Toward Model Theory with Data Values

Mikolaj Bojanczyk and Thomas Place*

University of Warsaw

Abstract. We define a variant of first-order logic that deals with data
words, data trees, data graphs etc. The definition of the logic is based on
Fraenkel-Mostowski sets (FM sets, also known as nominal sets). The key
idea is that we allow infinite disjunction (and conjunction), as long as
the set of disjuncts (conjunct) is finite modulo renaming of data values.
We study model theory for this logic; in particular we prove that the
infinite disjunction can be eliminated from formulas.

1 Introduction

This paper uses Fraenkel-Mostowski sets (FM sets, also known as nominal sets)
to study logics that describe properties of objects such as data words, data trees,
or data graphs.

Suppose that D is an infinite set of data values, also called atoms or ur-elements,
whose elements can only be compared for equality. A data word is a word (trees
and graphs can also be considered, of course) whose positions are labelled by an
alphabet that is not necessarily finite, but which can refer to data values in a
finite way, such as in the following examples of alphabets.

D {0,1}xD (D*uD) {0,1} x {{c,d} : c,d € D}.

The statement “data values can only be compared for equality” is formalized by
saying that properties of data words should be invariant under the action of the
group of bijections of D). The statement “refer to data values in a finite way” is
formalized by saying that the alphabet contains finitely many elements, modulo
bijections of data values. For instance, modulo bijections, the set D? U D has
three elements, which look like this: (d, e), (d,d) and d.

Properties that are invariant under the action of the group of bijections include:

1. Data words over the alphabet D where all positions have different labels.

2. Data words over the alphabet D with at least six distinct letters.

3. Graphs with edges labelled by D? where for each vertex, all outgoing edges
have the same data value on the first coordinate.

There is a more relaxed notion of invariance: a property is called finitely supported
if there is a finite set of data values C' C D, such that the property is invariant
under the action of permutations that preserve C. The set C'is called the support.
For instance, if we choose some two elements ¢, d € D, then

* Both authors supported by ERC Starting Grant “Sosna”. A full version of this paper
can be found at www.mimuw.edu.pl/~bojan.

4. Data words over alphabet D which begin with ¢ and end with d.

is a finitely supported property, namely supported by C' = {c, d}.

To give examples of properties that are not finitely supported, one needs ad-
ditional assumptions on . For instance, if we assume that D is the natural
numbers, then “words in D* which contain only even numbers” is not a finitely
supported property of data words.

The notion of finitely supported sets is the cornerstone of “permutation models”
of set theory, which were studied by logicians such as Fraenkel and Mostowski
starting in the 1920’s. Permutation models were rediscovered, under the name
“nominal sets”, by Gabbay and Pitts in [3], see also [4], as an elegant approach
to deal with binding and fresh names in the syntax of programming languages
and logical formulas. When dealing with syntax, one thinks of data values as
being variable names. Finally, these sets were rediscovered by the automata
community, as an approach to describing languages of data words [2].!

Logic on data words and data trees. The direct predecessor of this paper is [2],
which uses FM sets (under the name nominal sets) to talk about automata on
data words. In the present paper, we use FM sets to talk about logics on data
words (and more general structures). We define:

— A notion of FM relational structure. This notion generalizes data words, data
trees, data graphs, etc. One can apply a permutation of data values to an
FM relational structure, and get another FM relational structure.

— A notion of FM first-order logic. The formulas are evaluated in FM relational
structures. The formulas form an FM set. The previously stated examples of
properties of data words and data graphs are definable in the logic, including
example 4.

Logics for data words have been extensively studied in the special case of data
words and data trees with alphabets of the form A x D, where A is a finite set. In
this special case, the approach of [6] is to use: a binary predicate x ~ y which says
that two positions carry the same data value; as well as a unary predicate a(z)
for each a € A. The satisfiability problem for the logic is undecidable for most
variants, see [6]. In the special case of alphabets A x D, our abstract definition
of FM first-order logic coincides with the existing definition.

Even for words, the choice of logic is not obvious for some alphabets. Consider
the alphabet “sets of data values of size at most 3”. A natural predicate would
be x C y, saying that the set in the label of x is a subset of the set in the label

! There are two names for the sets that can be used: “FM sets” as in mathematical
logic, or “nominal sets” as in the study of name binding. In this paper, we decided
to use the name “FM sets”. The main reason is that our application of Frankel-
Mostowski set theory is not principally concerned with the use of names and their
binding. An additional reason is that, like in Fraenkel-Mostwoski set theory, but
unlike in the study of name binding, we are often interested in data values with
additional structure, such as a linear order.

of y. Another kind of predicate, not definable in terms of x C y, could be
[z U Uy =k for n,k € N.

