of the claim, that any deterministic tree-walking automaton
confuses the two types of branching structure, is quite involved and requires de-
veloping a pumping argument for tree-walking automata. In this survey, we only
present the easier, positive part of the claim. The nondeterministic automaton
does five high-level steps (the reader can easily fill in the states and transitions
in the actual automaton). Note that only step 3 uses nondeterminism.

1. Doing a depth-first search, check that there are only three nodes labeled a,
and these are leaves.

2. Go back to the root. Doing a depth-first search, stop at the first a, i.e. x.
3. Nondeterministically go to some ancestor u of x.
4. Go to the rightmost leaf w below u.
5. Accept if there is exactly one a to the right of w. This can be checked by

resuming a depth-first search from the node w.

If the tree belongs to the language, then the automaton will accept, by choos-
ing u in step 3 to be the closest common ancestor v of the leaves x and y. On
the other hand, if the tree is outside the language, then either the first step in
the automaton will fail, or every possible choice of u will give either zero or two
a’s to the right of w.

The second result, stated below, shows that even nondeterministic tree-
walking automata cannot express some simple regular tree properties.

Theorem 6 ([2])
Tree-walking automata, even nondeterministic ones, do not capture all regular
tree languages.

The separating language K is also defined in terms of branching structure. Take
a tree over the alphabet {a, b}, where the label a is only allowed in the leaves, but
possibly more than three times. As before, we say a node v is on the branching

7



structure if it is the closest common ancestor of two leaves with label a. In other
words, v is either itself a leaf with label a, or both its left and right subtrees
contain each at least one leaf with label a. The language K is defined to contain
trees where every leaf with label a has an even number of proper ancestors in
the branching structure.

The language K is recognized by a branching automaton with three states.
Later on, we will also show that this language can be defined in first-order logic.
The proof that K cannot be recognized by any nondeterministic tree-walking
automaton is long and complicated, and left out here.

4 Pebble automata

The results above suggest that a tree-walking automaton easily gets lost in a
tree; as remarked by Engelfriet and Hoogeboom in [7], “in a binary tree of which
all internal nodes have the same label, all nodes look pretty much the same”.
One way of solving this problem is to add pebbles.

A pebble automaton, as defined in [7], is an extended variant of a tree-walking
automaton, which can place pebbles on tree nodes during its run. Each pebble
automaton has a fixed set of pebbles, which are numbered 1, . . . , n. The au-
tomaton is defined as a tree-walking automaton, except it has two new types of
command: “place pebble i on the current node” and “remove pebble i from the
current node”; and a new type of test: “is pebble i on the current node?”. There
is an important restriction on stack discipline: pebble i can be placed only if
pebbles 1, . . . , i− 1 are on the tree, and pebble i can be removed only if pebbles
i + 1, . . . , n are not on the tree. Without the stack discipline, pebble automata
would go beyond regular languages, and have undecidable emptiness, even on
words and with two pebbles.

A configuration of the pebble automaton is written as (p, v, v1, . . . , vi), where
p is the state, v is the current node and v1, . . . , vi are the nodes with pebbles
1, . . . , i. Note that the length of the tuple is variable and corresponds to the
number of pebbles on the tree. In the initial configuration, no pebbles are placed,
the current node is the root, and the state is the initial state.

Example 3. The languageK from in Theorem 6 can be defined by a deterministic
pebble automaton with one pebble. In particular, pebble automata are more
expressive than tree-walking automata. The automaton does a depth-first search
traversal of the tree. Whenever it enters a node v (be it for the first, second, or
third time), it does the following subcomputation to see if v is on the branching
structure: place the pebble on the node v, and then do a depth-first search to
test if both the left and right subtrees of v contain leaves with the label a. This
way, the automaton can use its finite state memory to know how many (modulo
two) ancestors of the currently processed node v are in the branching structure.

