
Thin MSO with a probabilistic path quantifier
Mikołaj Bojańczyk1

1 University of Warsaw

Abstract
This paper is about a variant of mso on infinite trees where:

there is a quantifier “zero probability of choosing a path π ∈ 2ω which makes ϕ(π) true”;
the monadic quantifiers range over sets with countable topological closure.

We introduce an automaton model, and show that it captures the logic.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Automata, mso, infinite trees, probabilistic temporal logics

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The ambient topic of this paper is mso on infinite binary trees, extended by a quantifier
zeroπ ϕ(π) which says that there is zero probability of choosing a path π in the tree so that
ϕ(π) is true. Here we assume that each bit (i.e. turn) in the path is chosen independently at
random. This logic was introduced by Michalewski and Mio in [11], where the decidability
of satisfiability was left open.

That satisfiability question is not solved here, but we make a small step in its direction.
We consider a fragment of the logic, called tmso+zero, standing for thin mso+zero. In this
fragment, the monadic set quantifiers are restricted to sets which are thin in the following
sense: a set of nodes is thin if there are countably many paths which visit it infinitely often.
For example, every path (when seen as a set of nodes) is thin, and every finite set is thin.
In the logic tmso+zero, one has existential and universal quantification over nodes and thin
sets of nodes, as well as the probabilistic path quantifier zero. Being thin is definable in
mso, and therefore without the zero quantifier, the logic would be a special case of mso, and
with the zero quantifier it is a special case of the logic from [11].

The contribution of this paper is the definition of an automaton model, called zero
automata, and a proof that every formula of tmso+zero can be effectively translated to an
equivalent zero automaton.

Motivation.

The first source of motivation for this paper is the study of probabilistic temporal logics [1,
9, 14, 5]. An important example is the logic pctl. It is an open problem whether this logic
has decidable satisfiability. Much of the difficulty stems from the ability of talking about
probabilities like 1/2 or 1/3. If one can only compare probabilities to 0 or 1, which is in
the spirit of our logic tmso+zero, then we get qualitative pctl, whose satisfiability was
shown decidable by Brázdil, Forejt, Kretínský and Kucera in [5]. Actually, the qualitative
fragment of pctl, as well as stronger qualitative logics like pctl*, can be straightforwardly
formalised in tmso+zero, and therefore, by the main result of this paper, translated into
zero automata. Another example that we discuss later in the paper is the probabilistic

© M. Bojanczyk;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Thin MSO with a probabilistic path quantifier

version of tree automata by Carayol, Haddad and Serre [7]; these are also a special case of
zero automata.

The second source of motivation is trying to find a robust classes of languages of infinite
words or trees which remains decidable (e.g. with respect to satisfiability). The point of
departure is mso, with its famous decidability results by Büchi [6] and Rabin [12]. One way
of departing from that point is to add unary predicates, e.g. extending mso over ω-words
by a predicate “x is a position of the form n!”, see [13] for a survey. Another way is to add
new quantifiers. Due to the strength of mso, it is not so easy to come up with a quantifier
extending mso that is not obviously undecidable, and yet not already definable in mso. For
example, a nice quantifier is “there exist uncountably many sets with a given property” –
but as shown in [2], this quantifier does not add to the expressive power of mso. A logic that
does properly extend mso is mso+u, which is an extension of mso by a quantifier which
can say that a given property is true for finite sets of unbounded size. The logic is itself
undecidable, but has many decidable fragments, typically variants of weak mso. See [4] for
a survey of mso+u and related logics, including the cost logics of Colcombet [8]. The logic
studied in this paper, tmso+zero, is another example of a logic that is not contained in mso
(and even contains mso, if the logic is extended by allowing an outermost layer of non-weak
existential set quantifiers, which does not affect decidability of satisfiability).

Acknowledgment. I would like to thank Henryk Michalewski and Matteo Mio for
introducing me into this area, and for their many valuable comments and suggestions.

2 The logic and the automaton

This section describes the two main models used in the paper: the logic tmso+zero and zero
automata. The following sections discuss how the logic is translated into the automaton.

Tree notation.

The logics and automata of this paper describe properties of possibly infinite binary labelled
trees. We treat a node in a tree as a sequence in 2∗, with 2 denoting the set of directions
{0, 1}. Define a tree over an alphabet Σ to be a partial function t : 2∗ → Σ whose domain is
closed under prefixes. The special case when function is total is called a complete tree, but
we do allow incomplete trees, e.g. trees with finite domains. We use standard terminology
for trees: node, root, left child, right child, leaf, ancestor and descendant. In our definition,
a node might have a right child but not a left child. We write treesΣ for the set of trees over
Σ.