Which predicates should be allowed in the logic? Our definition implies that they
are all allowed. We do not address the question of a minimal choice of predicates,
i.e. which predicates can be defined in terms of others.

Parse trees. On a definitional level, the principal idea in this paper is to allow
parse trees of formulas where the branching degree is not finite, but finite modulo
bijections of data values (we call this orbit-finite branching). In normal sets, the
parse tree of an expression (a formula of first-order logic, a regular expression,
an arithmetic expression, etc.) is a finite tree. In FM sets, one can have a more
relaxed parse tree: for each node, the set of child subtrees is only required to
be finite modulo bijections of data values?. For instance, if for each data value
d € D we have a formula ¢4, and the function d — ¢y is finitely-supported, then
it makes sense to consider the infinite disjunction \/ ., @4. On a technical level,
the main contribution of this paper is Theorem 5.2 which says that the infinite
disjunction can be eliminated from formulas.

Related work. A logic for nominal sets, called nominal logic, was studied by Pitts
in [5]. Nominal logic and the logic from this paper have different goals: nominal
logic is designed to axiomatise nominal sets, while the formulas in this paper
are used to define languages of data words and similar objects. Also, the logics
are defined differently: the formulas and models for nominal logic are defined in
normal set theory; while the formulas and models in this paper are defined inside
FM set theory?. Finally, the principal technical result of this paper is elimination
of infinite disjunction, this result cannot be even stated in the language of [5].

Acknowledgement. We would like to thank Nathanaél Fijalkow, Bartek Klin,
and the anonymous referees for their comments and suggestions.

2 Preliminaries

Data symmetry. The notion of FM sets is parametrized by a set of data values
D, and a group G of bijections on . The group G need not contain all bijections
of . The idea is that ID has some structure, and G contains the structure-
preserving bijections. The pair (D, G) is called a data symmetry. In this paper,
we use the following data symmetries:

2 This appears already explicitly in [1], where terms of A-calculus have orbit-finitely
branching parse-trees. Implicitly, the idea goes back the work of Gabbay and Pitts,
where the whole point of nominal sets was to model the use of binding.

3 One could say that our logic is an internal logic for FM sets, while the logic of [5] is
external.

— The set D is empty, and G has only the identity element. We call this the
classical symmetry. FM sets in the classical symmetry are normal sets.

— The set D is a countable set, say the natural numbers. The group G consists
of all bijections on D. We call this the equality symmetry. FM sets in the
equality symmetry are the same thing as nominal sets [3, 4].

— The set D is the vertices of the undirected countable homogeneous graph
(also called the Rado graph), and the group G is the group of automorphisms
of this graph. We call this the graph symmetry.

FM set. Consider first the cumulative hierarchy of sets with data values, which
is a hierarchy of sets indexed by ordinal numbers and defined as follows. The
empty set is the unique set of rank 0. A set of rank « is any set whose elements
are sets of rank smaller than «, or data values. A permutation 7 of data values
can be applied to a set X in the hierarchy, by renaming the elements of X, and
the elements of elements of X, and so on. The resulting set, which has the same
rank, is denoted by X - .

A set C of data values is said to be a support of a set X in the cumulative
hierarchy if X -7 = X - o holds for every permutations 7, o in the group from the
data symmetry which agree on elements of C. A set is called finitely supported if
it has some finite support. We use the name FM set for a set in the cumulative
hierarchy which is hereditarily finitely supported, which means that it is finitely
supported, the sets in it are finitely supported, and so on?.

The support of an FM set is not unique, e.g. supports are closed under adding
data values. A set with empty support is called equivariant.

In many respects, FM sets behave like normal sets. For instance, if X,Y are
FM sets, then X x Y, X UY, X* and the finite powerset of X are all FM sets.
Another example is the family of subsets of X that have finite supports. The
appropriate notion of a function between FM sets X and Y is that of a finitely
supported function, which is a function from X to Y whose graph is an FM set.
Observe that FM sets in the classical symmetry are simply sets (equipped with
the only possible action). Therefore the classical symmetry corresponds to clas-
sical set theory, without data values.