It is not immediately obvious that pebble automata recognize regular lan-
guages. In a later section on logic, we will show that every pebble automaton
can be simulated by a formula of first-order logic with transitive closure. Since
the latter logic can only define regular languages, we obtain:

8



Theorem 7
For every pebble automaton, there is an equivalent branching automaton.

Unfortunately, the coding of pebble automata into branching ones is necessar-
ily non-elementary. This holds already for words. Indeed consider the following
sets of words. The set W1 contains two words a and b. The set Wn+1 contains
all words of the form

w1a1w2a2 · · ·wkak with a1, . . . , ak ∈ {0, 1} ,

where w1 < · · · < wk are all the words inWn, ordered lexicographically. The size
of the words in these sets grows nonelementarily with n, i.e. with an exponen-
tial blowup when passing from n to n+ 1. Furthermore, one can write a pebble
automaton over words with O(n) states and pebbles that accepts the set Wn.
As the shortest word recognized by a nonempty pebble-free word automaton is
bounded by the number of states, it follows that pebble removal incurs a nonele-
mentary blowup (there is a matching upper bound, i.e. a tower of exponentials
of height linear in the number of pebbles). A similar argument can be used to
show that the emptiness problem for pebble automata, both for words and trees,
is nonelementary. A more precise analysis can be found in [14].

The non-expressivity results for tree-walking automata can be extended to
pebble automata:

Theorem 8 ([4])
Pebble automata do not recognize all regular tree languages. Furthermore, for
each n ∈ N, pebble automata with n+1 pebbles recognize strictly more languages
than pebble automata with n pebbles. Likewise for deterministic pebble automata.

We should add here that there are two variants of pebble automata in the
literature, called weak and strong. In the weak variant, which is the one defined
above, the remove command requires that the removed pebble is on the current
node. In the strong variant, there is no such restriction, and a remove pebble
command can be executed from any node. Note that even in the strong variant,
the stack discipline allows removing only the most recently placed pebble.

Theorem 9 ([4])
Weak pebble automata with n pebbles have the same expressive power as strong
pebble automata with n pebbles. Likewise for deterministic pebble automata.

There are two important open problems regarding pebble automata:

1. Is every pebble automaton equivalent to a deterministic one?
2. Are languages recognized by pebble automata closed under complement?

From [4] it follows that there is no constant c such that every k pebble automaton
is equivalent to a deterministic one with c · k pebbles. However, determinization
may still be possible with a non-linear blowup in the number of pebbles.

An extension of Proposition 4 shows that deterministic pebble automata are
closed under complement, see [11]. In particular, a positive answer to the first

9



question would imply a positive answer to the second question. Finally, a positive
answer to the second question would imply that pebble automata capture exactly
first-order logic with transitive closure, a logic described later on in the paper.

4.1 Invisible pebbles

As Theorem 8 shows, even pebble automata do not have the full expressive power
of branching automata. In this section, we present a variant of pebble automata
that do.

Fix a branching automaton, with states Q. Consider the following natural
algorithm for finding the state to which a tree evaluates. We start at the root.
First, we recursively call the algorithm and calculate the state q0 to which the
left subtree evaluates. We place a pebble marked with state q0 on the left subtree.
Then, we recursively call the algorithm and calculate the state q1 to which the
right subtree evaluates. Using the states q0, q1 and the label of the root, we can
calculate value of the whole tree.

This procedure can be simulated by a pebble automaton, albeit using an
unbounded number of pebbles (each with a color from Q). In general, automata
with an unbounded number of pebbles, even if these are placed and removed in a
stack discipline, have undecidable emptiness. However, the automaton described
above has an important property: only the value and position of the most recently
placed pebble is ever inspected. This is the motivation for defining automata with
invisible pebbles, which were introduced in [9]. The name invisible refers to the
fact that all pebbles, except the most recently placed one, are invisible to the
automaton.