Probability measure over paths.

A path is defined to be a sequence in 2ω, which is viewed as an infinite sequence of left or
right turns. An equivalent definition is that a path is an ancestor-closed set of nodes that is
totally ordered by the ancestor relation. When saying that a path is contained in a set of
nodes, or contains a node, the second definition is used. When talking about the probability
of a subset of 2ω we use the coin-flipping measure, i.e. we assume that each bit is chosen
independently at random, with 0 and 1 having equal probability. The probability is defined
at least for all Borel subsets of 2ω.

I Definition 1. We say a set Π ⊆ 2ω has zero probability if it is contained in a Borel set
with coin-flipping measure zero.

Bojanczyk 3

The sets of paths that will appear in the logic tmso+zero will always be Borel, so the closure
under subsets in the above definition will not play much of a role.

2.1 The logic
Before defining the logic tmso+zero, we discuss the probability-free fragment tmso.

Thin MSO without the zero quantifier

A set of nodes X ⊆ 2∗ is called thin if its closure defined by

X̄
def= {π ∈ 2ω : π passes through infinitely many nodes from X}

is countable. For example, every finite set is thin, because it has empty closure, and every
path is thin, when viewed as a set of nodes, because its closure has one path. Thin sets
are closed under arbitrary intersections and finite unions, but not under countable unions,
because the countable set of all nodes has all paths in its closure, and is therefore not thin.

The logic thin mso, denoted by tmso, is the variant of mso as in Rabin’s theorem, except
that set quantifiers range only over thin sets. The syntax of the logic is the same as for mso
from Rabin’s theorem: there are two types of variable in the logic: node variables, which
range over nodes in the domain of the input tree, and (thin) set variables, which range over
thin subsets of the domain of the input tree. There are binary predicates for the left and
right child relations, and there is a unary predicate for every label in the input alphabet.
By the Cantor-Bendixson theorem, a set of nodes X is thin if and only if one cannot find a
subset Y ⊆ X such that Y , when ordered by the descendant relation, is a complete binary
tree. Since this alternative characterisation can be formalised in mso, it follows that tmso
is a fragment of mso in terms of expressive power. On the other hand, tmso is at least as
expressive as wmso with path quantifiers.

As far as the author knows, the logic tmso was not considered explicitly in the literature
so far, and it might be interesting to examine its expressive power, e.g. prove that it is strictly
weaker than mso and maybe, in the long run, find an algorithm which inputs a formula of
mso and decides if the formula is equivalent to some formula in tmso. This investigation,
however, is not the topic of the present paper. The present paper is about extending tmso
with a quantifier for zero probability.

Thin MSO with the zero quantifier

We now define the main topic of this paper, i.e. the logic tmso+zero. First we explain why
our point of departure for adding the zero quantifier is tmso and not some other fragment
of mso. The reason is that tmso is the strongest logic we could find such that the set
quantifiers commute with the probabilistic quantifier in a way which will be made more
precise in Section 6. The key observation reason is this: if the domain of the input tree is
thin, then it has countably many paths, and therefore the zero quantifier can be eliminated
because it always says “yes”.

A parameter in the definition of tmso+zero is a family zero of subsets of 2ω. The example
we have in mind is that zero is the sets with zero probability according to Definition 1, but
the results will also work for other choices of zero. The logic tmso+zero is the extension
of the logic tmso defined above, by adding a quantifier, called zero, which binds a thin set
variable π, and such that

zeroπ ϕ(π)

4 Thin MSO with a probabilistic path quantifier

is true if zero contains the set of paths π which are contained in the domain of the input tree
and make ϕ(π) true, assuming that a path is treated as a set of nodes. (Formally speaking,
the path π is seen as a set of nodes when evaluating ϕ(π), and as an element of 2ω when
measuring how many paths π make ϕ(π) true.)

Example 1. Consider an alphabet {a, b}. The following formula says that zero contains
the set of paths that visit at least one a:

zeroπ ∃x (x ∈ π ∧ a(x)).

