
A machine-independent characterization of
timed languages

Miko laj Bojańczyk and S lawomir Lasota

Institute of Informatics, University of Warsaw

Abstract. We introduce a variant of Fraenkel-Mostowski sets (known
also as nominal sets) that is well-suited for languages recognized by timed
automata. We state and prove a machine-independent characterization
of languages recognized by deterministic timed automata. Finally, in the
setting of Fraenkel-Mostowski sets we define a class of automata, called
timed register automata, that extends timed automata and is effectively
closed under minimization.

1 Introduction

This paper studies minimization of deterministic timed automata [2]. Existing
approaches to this problem explicitly minimize various resources used by an
automaton, such a locations or clocks, see [1, 7, 11–13]. We take a different ap-
proach, which abstracts away from the syntax of a timed automaton, and focuses
on the recognized language, and specifically its Myhill-Nerode equivalence rela-
tion. Our notion of minimality is described by the following definition.

Definition 1. An automaton for a language L is called minimal if for every
two words w,w′ the following conditions are equivalent:

– The words are equivalent with respect to Myhill-Nerode equivalence.
– The states reached after reading the words are equal.

In the case of a deterministic timed automaton, the term “state” refers to the
location (or control state) and the valuation of clocks. One of the main contribu-
tions of this paper is a minimization algorithm for deterministic timed automata.
Of course in the case of timed automata, Myhill-Nerode equivalence has infinitely
many equivalence classes, e.g. in the language

{t1 · · · tn ∈ R∗ : ti = ti−1 + 1 for all i ∈ {2, . . . , n}},

the equivalence class of a word is determined by its last letter.
A new automaton model. There is a technical problem with minimizing
deterministic timed automata: the minimization process might leave the class of
timed automata, as witnessed by the following example.

Example 1. Consider the following language L ⊆ R∗. A word belongs to L if
and only if it has exactly three letters t1, t2, t3 ∈ R, and the following conditions
hold.



– The letter t2 belongs to the open interval (t1; t1 + 2);
– The letter t3 belongs to the open interval (t1 + 2; t1 + 3);
– The letters t2 and t3 have the same fractional part, i.e. t3 − t2 ∈ Z.

This language is recognized by a deterministic timed automaton. After reading
the first two letters t1 and t2, the automaton stores t1 and t2 in its clocks. This
automaton is not minimal in the sense of Definition 1. The reason is that the
words (0, 0.5) and (0, 1.5) are equivalent with respect to Myhill-Nerode equiva-
lence, but the automaton reaches two different states. Any other timed automa-
ton would also reach different states, as timed automata may reset clocks only
on time-stamps seen in the input word (unless ε-transitions are allowed).

Because of the example above, we need a new definition of automata. We
propose a straightforward modification of timed automata, which we call timed
register automata. Roughly speaking, a timed register automaton works like a
timed automaton, but it can modify its clocks, e.g. increment or decrement
them by integers1. For instance, in language L from Example 1, the minimal
automaton stores not the actual letter t2, but the unique number in the interval
(t1; t1 + 1) that has the same fractional part as t2.

We prove that timed register automata can be effectively minimized.
Typically, minimization corresponds to optimization of resources of an au-

tomaton. In case of timed automata, the resources seem to be locations and
clocks, but maybe also constants used in the guards, anything else? One sub-
stantial novelty of our approach is that the kind of resource we optimize is not
chosen ad hoc, but derived directly from Myhill-Nerode equivalence. Myhill-
Nerode equivalence is an abstract concept; and therefore we need a tool that is
well-suited to abstract concepts. The tool we use is Fraenkel-Mostowski sets.
Fraenkel-Mostowski sets. By these we mean a set theory different from the
standard one, originating in the work of Fraenkel and Mostowski (see [?] for the
references), and thus called by us Fraenkel-Mostowski sets (FM sets in short).
Much later a special case of this set theory has been rediscovered by Gabbay
and Pitts [9, ?] in the semantics community, as a convenient way of describing
binding of variable names. Motivated by this important application, Gabbay and
Pitts use the name nominal sets for the special case of FM sets they consider.
Finally, FM sets (under the name ”nominal G-sets”) have been used in [3] to min-
imize automata over infinite alphabets, such as Francez-Kaminski finite-memory
automata [8]. The paper [3] is the direct predecessor of the present paper.