An automaton with invisible pebbles can place an unbounded number of peb-
bles, furthermore each pebble comes with a color, taken from a finite set C. A
configuration of the automaton consists of a head position, a state, as well as
a stack x1 · · ·xn of pebbles (each pebble is described by its color, and the tree
node where it is placed). The stack refers to the times when the pebbles where
placed, with xn being the most recent one. A command “place a new pebble at
the current node, with color c ∈ C” extends the stack with a new pebble xn+1, of
color c, located in the head position. As with standard (weak) pebble automata,
only the pebble on top of the stack can be removed from the tree, and only when
the head is over this pebble. The key question is how the pebbles are inspected:
the automaton can only test if the current node contains the top pebble on the
stack, and if so, what is the color of this pebble. Note that when the automaton
removes a pebble, the next newest pebble on the stack becomes visible.

Theorem 10
Automata with invisible pebbles capture exactly the regular tree languages.

Proof
The discussion at the beginning of this section shows how an automaton with
invisible pebbles can simulate a branching automaton. For the converse impli-
cation, we do only a very rough sketch. We will use alternating tree-walking

10



automata. (Recall that alternating tree-walking automata recognize exactly the
regular tree languages.) An alternating tree-walking automaton can be seen as
recognizing a property of nodes, by selecting the nodes from which it admits an
accepting run, beginning in the initial state.

Fix an automaton with invisible pebbles. Let p, q be states of the automaton,
c a pebble color, and i ∈ N. In a given tree, we define loopi(p, q, c) to be the set of
nodes v where the automaton can do a loop from state p to state q, assuming that
the most recently placed pebble is in the node v and has color c. Furthermore,
the loop is not allowed to remove this pebble (and therefore does not depend on
the positions of the older pebbles, which remain invisible) and can use at most
i new pebbles at any given moment. Note that the same node v describes the
position of the top pebble, and the source and target node of the loop.

The key observation is that for any given p, q, c and i, one can write an alter-
nating tree-walking automaton that recognizes the set loopi(p, q, c). As described
above, the alternating automaton is started in a node v, and it accepts whenever
v belongs to loopi(p, q, c). This automaton does not depend on i and is allowed
to query membership in sets loopi−1(p′, q′, c′), for various values of p′, q′, c′. The
general idea is that the alternating automaton separately inspects the part of
the tree below the node v, and separately inspects the part of the tree above the
node v. Therefore, it need not have the position v of the pebble marked on the
tree.

When taken over all possible values of p, q, c, these simulating alternating
automata can be seen as a transformation on set tuples

{loopi−1(p, q, c)}p,q,c 7→ {loopi(p, q, c)}p,q,c .

Since alternating tree-walking automata can simulate fix-points of such trans-
formations, there is an alternating tree-walking automaton for each of the sets⋃

i≥0

loopi(p, q, c) .

Finally, the sets above contain sufficient information to determine whether a tree
gets accepted or not. �

5 Caterpillar expressions

Caterpillar expressions [5] are to tree-walking automata as regular expressions
are to word automata. In other words, caterpillar expressions are an equivalent
syntax for tree-walking automata, where the Kleene star is used to replace states.

Fix an alphabet Σ. The caterpillar alphabet over Σ consists of two types of
letters: commands and tests. The first type of letter is a command, used to change
the node: goleft, goright and goparent. The second type of letter is called a
test, these are boolean combinations of the same tests that are allowed in tree-
walking automata, which are written leaf, isleft, isright and a, respectively.
A word over the caterpillar alphabet is called a caterpillar word and describes

11



paths in trees over Σ. For instance, the caterpillar word isleft a goleft b
describes paths that begin in a left-child node with label a, and then go to
its left child, which must have label b. If the tree and source node are fixed, a
caterpillar word may evaluate to at most one path.

A caterpillar expression is a regular set of caterpillar words, given by a regular
expression. In a given tree, a caterpillar expression evaluates to a set of paths.
A caterpillar expression can be treated as a tree language, by selecting those
trees where the expression evaluates to a non-empty set. The above definition
could equivalently be restricted to paths that begin and end in the root, since a
caterpillar expression if a node is the root.

Proposition 11 Caterpillar expressions define the same tree languages as non-
deterministic tree-walking automata.