Orbit-finite FM sets. Suppose that X is an FM set. For a set of data values
C, define the C-orbit of an element x € X to be the set {z -7 : 7 € G¢}. If
C supports X, then the C-orbits form a partition of X. The set X is called
orbit-finite if it the partition into C-orbits has finitely parts, for some C' which
supports X. For some data symmetries, including the classical, equality and
graph symmetries discussed in this paper, the notion of orbit-finiteness does not
depend on the choice of support [1]. In other words, for these data symmetries,
if two sets C' and D support an FM set X, then X has finitely many C-orbits if
and only if it has finitely many D-orbits.

In this paper, we are mostly interested in FM sets that are orbit-finite.

4 The definition here is based on Definition 10.6 in [4], except that we use the name
FM set for what [4] calls elements of HFS.

3 Relational Structures

The discussion in this section — and the next Section 4 — makes sense in any
data symmetry. Fix some data symmetry (D, G) for this section and the next.
One of the key ideas of finite model theory in computer science is that a combi-
natorial object, such as a word, tree, or graph, can be treated as a model for a
logical formula. For instance, in the case of words over an alphabet {a, b}, a word
with n positions can be interpreted as a relational structure where the domain is
the set of positions {1,...,n}, there are two unary predicates a(z) and b(x) for
labels, and there is a binary predicate x < y for the order on positions. Using this
interpretation, one can define properties of words using first-order logic, e.g. the
set of words that end with b is defined by the formula

Vady x <yAbly).

The goal of this paper is to define a similar notion of logic for combinatorial
objects that contain data values. In particular, our definition should cover data
words and data trees.

In standard sets, not FM sets, a relational structure can be seen as a hyper-edge
colored directed hypergraph. For instance, the relational structure corresponding
to the word aab is the following hypergraph.

We adapt this definition to FM sets as follows. For instance a binary predicate
will not just say yes/no to each directed edge, but it can also color the edge,
e.g. by a data value.

An FM predicate R consists of an orbit-finite FM set colors(R) and a natural
number arity(R). An FM signature X is a finite set of FM predicates. An FM
relational structure A over X' consists of:

— A set dom(%), called the domain of the structure, which is an FM set.
— For every predicate R in the signature, a finitely supported partial function

R* : dom()™% () _, colors(R),
called the interpretation of R.

For a fixed FM signature X, the set of FM relational structures over X' is itself
a FM set, because an FM relational structure is nothing other than a domain
(which has empty support, since it is equipped with the trivial action) and a finite
tuple of finitely-supported partial functions®. Therefore, if 2 is a FM relational

® Formally speaking, this is an FM class, because all the domains do not form a set.

structure and w € G, then also 2 - 7 is a FM relational structure. Both 2l and
A - m have the same domains, only different interpretations. If R is a predicate
of arity n, and x1,...,x, are in the domain of 2, then

Rm‘ﬂ(ith. .. ,{En) = (Rg‘(mla' s 7$n)) T

In particular, either both sides of the equality above are defined, or neither are
(recall that interpretations are partial functions.)

An FM relational structure is called finite if its domain is finite. In such a case,
an interpretation is a finite tuple of colors. A tuple of objects taken from an FM
set necessarily has finite support, and therefore in the case of finite relational
structures, the requirement on finitely supported interpretations is redundant.

Ezample 3.1. Data words can be modeled as FM relational structures. We use
the name FM alphabet for any orbit-finite set A. To an FM alphabet A, we
associate an FM signature Y4 with two predicates:

— The alphabet predicate R4, which has arity 1 and colors A.
— The order predicate R, which has arity 2 and only one color {<}.

For a data word w = a1 ---a, € A*, we define a corresponding FM relational
structure 2, over the signature X4 as follows. The domain dom(2l,,) is the set
{1,...,n} of positions. The interpretation of the alphabet predicate maps each
position to its label, and the interpretation of the order predicate maps a pair
(1,7) to < if and only if ¢ < j.

FEzample 3.2. Edge-labelled directed data graphs can be modeled as FM rela-
tional structures. To an FM alphabet A, we associate an FM signature X4 with
one predicate R4 with arity 2 and colors A, called the edge label predicate. A
structure over this FM signature describes a directed graph, where edges are
labelled by A. Because the interpretation is a partial function, every ordered
pair of nodes is connected by zero or one edge.