In the setting of [3] (see also the full version [4]), FM sets are parametrized
by a data symmetry, consistsing of a set of data together with a group G of
permutations of this set. For instance, finite-memory automata are suitably rep-
resented in the symmetry of all permutations of data values. To model timed
automata, and even timed register automata, we choose a symmetry, which we
call the timed symmetry, based on the group of automorphisms of the structure2

(R, <,+1).
1 A certain restriction to the model is required to avoid capturing Minsky machines.
2 Studying this group has been suggested to us by James Worrell.

2



This data symmetry presents several challenges. Many fundamental results
fail: there are no least supports, and orbit-finite sets are not closed under prod-
ucts. Despite these problems, we show that FM sets can be used to solve nontriv-
ial algorithmic problems, such as the minimization problem. A more accurate
description of this paper is that we study automata in FM sets under the timed
symmetry; and these automata happen to capture timed automata, and even
timed register automata. In particular, we study languages where the times-
tamps appearing in a word are not necessarily increasing.

The second principal contribution of this paper is an exact characterization of
the languages recognized by deterministic timed automata. The characterization
is in the style of the Myhill-Nerode theorem, and is machine-independent, in the
sense that it does not refer to any notion of recognizing device.

Summary of contributions. Below are the main contributions of our paper.

1. We introduce a new class of automata, called timed register automata, which
generalize timed automata.

2. We prove that, unlike for deterministic timed automata, deterministic timed
register automata are closed under minimization. We also give a minimiza-
tion algorithm for timed register automata (Theorem 3 in Section 2).

3. We study automata in Fraenkel-Mostowski sets, under the timed symmetry.
4. We prove a kind of Myhill-Nerode theorem, which characterizes exactly the

languages of deterministic timed automata (Theorem 5 in Section 4).

Related research. We only mention here a few related papers we are aware
of. Minimization of (nondeterminstic) timed automata has been studied in par-
ticular in [1, 11, 13], with respect to bisimulation equivalence. As we mention
later, our approach extends easily to bisimulation. On the negative side, min-
imization of nondeterministic automata with respect to language equivalence
is undecidable, cf. [12, 7]. A characterization of deterministic timed languages
using finite monoids has been proposed in [5]. Our characterization is of a dif-
ferent nature, being based on orbit-finiteness of the set of equivalence classes
of Myhill-Nerode equivalence. Another machine-independent characterization of
deterministic timed languages has been given in [?].

2 Timed register automata

In this paper, we study timed automata as a special case of automata where
the alphabet is of the form A × R, where A is a finite set and R is the real
numbers. In a letter (a, t) ∈ A × R, we call a the label and t the timestamp.
Timed automata accept only words where the timestamps increase from left to
right, call such words monotonic. Unlike timed automata, some of the automata
we study in this paper can accept non-monotonic words.

Constraints. A constraint over variables x1, . . . , xn is any quantifier free for-
mula that uses the variables, the binary predicate ≤, and the unary function +1.

3



Examples of constraints include

x ≤ (y + 1) + 1 ∧ (y + 1) + 1 ≤ x.

When writing constraints, we sometimes use syntactic sugar, for instance writing
the above constraint as x = y+ 2. A constraint over variables x1, . . . , xn defines
a subset X ⊆ Rn.

A constraint ϕ is called maximal if every other constraint on the same vari-
ables is either implied by ϕ, or inconsistent with ϕ. An example of a maximal
constraint is

x2 = x1 + 1 ∧ x2 < x3 < x2 + 1.

The constraint x < y < x + 2 is not maximal, since it is independent with
y < x+ 1. Not every constraint is equivalent to a finite disjunction of maximal
constraints, for instance the constraint x < y.

Clearly, maximal constraints describe those regions that are bounded.
Timed register automata. We now define an automaton model, which can
recognize languages over alphabets of the form A × R. A (nondeterministic)
timed register automaton A is given by the following ingredients.

– A finite set A of labels.
– A finite set Loc of locations, also called control states.
– Subsets of the locations for the initial and final locations.
– For each location l ∈ Loc, a set Xl of register names3.
– For every two locations l, k ∈ Loc, and every label a ∈ A, a constraint (not

necessarily maximal) which defines a subset

δl,a,k ⊆ RXl × R× RXk .