Proof
As in the Kleene theorem. In the nontrivial part, from tree-walking automata to
caterpillar expressions, for every two states p, q of the automaton one defines an
expression that describes runs beginning in p and ending in q. �

What are the caterpillar expressions that correspond to pebble automata?
One solution would be to add pebbles to caterpillars. Another, more elegant,
solution can be adapted from the work of Segoufin and ten Cate in [16]. The
idea is to add a nesting test and a cutting command:

– Nest. If c is a caterpillar expression, then 〈c〉 is a test. This test succeeds in
a node v in a tree t if the caterpillar expression c selects at least one path
that begins in v.

– Cut. There is a new command, called cut. This command modifies the whole
tree, instead of the current node: it removes all nodes except for the current
node and its descendants. In particular, the current node becomes the root,
as far as subsequent tests are concerned.

Note that if the caterpillar c does some cutting, the destructive effects are not
seen by a caterpillar that uses c in a nested test 〈c〉. There are two variants of
cutting caterpillars. The first is when nesting is only allowed positively, i.e. it
cannot be used under the scope of negation. When all nesting is positive, the
expression is called a positive cutting caterpillar. The unrestricted expressions,
where negation of nesting is allowed, are simply called cutting caterpillars.

Theorem 12
Positive cutting caterpillar expressions define the same tree languages as pebble
automata.

One inclusion is fairly simple: to simulate a positive cutting caterpillar by a
pebble automaton. In a preprocessing step, by adding some nesting, the caterpil-
lar is modified so that it issues at most one cut command at each level of nesting.
Whenever the cutting command is used, the simulating pebble automaton places

12



a pebble to delimit the cut tree. Whenever a nested test is executed, a pebble is
also placed to mark the return point after the test is completed.

The hard part is the converse direction, which can be done using the decom-
position lemmas from [4].

What corresponds to cutting caterpillars without the positive restriction?
The answer is given in Theorem 15 in the next section, which shows that cut-
ting caterpillars have exactly the same expressive power as first-order logic with
transitive closure.

6 Logic

A classical idea in formal language theory, dating at least back to Büchi, is to
use logic formulas to define regular languages of words or trees. For trees, a logic
formula quantifies over nodes in the tree, and it uses predicates to test labels of
these nodes, and structural relationships between these nodes. For instance, the
formula

∃x ∃y left(x, y) ∧ a(x) ∧ b(y)

holds in trees where there exist two nodes x, y, such that the node y is a left
child of the node x, the node x has label a, and the node y has label y. A formula
of logic without free variables, like the one above, defines a tree language: this
is the set of trees where the formula is true. In this paper we are interested
in formulas that allow binary predicates x ≤ y, left(x, y), right(x, y) for testing
the descendant and left/right child relationship, and for each letter a in the
alphabet, a unary predicate a(x) for testing tree labels. From now on, we use the
name first-order logic for formulas that quantify over nodes and use the above
mentioned predicates. An important extension is monadic second-order logic,
where formulas are additionally allowed to quantify over sets of nodes. A shown
in [17], monadic second-order logic has the same expressive power as branching
automata, i.e. captures exactly the regular languages. In particular, monadic
second-order logic is strictly more expressive than tree-walking automata. What
about first-order logic?

Theorem 13 ([2])
The expressive powers of first-order logic and tree-walking automata are incom-
parable.

Proof
It is not hard to produce a tree-walking automaton recognizing a language that
cannot be defined in first-order logic. One example is an automaton that tests
if the left-most path has even length, another is an automaton for the language
of boolean expressions defined in Example 2. An Ehrenfeucht-Fraïsse argument
can be invoked to show that neither of the languages described above can be
defined in first-order logic.