4 Logic

In this section, we define a variant of first-order logic which is used to define
properties of FM relational structures. Before giving the actual definition, we
enumerate the postulates it should satisfy:

1. The set of formulas is itself an FM set, and the satisfaction relation is equiv-
ariant. That is

AEe iff vk -w

holds for every m € G, FM relational structure 2 and formula .
2. Orbit-finite disjunction is allowed. That is, if I" is an orbit-finite FM set of
formulas, then also \/ I" is a formula.

Below, in Section 4.1, we give a definition which satisfies the above postulates.

4.1 Definition of FM first-order logic

To choose the predicates for our logic, we use a semantic approach: every isomorphism-
closed property of a tuple of elements is going to be a predicate. An isomorphism
between two FM relational structures 20 and B is a finitely supported bijection

f: dom(2A) — dom(2A)
such that for every k-ary predicate R in the signature, we have
R*(ay,...,ax) = R®(f(a1),..., flap)) for every ay,...,a; € dom().

Ezample 4.1. Consider the equality symmetry, and a signature with one unary
predicate P, whose colors are ID. Suppose that 1,2 are data values. Let 2 be a
structure whose domain is {1}, and where the interpretation is P%(1) = 1. Let B
be a structure whose domain is {2}, and where the interpretation is P®(2) = 1.
Then A and B are isomorphic.

An atomic type of arity n is (the isomorphism type of) a structure 2, together
with an n-tuple of elements, such that every element of the domain of 2 appears
in the tuple. The domain of the atomic type has at most n elements, but might
be smaller if the tuple contains repetitions. We write atoms,,(X) for the set of
atomic types of arity n. If 2 is a structure, and a is a (possibly repeating) tuple
of elements in dom(2(), then we define 2|a to be the atomic type obtained from
2 by only keeping the elements from a.

Fact 1 In the classical, equality and graph symmetries, the set atoms,(X) is
orbit-finite.

A basic type of arity n is defined to be any finitely supported subset of atoms,, (X).

Ezample 4.2. Consider the FM alphabet (Ej), which is defined to be the family
of two-element subsets of D). Consider data words over this alphabet, as in Ex-
ample 3.1. A basic type B of arity 2 could say that that the set in the label of
the first distinguished position has non-empty intersection with the set in the
label in the second distinguished position. This basic type is not only finitely
supported, but also equivariant.

Ezample 4.3. This example also concerns data words over (]g)) In this example,
as in subsequent examples, we assume that the data values are natural numbers.
A non-equivariant basic type Bg of arity 2 says that the sets in the label of the
first and second distinguished position both contain the data value 9 € D.

We define FM first-order logic for a relational signature X as follows. As pred-
icates, we use basic types in the following sense: a basic type B of arity n is a
predicate of arity n, with the semantics

A,a = Blxy,...,z5) iff Ala € B.

Furthermore, formulas can use boolean combinations {V, A, =} as well as quan-
tifiers {V,3}. We will add one more connective, but to define this connective
we need to discuss the action of G on formulas. When applying a permutation
m € G to a formula ¢, the structure of the formula, the connectives V, A, =, V, 3
as well as the variables are not changed. The only thing that changes is the basic
types: a set of atomic types B is mapped to the set B - 7.

Ezxample 4.4. Consider the basic type Bg from Example 4.3, and the formula
23y x # y A By(z,y).

This formula, call it ¢g, says that the data value 9 appears in the label of at
least two positions. Consider a permutation 7 € G, which maps 9 to 8. Then
the formula g - 7 says that the data value 8 appears in the label of at least two
positions.

It is not difficult to see that every formula has finite support. The reason is that
every formula uses a finite number of basic types, and each basic type has finite
support by definition.

We now define the remaining connective, which is called orbit-finite disjunction.
Consider an orbit-finite FM set of already defined formulas I". We allow a dis-
juction over this set \/ I", with the expected semantics. Orbit-finite disjunction
is the last connective of the logic, and the definition of FM first-order logic is
now complete.

Ezxample 4.5. Consider the formula ¢g in Example 4.4. This formula can be
defined for any data value d, not just 9, and it is easy to see that the set {pg4 :
d € D} is an orbit-finite FM set of formulas. Therefore, we can use the orbit-finite
disjunction

\/{(pd :d € D} also written as \/ ©d.
deD

The disjunction above says that some data value appears in the label of at
least two positions. Observe that the above formula can be expressed, without
orbit-finite disjunction, by using the predicate B from Example 4.2:

JxTy x # y A B(z,y).