We assume that every initial location has an empty set of register names.
A state of the automaton is defined to be a pair (l, η), where l is a location

and η is a function, called the register valuation, of the form η : Xl → R. We
write QA for the set of states of an automaton A. This set is infinite if the
automaton uses registers.

The semantics of the automaton is defined in the standard way. One defines
the transition relation

δA ⊆ QA × (A× R)×QA,

to be the set of triples (l, η), (a, t), (k, µ) such that

(η, t, µ) ∈ δl,a,k.

3 There is a simplified version, where the set of register names does not depend on the
location, but such a simplified version does not minimize well, because sometimes
one needs to remember two real numbers, and sometimes one or zero are enough.
Ignoring some minor differences, the simplified version resembles updatable timed
automata of [?].

4



A run over an input word from (A × R)∗ is a sequence of states that starts in
an initial state and is consistent with the transition relation.

A timed register automaton is called deterministic if there is one initial lo-
cation and the transition relation δA is a function δA : QA × (A× R)→ QA.

Timed register automata, as defined above, are too powerful (a similar un-
decidability result is shown in [?]):

Theorem 1. Emptiness is undecidable for deterministic timed register automata.

Proof. By simulating a Minsky machine. The automaton has three register names:
x, y, z. The idea is that z represents zero, x− z is the value of the first counter
and y − z is the value of the second counter. Since the automaton can use the
+1 in its transition relation, it can increment and decrement the counters. The
zero tests are simulated by testing x = z or y = z. ut

The reason why the undecidability proof above works is that we allow a state
to store, at the same time, real numbers which are very far from each other. This
motivates a restriction on timed register automata to be defined now.
Constrained timed register automata. In a constrained timed register au-
tomaton, for each location l there is a maximal constraint ϕl over the register
names of l, called the legality constraint. In a constrained automaton, the notion
of state is changed: a state (l, µ) must be such that the register valuation µ
satisfies the constraint ϕl. Despite the different semantics, a constrained timed
register automaton can be easily seen to be a special case of a timed register au-
tomaton, because legality constraints can be enforced by the transition relation.

The idea of adding legality constraints might seem an ugly fix. As we shall
see later, constrained timed register automata have an elegant interpretation in
terms of FM sets. Also, they are powerful enough to simulate timed automata.

Theorem 2. Emptiness is decidable for constrained timed register automata.

Proof. For n ∈ N, define Qn to be the set of states that can be reached in at
most n steps. Later in the paper, the following claim will appear obvious.

Claim. For every n ∈ N and location l, the set Qn contains either all or no
(legal) states with location l.

From the claim, it follows that the sequence Q0 ⊆ Q1 ⊆ Q2 ⊆ · · · stabilizes
after a finite number of steps (the number of locations). Call Q∗ the stabilized
set. The stabilized set is the set of reachable states. For each step n, one can
compute the set of locations that can be found in Qn. The algorithm computes
Q∗, and tests if it contains some state with an accepting location. ut

As our first main result, we state:

Theorem 3. The class of constrained timed register automata is closed under
minimization. There is an algorithm that computes, for a given constrained timed
register automaton, the minimal automaton.

5



Speaking abstractly, the minimal automaton is the syntactic automaton, or, in
other words, the quotient of a given automaton by language equivalence; this
will become apparent when in Section 3 we will observe that timed register
automata are a subclass of automata in FM sets under the timed symmetry.
Speaking concretely, we minimize the number of locations, and the number of
register variables in each location.

Our minimization algorithm adopts the classical idea of iterative partition re-
finement, and works equally well for bisimulation of nondeterministic automata.
Timed automata. Timed automata [2] are defined similarly as timed register
automata above. A timed automaton has a number of clock variables, that may
be used to store the current timestamp and to compare it against time-stamps
read later on. The transition relation of a timed automaton is described using a
subset of constraints, in the sense of the above definition. With these respects,
timed automata seem to be a subclass of constrained timed register automata.

Timed automata have however one additional feature, not reflected in our
definitions above: the clock variables are initially set to 0. In consequence, only
non-negative timestamps are considered. Intuitively, a timed automaton is aware
of the time that has elapsed from some absolute moment 0, while our automata
are only aware of the relative time separating timestamps in the input. In partic-
ular, languages recognized by timed register automata are always closed under
translations, i.e., for any d ∈ R, the permutation x 7→ x+ t preserves L:

L+ t = L.