If the parameter zero is prefix independent (see Definition 3 for a more precise treatment)
and does not contain the set 2ω of all paths, then the above formula is equivalent to ∀x ¬a(x),
and therefore the zero quantifier can be avoided. �

Example 2. Consider an alphabet {a, b}. The following formula says that zero contains
the set of paths which visit b finitely often:

zeroπ ∃x
(
x ∈ π ∧ ∀y (y ≥ x ∧ y ∈ π ⇒ b(x))

)
If zero is our guiding example of zero probability, the negation of the above formula says
that the Büchi condition is satisfied with probability one. As shown in [7], Theorem 21, the
property above is not definable in mso. �

Example 3. The reduction from qualitative pctl* in Theorem 5 from [11] produces
formulas where set quantification is only used for paths. Therefore, qualitative pctl* is a
special case of tmso+zero. �

Beyond Thin MSO with the zero quantifier.

In the logic tmso+zero, the set variables are restricted to thin sets. The obvious question
is about the more general case, where set variables range over arbitrary sets of nodes,
not necessarily thin ones. As mentioned in the introduction, the more general logic was
introduced in [11], under the name mso + ∀=1

π , and the authors asked about decidability
of its satisfiability problem. A long term project for this research is to find out if the
satisfiability problem for the more general logic is decidable – or not. In this paper we only
begin the project, by studying the thin variant. One scenario is that the thin variant is
decidable, but the non-thin variant is undecidable, which would be similar to the situation
for mso+u, where weak variants are decidable, but the full logic is undecidable. However,
one should not take the analogy with mso+u too far: e.g. the thin variant of mso+u would
already be undecidable, because mso+u is undecidable already for ω-words.

Another natural version of mso with probability would be to choose a subset of 2∗
at random, with each node chosen independently, and then have a quantifier that says
there is zero probability of finding a subset with a given property. This logic was proved
undecidable in [11], already for ω-words (which can be seen as a special case of tmso), and
the undecidability proof works also for formulas of the form

there is zero probability of choosing a set X ⊆ N which makes ϕ(X) true,

where ϕ(X) is a formula of first-order logic that defines a set of ω-words over alphabet 2.
Therefore, it seems that this kind of probabilistic quantifier is doomed to undecidability.

Bojanczyk 5

2.2 The automaton
Having defined the logic tmso+zero, we define our main automaton model, which is called
a zero automaton. Like in the logic tmso+zero, a parameter of the semantics for the
automaton is a family zero of subsets of 2ω. The idea is that the automaton extends a
nondeterministic parity automaton with the ability to say that the set of paths satisfying
the parity condition belongs, or does not belong, to zero.

I Definition 2. The syntax of a zero automaton is a tuple

Q︸︷︷︸
states

Σ︸︷︷︸
input alphabet

I ⊆ Q︸ ︷︷ ︸
initial states

⋃
C⊆2

δC ⊆ Q× Σ×Q|C|︸ ︷︷ ︸
transitions

,

with all components finite, together with a total order on Q and four subsets

Qall, Qzero, Qnonzero, Qseed ⊆ Q.

The idea behind the transitions is that δ{0,1} is used for those nodes which have both children
defined, but e.g. δ{1} is used for nodes where only the right child is defined, and δ∅ is used
for leaves.

The semantics are defined as follows. The automaton is run on a tree over the input
alphabet, which might not necessarily be complete. A run of the automaton is a tree labelled
by states with the same domain as the input tree, which is consistent with the transition
relation in the following sense: if a node x is in the domain, and we define

C
def= {i ∈ 2 : xi is in the domain}

then there must be a transition in δC which relates the state in x, the label of x in the input
tree, and the states in the children of x that are in the domain. A tree is accepted if it
admits a run which has the initial state in the root and is accepting in the following sense.
Define the maxinf state on a path in a run to be the maximal state that appears infinitely
often on the path. When talking about a maximal state, we refer to the total order on states
that is given in the syntax of the automaton. A run ρ is accepting if all of the following
conditions hold, assuming that paths ρ ⊆ 2ω denotes the set of paths contained in ρ:

1. all paths acceptance condition: every path from paths ρ has maxinf in Qall; and
2. zero acceptance condition: zero contains the set of paths from paths ρ which have

maxinf state in Qzero; and
3. nonzero acceptance condition: for every node x in the run with state q ∈ Qseed:

zero 63 {π ∈ paths ρ :


π passes through x, and
π sees only states < q after x, and
π has maxinf state in Qnonzero

}

An automaton is called zeroless if Qzero is empty (which makes the zero condition vacu-
ously true) and seedless if there are no seed states, i.e. Qseed is empty (which makes the
nonzero condition vacuously true). In particular, a zeroless and seedless automaton is the
same thing as a parity automaton, which proves the zero automata are at least as powerful
as mso.