Ezample 4.6. In the previous case, the set {4 : d € D} was equivariant. One
can also use non-equivariant sets, such as

\/ ¥d-
deD—{9}
Non-equivariant sets are useful for nesting formulas, e.g.
/\ \/ Pd-
e€D deD—{d}

The formula above says that there are two data values that appear in the label
of at least two positions.

5 Elimination of Orbit-Finite Disjunction

Recall that in Example 4.5, we were able to eliminate orbit-finite disjunction.
The technique was to push the disjunction into the basic types. This technique
can fail, e.g. in the graph symmetry, as shown by the following theorem.

Theorem 5.1. Consider the graph symmetry. Let L C D* be the set of words
dy - -+ dy, such thatn is even, all letters are distinct, and for everyi,j € {1,...,n}
there is no graph edge from d; to d;. This set is definable in FM first-order logic
with orbit-finite disjunction, but not by a formula without orbit-finite disjunction.

The main technical result of this paper is the following theorem, which says that
orbit-finite disjunction can be eliminated in the equality symmetry.

Theorem 5.2. Consider the equality symmetry. Every formula of FM first-
order logic is equivalent to a formula that does not use orbit-finite disjunction.

The proof can be found in the full version of the paper. It uses a notion of
functionality, which we believe to be of independent interest, and which is dis-
cussed in Section 6. When the colors used by the predicates are just the set D of
data values, Theorem 5.2 is straightforward. The main difficulty is dealing with
non-standard sets of colors. We illustrate this with the following examples which
show Theorem 5.2 in action for increasingly complicated sets of colors.

Ezample 5.3. Consider data words over the alphabet A = {a, b} xD. If a position
carries the letter (0,d) € A x D, then we say that that it has label o and data
value d. Consider the language: “some data value appears only on positions with
label a”. This language is expressed by the formula

\/ Jz d(z) AVz d(z) = a(z),
d

where d(x) is the basic type which holds for positions where the data value is d.
The orbit-finite disjunction in this formula can be eliminated by encoding the
data value d by a position y:

Ve & ~y = a(x),

where x ~ y says that x and y carry the same data value, also a basic type. The
same trick, of encoding a data value by a position, works for every formula over
this alphabet.

Ezxample 5.4. For k € N, consider the alphabet
Bk = {a,b} X ng(D),

which is like in the previous example, except that the second coordinate is now
not a single data value, but an (unordered) set of at most k data values. Let us

first study the case of £ = 2. Consider the language “some data value appears
(in the set) only on positions with label a”.

\/Hac (dex)AVz (d € z)=alx),

d
where d € z is a unary basic type, which selects positions that contain d. Let
us use the name witness for a data value d which satisfies the formula Vz (d €
x) = a(x). The trick from Example 5.3 was to encode a witness by a position.
This trick does not always work for the alphabet B. Consider for instance the
word

(@, {1})(b,{2,3})(a, {1,3})(a, {2,4})(a, {5,6})(a, {5,6})

The witnesses are the data values 1,4, 5, 6. The witness 1 can be defined in terms
of the first position: it is the unique data value in the set {1}, which appears
in the first position. The witness 4 can be defined in terms of two positions: it
is the unique data value which appears in the set {2,4} on the fourth position
but not in the set {2,3} on the second position. Finally, witnesses 5 and 6 can
only be defined as a set of size two; they cannot be distinguished. One can see
that these three types of witnesses are the only possible ones for k£ = 2. All of
these three types can be captured by the following formula, which does not use
orbit-finite disjunction:

Fy1 Iy (0 C y1 Ny2 C) = a(z),

where) C y; Ny2 C z is a basic type, which says that the intersection of the
sets of data values in y; and y- is non-empty and included in the set in x.

For k > 2, one needs more complicated expressions to define some data values,
such as: “the data value that appears in positions five, six and seven, but not
eight and two”. Also, one can have sets of up to k data values that cannot be
distinguished from each other.