A language L ⊆ (A × R≥0)∗ can be encoded as the following language closed
under translations, which has essentially the same structure as L:

−→
L =

⋃
t∈R
a∈A

((a, 0) L) + t =
⋃
t∈R
a∈A

(a, t) (L+ t) ⊆ (A× R)∗.

Thus, in this paper we only consider languages that are closed under translations.
On the level of timed automata, this property may be enforced by assuming that
all the clock variables are uninitialized (that is, initially undefined), similarly like
in finite memory automata of Francez and Kaminski [8].

Theorem 4. For every (deterministic) timed automaton with uninitialized clocks
one can compute an equivalent (deterministic) constrained timed register au-
tomaton.

The proof, together with the formal definition of timed automata with uninitial-
ized clocks, is omitted. The idea is to translate regions of a timed automaton to
locations of a register timed automaton. Unbounded regions are eliminated by
projecting onto bounded coordinates. One additional register is used to check
monotonicity.

Constrained timed register automata are strictly more expressible than timed
automata, as shown in the example below.

6



Example 2. Let A be a singleton, thus A× R is essentially R. The language

L = {t1 . . . tn : n ≥ 2, tn − t1 ∈ N, ti+1 − ti ≤ 1 for i < n}

is not recognized by a timed automaton, but is recognized by a deterministic
constrained timed register automaton with two registers. The automaton stores
initially t1 in its register, and then increments its value, say t, by 1 at every
input letter greater than t. It accepts whenever an input letter equals t.

Due to Theorem 4, the minimization algorithm of Theorem 3 works for de-
terministic timed automata as well. How does the definition of minimality from
Definition 1 correspond to resources of a timed automaton? The most appropri-
ate to say is that we minimize the number of regions, and the number of clocks
in each region. Indeed, as regions of timed automata are translated to locations
of timed register automata, each region may be optimized independently.

3 Fraenkel-Mostowski sets and their automata

The definition of Fraenkel-Mostowski sets (FM sets) is parametrized by a data
symmetry (D, G), which consists of a set D of data values and a subgroup G of
the group of all bijections of D. Examples of data symmetries include:

– The classical symmetry, where the set of data values is empty, and the group
has only the identity. FM sets in the classical symmetry are going to be
normal sets.

– The equality symmetry, where the set of data values is a countably infinite
set, and the group contains all bijections. FM sets in the equality symmetry
are the same thing as nominal sets [9, ?].

– The timed symmetry, where the set of data values is the real numbers, and
the group contains all permutations of real numbers that preserve the order
relation ≤ and the successor function x 7→ x+ 1 (we call such permutations
timed permutations)4. This is the data symmetry that we use in this paper.

Fix a data symmetry (D, G) in this section. Intuitively speaking, normal sets
are built out of empty sets and brackets { and }. The intuition behind FM sets
is that they can also use data values as atomic elements.

Consider first the cumulative hierarchy of sets with data values, which is a
hierarchy of sets indexed by ordinal numbers and defined as follows. The empty
set is the unique set of rank 0. A set of rank α is any set whose elements are
sets of rank smaller than α, or data values. A permutation π of data values can
be applied to a set X in the hierarchy, by renaming the data values belonging
to X, and the data values belonging to elements of X, and so on. The resulting
set, which has the same rank, is denoted by X · π.

A set C of data values is said to be a support of a set X in the cumulative
hierarchy if X · π = X · σ holds for every permutations π, σ ∈ G which agree on
4 Studying these group has been suggested to us by James Worrell.

7



elements of C. A set is called finitely supported if it has some finite support. We
use the name FM set for a set in the cumulative hierarchy which is hereditarily
finitely supported, which means that it is finitely supported, the sets in it are
finitely supported, and so on.

The support of an FM set is not unique, e.g. supports are closed under adding
data values. A set with empty support is called equivariant.

Example 3. An example of an equivariant FM set in the timed symmetry is R
itself. Another example is R∗. A tuple (x1, . . . , xn) ∈ R∗ is supported by the set
{x1, . . . , xn}. The set R− {0} is not equivariant; it is supported by {0}.