Example 4. Assume that zero is probability zero as in Definition 1. Consider the special
case of a zero automaton where Qall is all states and Qseed is empty. A run is accepting if and

6 Thin MSO with a probabilistic path quantifier

only if there is zero probability of having maxinf state in Qzero. Equivalently, the probability
of having maxinf state outside Qzero is one. Languages recognised by such automata are the
qualitative tree languages from [7]. The class of positive tree languages from [7] is obtained
when Qall and Qzero are empty, and the initial state is used only once in the root, is maximal
in the total order, and is the unique seed state. �

3 Fat Cantor

In this section, we illustrate the logic and automaton with an extended example. Let us fix
zero to be probability zero according to Definition 1. Define the fat Cantor language to be
the set of complete trees over the alphabet {a, b} which satisfy the following property:

¬zeroπ
(
∀x x ∈ π ∧ b(x)

)︸ ︷︷ ︸
nonzero probability of avoiding a

∧ ∀x∃y y ≥ x ∧ a(y)︸ ︷︷ ︸
a’s are dense

Note that “avoiding a” is a Borel property of paths, and therefore “nonzero probability of
avoiding a” means that the sets of paths avoiding a have defined positive probability. This
argument will be true in general for our logic – for every fixed input tree, any property of
paths definable in the logic will be Borel, and therefore not belonging to zero will mean that
it there is defined and positive probability.

The fat Cantor language is nonempty. To construct a tree in the fat Cantor language,
choose a fast growing sequence of natural numbers

n1 < n2 < n3 < · · ·

and then choose a tree (which is unique up to reordering siblings) where a labels are found
only at depths from the sequence above, and every node at depth ni has a unique descendant
at depth ni+1 with label a. If the sequence (ni) grows fast enough, then there is nonzero
probability of avoiding a. Let us now argue that the fat Cantor language contains no regular
tree, i.e. no tree with finitely many nonisomorphic subtrees. Suppose then that t is a regular
tree, with n distinct subtrees. If a’s are dense in this tree, it follows from regularity that
every node has a descendant at distance at most n that has label a. This means there is some
constant ε > 0 such that for every interval I ⊆ N of n consecutive positions, the probability
of a path visiting a at depth from I is at least ε. These events are independent for disjoint
intervals, and therefore the probability of seeing a at least once, and even infinitely often, is
1. Summing up: the fat Cantor language is nonempty but contains no regular trees.

Fat Cantor automaton

We now show a zero automaton which recognises the fat Cantor language described above.
To simplify notation, we define an automaton which works only on complete trees, i.e. it
recognises the intersection of the fat Cantor language with the set of complete trees. In
particular, when talking about transitions, we only consider transitions δC for C = {0, 1}.

The input alphabet is {a, b}. The automaton has four states, totally ordered as follows:

qa︸︷︷︸
already saw a

< q1︸︷︷︸
searching for a

< q2︸︷︷︸
not searching for a

< q0︸︷︷︸
initial state

The automaton begins in state q0 in the root, this state will not be visited again during the
run. When the automaton is in state qi with i ∈ {0, 1, 2} and it reads a node with label

Bojanczyk 7

b, then it sends q1 to some child and q2 to the other child, as witnessed by the following
transitions:

(qi, b, qj , qk) for i ∈ {0, 1, 2} and {j, k} = {1, 2}.

Choosing which child gets q1 and which child gets q2 is the only source of nondeterminism in
this automaton. When the automaton sees letter a, it sends qa to both children regardless
of its current state, and qa is a sink state that cannot be left, as witnessed by the following
transitions:

(q, a, qa, qa) for all q ∈ Q (qa, a, qa, qa) (qa, b, qa, qa)

Since q0 is used only once in the root, and qa is a sink state, it follows that on every path
either qa is seen from some point on, or qa is never seen and the maxinf state is one of q1, q2.
The acceptance condition is defined by the following sets:

Qall = {qa, q2} Qzero = ∅ Qnonzero = {q1, q2} Qseed = {q0}

Because Qzero is empty, every run satisfies the zero acceptance condition. The state q0
appears only once in the root, and therefore it is never used as a maxinf state. By choice
of Qall, the state q1 is forbidden as a maxinf state, which means that in an accepting run,
every path eventually stabilises on either qa or q2. Since the only way of leaving q1 is by
seeing an a letter, it follows that a’s must be dense. The only seed state is the initial state,
which is used only once in the root, and is also the most important state. Therefore, a run
satisfies the nonzero acceptance condition if and only if its there is nonzero probability of
having maxinf state in {q1, q2}, which means there is nonzero probability of avoiding a.