13



The converse result is more surprising, although it had already been conjec-
tured in [6]. It turns out that the language K used in Theorem 6 can be defined
in first-order logic. The clever idea, from [13], is that the following language M
can be defined in first-order logic: “trees where every leaf has even depth (i.e.,
an even number of proper ancestors)”. We only describe the formula for the lan-
guage M , from this formula it is not hard to obtain the formula for K. As far
as the language M is concerned, there are three types of trees: M0 = M , trees
where every leaf has even depth; M1, trees where every leaf has odd depth; and
M⊥, trees where some leaves have even depth, and some leaves have odd depth.
There are two observations:

– Take a tree in M0 (resp. M1). If we begin in the root and take the path
left child, right child, left child, right child, etc., we end up in a leaf that is
a right (resp. left) child. Using this observation, one writes a formula ϕ of
first-order logic that is true in all nodes with a subtree in M0 and false in
all nodes with a subtree in M1.

– If we take a tree in M⊥, and a deepest node x in the tree whose subtree is
still in M⊥, then the left subtree of x belongs to M0 and the right subtree
of x belongs toM1, or vice versa. Therefore, a tree belongs toM⊥ if and only
if it has a node with exactly one child that satisfies the formula ϕ above.

�

If not first-order logic, then what is the appropriate logic for tree-walking au-
tomata?We cannot use full monadic second-order logic, since this is too powerful,
as Theorems 6 and 8 show. It turns out that the best logic is transitive closure
logic, which is obtained from first-order logic by adding a transitive closure op-
erator. Let ϕ(x, y) be a formula. By applying the transitive closure operator, we
get the formula (TCx,y ϕ)(x, y), which is equivalent to the following infinitary
disjunction:∨
i≥2

∃z1, . . . , zi x = z1 ∧ ϕ(z1, z2) ∧ ϕ(z2, z3) ∧ · · · ∧ ϕ(zi−1, zi) ∧ zi = y .

Note that the formula ϕ may have free variables other than just x, y. These
other free variables are also free variables of the transitive closure. Note that here
we use only transitive closure of binary relations. For relations of higher arity,
transitive closure leads to non-regular languages, a more detailed treatment can
be found in [8].

For instance, the following formula defines the ancestor predicate x ≤ y in
terms of the two children predicates:

TCx,y

(
x = y ∨ left(x, y) ∨ right(x, y)

)
.

Lemma 1. Every language recognized by a pebble automaton can be defined in
transitive closure logic.

Proof
We first do the proof for tree-walking automata. We claim that for every two

14



states p, q of the automaton, one can write a formula ϕp,q(x, y) of transitive
closure logic that selects x, y if and only if the automaton admits a run from
(p, x) to (q, y). To prove the claim, it is most convenient to compile the automaton
into a caterpillar expression, which can easily be translated into transitive closure
logic. The translation is by induction on the expression’s size, with the transitive
closure operation used in place of the Kleene star.

For pebble automata we use the same construction, only we need to extend
the formula with variables that mark the locations of the pebbles. Let then A
be a pebble automaton with n pebbles. For i = 1, . . . , n and states p, q we write

(p, x, x1, . . . , xi)→ (q, y, x1, . . . , xi) (1)

if A admits a run that begins in configuration (p, x, x1, . . . , xi) and ends in
configuration (q, y, x1, . . . , yi). Furthermore, this run is not allowed to move any
of the pebbles 1, . . . , i along the way, although it may place and remove pebbles
i+1, . . . , n any number of times. We write→∗ for the transitive closure of→. We
claim that the property in (1) can be expressed by a formula ϕp,q(x, y, x1, . . . , xi)
of transitive closure logic.

The proof of the claim is by induction on n− i, with the same construction
in both the induction step and base. It is convenient to see (1) as the run of a
tree-walking automaton B, which is allowed to do two more kinds of test:

– For j = 1, . . . , i, the automaton B can ask if pebble j is on the current node.
– If i < n, then for any two states r, s of A, the automaton B can ask if the

current node z satisfies

(r, z, x1, . . . , xi, z)→∗ (s, z, x1, . . . , xi, z) .