For some data symmetries, including the classical and equality ones, one
can show that every FM set has the least support. However, FM sets in the
timed symmetry do not have least supports. For instance, the set R−{0} is not
supported by the empty set, but it is supported by the sets {0} or {1}. This is
because if π is a timed permutation, then π(1) = 1 is equivalent to π(0) = 0.

In many respects, FM sets behave like normal sets. For instance, if X,Y are
FM sets, then X × Y , X ∪ Y , X∗ and the finite powerset of X are all FM sets.
Another example is the family of subsets of X that have finite supports. The
appropriate notion of a function between FM sets X and Y is that of a finitely
supported function, which is a function from X to Y whose graph is an FM set.

Orbit-finite FM sets. From our perspective, the key property of FM sets is their
more relaxed notion of finiteness. Suppose that X is an FM set. For a set of data
values C, define the C-orbit of an element x ∈ X to be the set

{x · π : π ∈ G and π is the identity on C}.

If C supports X, then the C-orbits form a partition of X. The set X is called
orbit-finite if the partition into C-orbits has finitely many parts, for some C
which supports X. Observe that the number of C-orbits increases as the set C
grows. Therefore, a set is orbit-finite if it has a finite number of orbits for some
minimal set C that supports it. In particular, an equivariant set is orbit-finite if
and only if it has finitely many ∅-orbits.

In most data symmetries, such as the equality or timed symmetry, the pow-
erset of an orbit-finite set is not orbit-finite. In the timed symmetry, there is
a more serious issue, namely orbit-finite sets are not closed under product, as
illustrated in Example 4.

Example 4. The set R is orbit-finite, namely it has one ∅-orbit. The set R2 is
not orbit-finite. The ∅-orbits are of the following form:

{(x, y) : x− y = k} {(x, y) : x− y ∈ (k, k + 1)} for all k ∈ Z.

Observe that two orbits of the first kind, say {(x, y) : x − y = k} and {(x, y) :
x− y = l}, are equivariantly isomorphic, the isomorphism is given by

(x, y) 7→ (x, y + (k − l)).

8



Likewise, every two orbits of the second kind are mutually isomorphic. Another
example of two isomorphic but distinct orbits in R∗ is

{x : x ∈ R} and {(x, x, x) : x ∈ R}.

There are infinitely many equivariant isomorphisms between these two orbits,
including x 7→ (x, x, x) and x 7→ (x+ 1, x+ 1, x+ 1).

Automata. The definition of automata in FM sets is exactly like the definition
of automata in normal sets, except that the notion of finiteness is relaxed to
orbit-finiteness. Specifically, a nondeterministic FM automaton is a tuple

(A,Q, I, F, δ) I, F ⊆ Q δ ⊆ Q×A×Q

where the alphabet A, states Q, initial states I ⊆ Q, final states F ⊆ Q and
transitions δ ⊆ Q×A×Q are FM sets, and all of them except for δ are required
to be orbit-finite. (We come back to the orbit-finiteness of δ in Example 5.)
The definition of acceptance is as usual for automata. An automaton is called
equivariant if all of its components are equivariant. From now on, we only study
equivariant automata.

Example 5. Consider the language L ⊆ R∗ which contains words where some
letter appears twice. This language is recognized by a nondeterministic FM au-
tomaton whose states are: an initial state q, one state qx for each real number
x, and a single accepting state >. The transition relation contains triples

(q, x, q) (q, x, qx) (qx, y, qx) (qx, x,>) (>, x,>)

for every real numbers x, y. The transition relation is not orbit-finite, because
the set of transitions (qx, y, qx) is isomorphic to R2. In general, the transition
relation will necessarily have infinitely many orbits in any automaton which
stores real numbers in its state, and which reads arbitrary input letters.

A deterministic FM automaton is the special case of a nondeterministic one,
where the transition relation is a function δ : Q× A→ Q, and where the set of
initial states contains only one state. From now on, we only study equivariant
deterministic automata.
Comparing the models. So far, we have introduced two kinds of automata. In
Section 2, we have introduced timed register automata, and we have identified a
subclass of constrained timed register automata. In Section 3, we have introduced
automata in FM sets. In this section, we show that in the specific case of FM
sets in the timed symmetry, the two kinds of automata are closely related. We
only study the deterministic case, but the nondeterministic case is analogous.
The results are summed up in Figure 1. From now on, we work exclusively in
the timed symmetry.