4 From logic to automata

The main technical result of this paper is that every formula of tmso+zero can be effectively
translated to an equivalent zero automaton. The result works not just for zero probability,
but for other choices of zero, as described in the following definition.

I Definition 3. For a family zero of subsets of 2ω, consider the following properties:

1. σ-ideal: zero is closed under subsets and countable union;
2. atomless: zero contains all singletons;
3. prefix independence: every set Π ⊆ 2ω satisfies

Π ∈ zero⇔ iΠ ∈ zero for every i ∈ 2

4. recurrent nonzero: there is a zero automaton which recognises the language

{t ∈ trees{1, 2, 3} : for every subtree, the set of paths with maxinf 2 is 6∈ zero}

In the recurrent nonzero condition, it is important that the trees are not necessarily complete.
For such a tree, a subtree is obtained by shifting the root to some node in the domain. In
particular, if a tree belongs to the language from the recurrent nonzero condition, then it
cannot have any leaves.

Here is the main result of this paper.

I Theorem 4. Let zero be a family of subsets of 2ω satisfying conditions 1-4 in Definition 3.
Then for every formula of tmso+zero one can compute an equivalent zero automaton.

8 Thin MSO with a probabilistic path quantifier

The proof has three steps. In Section 5, we show closure properties of languages re-
cognised by zero automata, of which the most interesting is closure under intersection. In
Section 6, we show that the logic tmso+zero has the same expressive power as a certain
transducer model. In Section 7, we complete the proof of the theorem, by translating
transducers into zero automata. The results in Section 5 and 6 only use properties 1-3 in
Definition 3, while Section 7 uses also property 4.

The following corollary shows the main application of Theorem 4.

I Corollary 5. Let zero be the subsets of 2ω that have zero probability in the sense of Defini-
tion 1. Then for every formula of tmso+zero one can compute an equivalent zero automaton.

Other examples of zero which can be shown to satisfy the assumptions of Theorem 4 include
“countable sets of paths [2]” and “meagre sets of paths [10]”. These other examples are less
interesting because they can already be formalised in mso alone, i.e. parity automata are
sufficient. Theorem 4 can be seen as an alternative way of recovering the results from [2, 10]:
one only needs to check that the assumptions of Theorem 4 are satisfied for a particular
choice of zero, and that zero automata can be captured by mso. In view of the results from
[2, 10], we have only one example of zero that satisfies the assumptions of Theorem 4, and
which strictly extends mso, namely probability zero.

5 Closure properties of zero automata

This section is about closure properties of the class of languages recognised by zero automata.
We show that this class is closed under positive Boolean operations – with intersection being
by far the more interesting case. We do not know if languages recognised by zero automata
are closed under complementation. If they would be, then zero automata would have exactly
the same expressive power as full mso+zero.

Define a Mealy machine to be a deterministic finite automaton on words over some input
alphabet Σ, where every transition is labelled by a letter from some output alphabet Γ. Such
a machine can be run on a finite word, yielding a length preserving function Σ∗ → Γ∗, it
can also be run on an ω-word, yielding a function Σω → Γω, or finally it can be run on all
paths in a tree, yielding a function treesΣ → treesΓ which does not change the domain of
the tree. The last case will be called a tree transducer recognised by a Mealy machine.

I Lemma 6. Languages recognised by zero automata are closed under union, as well as
images and inverse images under tree transducers recognised by Mealy machines.

Proof sketch. The lemma does not require any closure properties from the set zero. For
union, we use disjoint union of automata (and gluing the initial state). For images use non-
determinism, and for both images and inverse images use a Cartesian product construction
to simulate the Mealy machine in the state space of the zero automaton. Note that state
spaces in zero automata are ordered. Therefore we impose some random total order on a
Mealy machine, and in the Cartesian product we use a lexicographic ordering, with the order
on the original zero automaton being more important. J

We now show another closure property, which is closure under factorisations, as described
below. Define a factor to be a set of nodes that is connected with respect to the child relation.
In particular, a factor has a unique root, i.e. a unique node which is least with respect to
the descendant ordering. If X is a factor, then define the restriction to X of a tree t to be
the tree obtained from t by keeping only the nodes from X. We now show that if L is a
language recognised by a zero automaton, then there is a zero automaton which inputs a

Bojanczyk 9

tree together with a decomposition into disjoint factors, and checks that L contains every
tree obtained by restricting the input tree to one of the factors in the partition.