5.1 Standard data words

Consider the special case where the models are data words as in Example 3.1 and
the alphabet is of the form Ag, xID, where Ag, is a finite set. As mentioned in the
introduction, there is an established logic for words over this kind of alphabet,
which has a predicate x < y for the position order, a predicate = ~ y for equal
data values, and a label predicate a(x) for every a € Ag, (note that this logic
does not allow orbit-finite disjnuctions). A simple consequence of Theorem 5.2
is the following theorem:

Theorem 5.5. Let Ag, be a finite set. Let L be an equivariant language over
the alphabet Agn X D. The following conditions are equivalent:

1. L is definable by a formula of FM first-order logic, possibly including orbit-
finite disjunction.

2. L is definable by a formula of the standard first-order logic for data words,
which has predicates for the position order x < y, equal data value x ~ y,
and the labels {a(x)}ac Ay, -

6 Functionality and locality

In this section we define a key concept for the proof of Theorem 5.2. Our proof
technique is to encode data values in elements of the domain of the relational
structure (which corresponds to positions in the case of data words). As illus-
trated in Example 5.4:

1. Sometimes, more than one element is needed to define a data value;

2. Sometimes, a data value can only be defined in combination with some in-
distinguishable other data value;

3. Sometimes, both problems above hold simultaneously.

This section is devoted to a study of how one can define a data value, or more
generally an element of some orbit finite set, in terms of a relational structure.

Functionality. In normal sets, without data values and group actions, the ex-
pression “f is a function of g” makes sense only when both f and g are functions
with a common domain. For instance, one can say “the area of a circle is a func-
tion of its radius”, which is formalized as two functions on the domain of circles,
the area and radius functions. Another example: “a person’s taste in football is
a function of their sympathy for Real Madrid”.

With data values, the notion of functionality makes sense for arbitrary objects.
Suppose that x is an FM set or a data value, likewise y. Let C be a finite
set of data values. We say that y is a C-supported function of = if there is a
C-supported function

f:X->Y such that r € X and y € Y

which maps x to y. In the spacial case of C = (), we say that y is an equivariant
function of z. (In the classical symmetry, which corresponds to normal sets, one
can always take X = {z}, Y = {y}. In this case, every y is an equivariant
function of every x, which is why the definition is not interesting.)

Ezample 6.1. The data value 2 is an equivariant function of the three-letter data
word 123. In this case X is the set of data words of length three, Y is D, and f
maps a word to its second letter (there are other choices for X, Y and f). The
data value 2 is an equivariant function of {2} € P(D). The data value 2 is not an
equivariant function of the set {1,2,3} € P(D), or of the empty set) € P(D).
The data value 2 is a {2}-supported function, but not a {3}-supported function,
of the data value 1.

We can now state the main theorem of this section which concerns the first issue
in the list at the beginning of this section: more than one element might be
needed to define a data value.

Theorem 6.2 (Local Functionality Theorem). Let X be an orbit-finite FM
set, and X an FM relational signature. Let C' be a finite set of data values that
supports X and X. There is some k € N such that for every x € X and every
nominal relational structure A, the following conditions are equivalent

— x is a C-supported function of A;
— 2 is a C-supported function of A|a, for some tuple a € (dom(A))".

The point of Theorem 6.2 is that the bound & depends on X, X and C, but not
on 2A. When proving Theorem 5.2, we use this result in the following form: if a
parameter i € I of an orbit-finite disjunction \/;.; ¢; is an equivariant function
of a model, then it is an equivariant function of a small tuple a, and the tuple
can be captured using k existential quantifiers.

7 Conclusions

We have defined a notion of first-order logic for models that talk about data
values. The main technical result is that orbit-finite disjunction can be eliminated
in the equality symmetry. Possibilities of future work include:

— Using orbit-finite disjunction, one gets a natural notion of star-free languages
of data words. Is this notion equivalent to FM first-order logic?

— Elimination of orbit-finite disjunction works in the equality symmetry, but
not in the graph symmetry. In which symmetries does it work? We conjecture
that it also works in the total order symmetry and the forest order symmetry,
see [1]. We intend to investigate this issue further.

— Can one use the syntax of FM first-order logic to define new fragments of
first-order logic on data words that have decidable satisfiability?

References

1. Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Slawomir Lasota. Towards
nominal computation. In POPL, pages 401412, 2012.

2. Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata with group ac-
tions. In LICS, pages 355-364, 2011.

3. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13(3-5):341-363, 2002.

4. Murdoch James Gabbay. Foundations of nominal techniques: logic and semantics
of variables in abstract syntax. Bulletin of Symbolic Logic, 17(2):161-229, 2011.

5. Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Inf.
Comput., 186(2):165-193, 2003.

6. Luc Segoufin. Automata and logics for words and trees over an infinite alphabet.
In CSL, pages 41-57, 2006.