We first show that a deterministic timed register automaton is almost a
special case of a deterministic FM automaton.

9



Fig. 1. Timed register automata, and FM automata in the timed symmtery.

The input alphabet, which is a set of the form A×R, for a finite set A is an
equivariant orbit-finite FM set. The number of orbits is the size of A, because
permutations of data values (= time stamps) do not change the labels.

Let us now consider the states. Recall that a state of a timed register au-
tomaton consists of a location and a valuation of the registers. It not difficult
to see that the set of all states is an equivariant FM set, since it is basically a
set of tuples of real numbers that is closed under permutations from the timed
group. In the same way, the initial and accepting states are equivariant subsets,
because they are identified by their locations, and locations are not changed by
permutations of data values.

Finally, transition function of a timed register automaton is equivariant, be-
cause it is defined in terms of the order and successor, which are concepts pre-
served by the timed group.

So why is a deterministic timed register automaton not necessarily an FM
automaton? The problem is that the states are not, in general, an orbit-finite
FM set. For instance, if an automaton has two registers in some location, then
its states will not be orbit-finite for the same reason that R2 is not orbit-finite.
This is where the constraints on the register valuations, as defined in Section 2,
come in. The following lemma shows that maximal constraints can be used to
enforce an orbit-finite state space.

Lemma 1. The following conditions are equivalent for a subset X ⊆ Rn:

– X is equivariant and has one orbit.
– X is defined by a maximal constraint.

A corollary of the above lemma is that a constrained deterministic timed
register automaton is exactly the same thing as a deterministic timed register
automaton, whose state space is orbit-finite.

So far we have shown that deterministic constrained timed register automata
are included deterministic FM automata. The inclusion is strict for two reasons.
The first restriction is that the transition function in a timed register automaton
is defined by constraints, while in the abstract definition, the transition function
is only required to be equivariant (or even less, finitely supported). Not all equiv-
ariant transition functions are defined by constraints, as shown in the following
example.

10



Example 6. Suppose that K ⊆ Z is any set of integers, e.g. the prime numbers.
Consider the following language

diff(K) = {t1 t2 ∈ R2 : t2 − t1 ∈ K}.

Regardless of K, this language can be recognized by a deterministic FM au-
tomaton. The state space of the automaton has four orbits: an initial state ε,
an accepting state >, a rejecting sink state ⊥, and one state qt for every real
number t. The automaton starts in the initial state ε. The transition function is:

δ(ε, t) = qt δ(⊥, t) = ⊥ δ(qs, t) =

{
> if t− s ∈ K
⊥ otherwise

δ(>, t) = >

The transition function is easily seen to be equivariant. For most K, however, it
is not defined by a constraint (one argument is that there are uncountably many
choices for K, and only countably many choices for a constraint).

Example 6 implies that the abstract definition of a deterministic FM automa-
ton is too powerful. For instance, arbitrary FM automata cannot be represented
in a finite way. Restricting equivariant functions to those definable by constraints
makes the automata manageable, but it is not necessarily the only solution to
the problem. We do not investigate other solutions in this paper.

A second restriction in timed register automata is that the states are defined
in terms of register valuations. Therefore, in the state space of a constrained
timed register automaton, the orbits are isomorphic to orbits in R∗. This is not
necessarily the case in an FM automaton.

Example 7. Consider the language diff(Z), a special case of Example 6, that
contains words t1 · · · tn ∈ R∗ such that all the numbers t1, . . . , tn have the same
fractional part. A natural automaton for this language only remembers the frac-
tional part of the first letter (or the last letter, which is the same thing). In such
an automaton, one of the orbits of the state space is the set R/Z, which is the
quotient of R by the “equal fractional part” equivalence relation.

4 Characterization of deterministic timed automata

In this section we provide a machine-independent characterization of the class
of languages recognized by deterministic timed automata.

Every language recognized by a deterministic timed automaton with unini-
tialized clocks is equivariant and contains only monotonic words. Finally, the
set of equivalence classes of Myhill-Nerode equivalence is orbit-finite. As shown
in Example 6, these conditions are not sufficient even to characterize nonde-
terministic orbit-finite timed register automata. One additionally needs to say,
roughly, that only recent timestamps can be remembered, and older timestamps
must be forgotten. Our formulation of this condition is as follows.