We begin by describing how a decomposition into factors is given on the input. If X is
a set of nodes, then define an X-factor to be a set of nodes obtained by taking some x ∈ X
and adding all descendants y such that (x..y] is disjoint with X, where (x..y] denotes proper
descendants of x that are (not necessarily proper) ancestors of y. By abuse of notation,
we define an X-factor of a tree t to be any tree obtained from t by restricting it to some
X-factor. Finally, if X is a set of nodes in a tree t ∈ treesΣ, then define t⊗X ∈ trees(Σ× 2)
to be the tree obtained from t by extending the label of each node by a bit indicating
membership in X.

I Lemma 7 (Factorisation Lemma). Assume that zero satisfies conditions 1-3 in Definition 3.
If L ⊆ treesΣ is recognised by a zero automaton, then so is

{t⊗X : t ∈ treesΣ and X is a set of nodes in t such that L contains every X-factor of t}

The main idea in the proof is that to use the “nested” character of the nonzero acceptance
condition; here by nesting we mean that the paths contributing to the nonzero condition
are cut off whenever a more important state is seen.

We finish this section by stating the most challenging result, which is closure under
intersection, as stated in the following lemma.

I Lemma 8 (Intersection Lemma). Assume that zero satisfies conditions 1-3 in Definition 3.
Then languages recognised by zero automata are closed under intersection.

The proof has several steps. One of these steps, namely the first step, is showing that
languages recognised by zero automata are closed under intersection with languages recog-
nised by zero automata which do not use the nonzero acceptance condition. The first step
uses McNaughton’s Latest Appearance Record construction.

6 Transducers

To prove Theorem 4, we use a transducer characterisation of the logic tmso+zero. The
transducer characterisation is an “if and only if” characterisation, unlike the translation in
the main Theorem 4.

Transducers

Define a tree transducer to be any function treesΣ → treesΓ which does not change the
domain of the input tree. Our goal is to show each language definable mso+zero can
be described by composing transducers of certain basic types. To model a language as
a transducer, we use the following definition.

I Definition 9. For a tree language L ⊆ treesΣ, define

transL : treesΣ→ trees2,

called the characteristic transducer of L, to be the transducer which labels each node of the
input tree by a bit saying whether or not the subtree rooted in that node belongs to L.

We define the combination t0 ⊗ t1 of two trees t0, t1 over possibly different alphabets
Σ0,Σ1 but with equal domains, to be the unique tree over Σ0 × Σ1 which projects to each

10 Thin MSO with a probabilistic path quantifier

ti on the i-th coordinate. In the following theorem, composition of transducers is defined as
for functions, while the combination of two transducers f1, f2 with the same input alphabet
but possibly different output alphabets is the transducer t 7→ f1(t)⊗ f2(t).

I Theorem 10. Assume that zero has the closure properties 1-3 from Theorem 4. Then a
tree language is definable in tmso+zero if and only if its characteristic transducer belongs
to the smallest class of transducers which is closed under composition and combination, and
which contains the following transducers:

1. Zero base. The characteristic transducers of all languages of the form:

Zn
def= {t ∈ trees{1, . . . , n,⊥} : zero 3 {π ∈ paths t :

{
π does not visit ⊥, and
π has even maxinf

}}

2. Zeroless base. The characteristic transducers of all languages definable in tmso.
3. Child number transducer. Transducers of the form treesΣ→ trees2 which map each

node to its child number, with the convention that the root gets label 0.
4. Mealy machine on trees. Transducers recognised by Mealy machines.
The difficult implication is from logic to transducers; here we use the composition method.
Intuitively speaking, the above theorem shows that formula of tmso+zero can be decom-
posed into parts that do not talk about zero at all, and into the very basic property Zn.

7 From transducers to zero automata.

In this section we complete the proof of Theorem 4, by showing that the transducers from
the previous section can be compiled into zero automata. We say that a tree transducer f
is recognised by a zero automaton if there is a zero automaton recognising the set of trees
t⊗ f(t) where t ranges over all input trees for the tree transducer.

I Lemma 11. Transducers recognised by zero automata are closed under composition, com-
bination and include the child number transducers, transducers induced by Mealy machines,
and the characteristic transducers of all languages definable in tmso.