Note that the run mentioned in the second test above begins with pebble i+ 1
placed on the current node, and can be described by a formula of transitive
closure thanks to the induction assumption. Since a pebble can be removed only
when it is present on the current node, the second type of test can be used to
simulate all subruns of A that involve pebbles i+ 1, . . . , n. Whether or not the
simulating automaton has a run witnessing (1) can be expressed by a transitive
closure formula, using the same ideas as for tree-walking automata. The only
difference is that the two new types of tests require using the free variables
x1, . . . , xi that describe the positions of pebbles 1, . . . , i. This is not a problem,
since the formula in the transitive closure operator is allowed to depend on
external free variables. �

A closer look at the above proof reveals that the constructed formula belongs
to positive transitive closure logic, i.e. the transitive closure operator is not used
under the scope of negation. Actually, this is an exact characterization:

Theorem 14 ([7])
Pebble automata have the same expressive power as positive transitive closure
logic.

15



It is worth pointing out that the converse translation, from logic to automata,
was done originally for the strong pebble model, where pebbles can be removed
even when not placed on the current node. However, thanks to Theorem 9, we
know that (weak) pebble automata are the same as strong pebble automata.

By restricting the nesting of the transitive closure operator, one can also
obtain a characterization of tree-walking automata without pebbles [12].

What about full transitive closure logic, where there is no restriction on the
use of negation? We cite a new, unpublished result:

Theorem 15
Cutting caterpillars have the same expressive power as transitive closure logic.
Both are weaker than branching automata.

References

1. A. V. Aho and J. D. Ullman. Translations on a context-free grammar. Information
and Control, 19:439–475, 1971.

2. M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all
regular languages. In ACM Symposium on the Theory of Computing, pages 234–
243, 2005.

3. M. Bojańczyk and T. Colcombet. Tree-walking automata cannot be determinized.
Theoretical Computer Science, 350(2-3):255–272, 2006.

4. M. Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive power
of pebble automata. In International Colloquium on Automata, Languages and
Programming, volume 4051 of Lecture Notes in Computer Science, pages 157 –
168, 2006.

5. A. Brügemann-Klein and D. Wood. Caterpillars. A context specification technique.
Markup Languages, 2(1):81–106, 2000.

6. J. Engelfriet, H. Hoogeboom, and J. Van Best. Trips on trees. Acta Cybernetica,
14(1):51–64, 1999.

7. J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble automata. In G. Paum
J. Karhumaki, H. Maurer and G. Rozenberg, editors, Jewels Are Forever, Contri-
butions to Theoretical Computer Science in Honor of Arto Salomaa, pages 72–83.
Springer-Verlag, 1999.

8. J. Engelfriet and H. J. Hoogeboom. Automata with nested pebbles capture first-
order logic with transitive closure. Logical Methods in Computer Science, 3(2:3),
2007.

9. J. Engelfriet, H. J. Hoogeboom, and B. Samwel. XML transformation by tree-
walking transducers with invisible pebbles. In PODS, pages 63–72, 2007.

10. T. Kamimura and G. Slutzki. Parallel two-way automata on directed ordered
acyclic graphs. Information and Control, 49(1):10–51, 1981.

11. A. Muscholl, M. Samuelides, and L. Segoufin. Complementing deterministic tree-
walking automata. Information Processing Letters, 99(1):33–39, 2006.

12. F. Neven and T. Schwentick. On the power of tree-walking automata. In Inter-
national Colloquium on Automata, Languages and Programming, volume 1853 of
Lecture Notes in Computer Science, 2000.

13. A. Potthoff. First-order logic on finite trees. In Theory and Practice of Software
Development, volume 915 of Lecture Notes in Computer Science, pages 125–139,
1995.

16



14. M. Samuelides and L. Segoufin. Complexity of pebble tree-walking automata. In
FCT, pages 458–469, 2007.

15. M. Sipser. Halting space-bounded computations. In Foundations of Computer
Science, pages 73–74, 1978.

16. B. ten Cate and L. Segoufin. XPath, transitive closure logic, and nested tree
walking automata. Submitted.

17. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1968.

17