For two nonempty words u,w ∈ (A × R)+ (think of monotonic words) and
M ∈ N we write u <M w to mean that the first timestamp in w is larger than
the last timestamp in u, by at least M .

11



Definition 2. Let M ∈ N. A language L ⊆ (A × R)∗ is called M -forgetful if
for every words u,w ∈ (A×R)+, v ∈ (A×R)∗ and a timed permutation π such
that v · π = v, u <M w and u · π <M w, it holds:

u v w ∈ L ⇔ (u · π) v w ∈ L. (1)

Observe that M -forgetfulness implies M ′-forgetfulness for all M ′ > M . Note
that v · π = v implies (u v) · π = (u · π) v and that if L is equivariant then the
property (1) may be equivalently written as u v w ∈ L ⇔ u v (w · π) ∈ L.

Example 8. The language L from Example 2 in Section 2 is not M -forgetful for
any M ≥ 0. Indeed, instantiating Definition 2 with

u = 0.4 v = 1.2 2.2 . . . M+0.2 M+1.2 w = M+1.4

and any timed permutation π with π(0.4) = 0.3 and π(0.2) = 0.2, we get a
contradiction, as 0.4 v w ∈ L while 0.3 v w /∈ L.

Example 9. The language of all monotonic words is 0-forgetful. The language
“for some timestamp t, both t and t + 3 appear in the word” is 3-forgetful but
not 2-forgetful.

Theorem 5. Let A be a finite set of labels. For a language L ⊆ (A × R)∗, the
following conditions are equivalent:

– L is recognized by a deterministic timed automaton with uninitialized clocks.
– L satisfies simultaneously the following conditions:

1. L is equivariant;
2. L contains only monotonic words;
3. L is M -forgetful for some threshold M > 0; and
4. the set of equivalence classes of ∼L is orbit-finite.

Note that the set of equivalence classes of ∼L is an (equivariant) FM set when
L is an (equivariant) FM set. Even in presence of condition 3, condition 4 is still
necessary, as shown by the following example.

Example 10. Consider the language containing all monotonic timed words of the
form t1 t2 . . . tn (t1+1) (t2+1) . . . (tn+1), for n ≥ 0. The language is 1-forgetful,
but its syntactic automaton is orbit-infinite.

5 Future work

Our approach based on Fraenkel-Mostowski sets may be further elaborated.
We consider a subclass of orbit-finite automata where the transition function

(or relation) is definable by constraints. These restrictions are sufficient to cap-
ture timed automata, but there may be other manageable restrictions that are
more liberal. As a natural continuation of this work we plan to pursue automata

12



with semi-linear transition functions. We suppose that one would be able to cap-
ture in this framework, among the others, periodic time constraints, cf. [6], or
some subclasses of hybrid automata, like linear hybrid automata [10].

Another urgent challenge is to relate our approach to the previous work, in
particular to minimization algorithms of [1, 11, 13] and to characterizations of [5]
and [?].
Acknowledgements. We kindly thank anonymous reviewers for insightful com-
ments and valuable suggestions.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, D. L. Dill, and H. Wong-Toi. Minimiza-
tion of timed transition systems. In CONCUR, pages 340–354, 1992.

2. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

3. M. Bojańczyk, B. Klin, and S. Lasota. Automata with group actions. In Proc.
LICS’11, pages 355–364, 2011.

4. M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. 2012.
Submitted.

5. P. Bouyer, A. Petit, and D. Thérien. An algebraic approach to data languages and
timed languages. Inf. Comput., 182(2):137–162, 2003.

6. C. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints.
Journal of Automata, Languages and Combinatorics, 5(4):371–404, 2000.

7. O. Finkel. Undecidable problems about timed automata. CoRR, abs/0712.1363,
2007.

8. N. Francez and M. Kaminski. Finite-memory automata. TCS, 134(2):329–363,
1994.

9. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

10. T. A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, 1996.
11. J. Springintveld and F. W. Vaandrager. Minimizable timed automata. In FTRTFT,

pages 130–147, 1996.
12. S. Tripakis. Folk theorems on the determinization and minimization of timed

automata. Inf. Process. Lett., 99(6):222–226, 2006.
13. M. Yannakakis and D. Lee. An efficient algorithm for minimizing real-time tran-

sition systems. Formal Methods in System Design, 11(2):113–136, 1997.

13