Proof sketch. For composition, the automaton guesses the intermediate result, and checks
both underlying transducers in parallel, using the Intersection Lemma. Combination also
uses intersection. For the child-number transducers, Mealy machines and characteristic
transducers of languages definable in tmso, one observes that their corresponding languages
are definable in mso, and zero automata generalise nondeterministic parity tree automata.

J

By Theorem 10 and the above lemma, in order to prove Theorem 4 it suffices to show
that zero automata recognise the characteristic transducers of the languages of the form Zn
as used in Theorem 10. By unraveling the definitions, we need to show the following lemma.

I Lemma 12. For every n ∈ N there is a zero automaton recognising the set of trees

t⊗ s with t ∈ trees{1, . . . , n,⊥}, s ∈ trees2

such that for every node x, its label in s is 1 iff Zn contains the subtree of t rooted in x.

Proof. Let L be the language in the statement of the lemma. For a tree t ⊗ s, define a
⊥-factor to be a maximal factor contained in the domain of the tree that does not use label

Bojanczyk 11

⊥ in t. It is not difficult to see that t ⊗ s belongs to L if and only if: (a) every node with
label ⊥ in t has label 1 in s; and (b) every ⊥-factor belongs to L. Condition (a) can be easily
checked by a parity automaton, so thanks to the Intersection Lemma it suffices to produce
a zero automaton which checks (b). By the Factorisation Lemma, it suffices to find a zero
automaton which tests memberhip in L for individual ⊥-factors.

Summing up, we can assume without loss of generality that t does not use label ⊥ at all.
Therefore, in the rest of the proof, we show a zero automaton which recognises the language
L restricted to the case where t ∈ {1, . . . , n}. For i ∈ {1, . . . , n}, consider the function

fi : trees{1, . . . , n} → trees{1, 2, 3} label of x in fi(t) =


1 if label of x in t is < i

2 if label of x in t is = i

3 if label of x in t is > i

.

We will only use this function for even i. For t ∈ trees{1, . . . , n}, define nonzero(t) to be
the set of nodes in t whose subtree does not belong to Zn. In terms of this definition, a tree
t⊗ s belongs to L if and only if nonzero(t) is exactly the nodes that have label 0 in s. Also,
condition 4 from Definition 3 says that there is a zero automaton recognising the language

N def= {t ∈ trees{1, 2, 3} : nonzero(t) is all nodes of t}

I Claim 13. Let t ∈ trees{1, . . . , n} and s ∈ trees2 be trees with the same domain. Then
t ⊗ s ∈ L if and only if one can find an ancestor closed set of nodes {Xi}i, with i ranging
over even numbers in {1, . . . , n}, such that the following conditions hold:

1. a node has label 0 in s if and only if it belongs to some Xi;
2. for every even i ∈ {1, . . . , n}, restricting fi(t) to the nodes from Xi yields a tree in N;
3. zero 3 {π ∈ paths t : π has even t-maxinf and sees 0 finitely often in s}

Before proving the claim, let us observe how it implies the lemma. Since a zero automaton
can nondeterministically guess the sets Xi, it suffices to show that there is a zero automaton
which checks conditions 1, 2, 3 in the claim. By the Intersection Lemma, it suffices to check
each condition individually. Condition 1 is definable in mso. Condition 2, for any fixed i,
follows from the assumption that N is recognised by a zero automaton and the Factorisation
Lemma. For condition 3, it is straightforward to construct a zero automaton – it essentially
copies the labels from t into its states, except that nodes with label 0 in s trigger a state
which is maximal in the total order. It remains to prove the claim.

Proof. We begin with the following observation, which follows from the assumption that
zero satisfies conditions 1-3 in Definition 3. For every t ∈ trees{1, . . . , n}, the set nonzero(t)
is closed under ancestors and a node x belongs to nonzero(t) if and only if

zero 63 {π ∈ paths t :


π is contained in nonzero(t), and
π passes through x, and
π has even t-maxinf

} (1)

By definition of the tree transducers fi, a path has even t-maxinf if and only if it has even
fi(t)-maxinf for some even i. Therefore, by closure of zero under countable – and therefore
also finite – unions, we see that

nonzero(t) =
⋃
i

nonzero(fi(t)), (2)

12 Thin MSO with a probabilistic path quantifier

where i ranges over even numbers in {1, . . . , n}.
Let us now prove the claim.
Let us begin with the bottom-up implication. From condition 2 it follows that every

node in Xi belongs to nonzero(t). From condition 1 it follows that all nodes with label 0
are in nonzero(t). From condition 1, it follows that the set of nodes with label 0 in s is
closed under ancestors. Therefore, condition 3 implies that for every node with label 1 in s
is outside nonzero(t). Thus nonzero(t) is exactly the nodes which have label 0 in s, which
means that t⊗ s ∈ L.

Consider the top-down implication. Our assumption is that nonzero(t) is exactly the
nodes which have label 0 in s. Define Xi to be nonzero(fi(t)). By (2), we see that condition
1 in the statement of the claim holds. From (1) applied to the trees fi(t), we get condition 2.
To prove condition 3, by definition of nonzero(t) and prefix independence of zero, we know
that every node x 6∈ nonzero(t) satisfies

zero 3 {π ∈ paths t : π passes through x and has even t-maxinf}

Since nonzero(t) is ancestor closed, it follows that a path passes through some x 6∈ nonzero(t)
if and only if it sees 0 in s finitely often. Therefore, by closure of zero under countable unions,
we get condition 3 in the statement of the claim. J

J

8 Conclusion

We have proved that, under certain conditions on zero, every formula of the logic tmso+zero
is recognised by a zero automaton. Therefore, in order to decide satisfiability of tmso+zero,
it suffices to decide emptiness for zero automata. Unlike the logic, zero automata involve no
nesting, which makes the emptiness check easier. A planned followup paper will show that
emptiness is indeed decidable for zero automata, assuming that zero is the sets of probability
zero.

Apart from the emptiness question for zero automata, the main open problem is decid-
ability for the full logic mso+zero, and not just the thin variant considered in this paper.
It is not at all clear if zero automata are closed under complement, and therefore it is quite
possible that zero automata are not the right model for mso+zero. There is another logic,
which sits between tmso+zero and mso+zero, and which might still admit a translation to
zero automata. In this intermediate logic, the condition on sets X ⊆ 2∗ is relaxed: instead
of thin sets, we consider sets which satisfy X̄ ∈ zero. We leave open the question whether
this intermediate logic admits a translation to zero automata.

References
1 Christel Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-automata. J. ACM,

59(1):1, 2012.
2 Vince Bárány, Łukasz Kaiser, and Alexander Rabinovich. Cardinality quantifiers in MLO

over trees. In Proc. of CSL, 2009.
3 Mikolaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,

48(3):554–576, 2011.
4 Mikolaj Bojanczyk. U. ACM SIGLOG News, 2(4):2–15, 2015.
5 Tomás; Brázdil, Vojtech Forejt, Jan Kretínský, and Antonín Kucera. The satisfiability

problem for probabilistic CTL. In Proc. of LICS, pages 391–402, 2008.

Bojanczyk 13

6 Julius R. Büchi. On a decision method in restricted second-order arithmetic. In Proc. 1960
Int. Congr. for Logic, Methodology and Philosophy of Science, pages 1–11, 1962.

7 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite
trees. ACM Trans. Comput. Log., 15(3):24:1–24:33, 2014.

8 Thomas Colcombet. Regular cost functions, part I: logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013.

9 Daniel Lehmann and Saharon Shelah. Reasoning with time and chance. Information and
Control, 53(3):165–1983, 1982.

10 Henryk Michalewski and Matteo Mio. Baire category quantifier in monadic second order
logic. In Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pages 362–374, 2015.

11 Henryk Michalewski and Matteo Mio. Measure quantifier in monadic second order logic. In
Logical Foundations of Computer Science - International Symposium, LFCS 2016, Deerfield
Beach, FL, USA, January 4-7, 2016. Proceedings, pages 267–282, 2016.

12 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of American Mathematical Society, 141:1–35, 1969.

13 Alexander Rabinovich. On decidability of monadic logic of order over the naturals extended
by monadic predicates. Inf. Comput., 205(6):870–889, 2007.

14 Sergiu Hart Micha Sharir. Probabilistic propositional temporal logics. Information and
Control, 70(2–3):97–155, 1986.

14 Thin MSO with a probabilistic path quantifier

A Probability zero satisfies the assumptions of Theorem 4

In this part of the appendix, we prove Corollary 5. Fix zero to be the subsets of 2ω that
have zero probability in the sense of Definition 1. To prove Corollary 5, it suffices to show
that zero satisfies the assumptions of Theorem 4, namely conditions 1-4 in Definition 3.
Conditions 1-3 in Definition 3 are easy to check, so we focus on condition 4. We need to
show that that there is a zero automaton which recognises the language

N def= {t ∈ trees{1, 2, 3} : for every subtree, the set of paths with maxinf 2 is 6∈ zero}.

We will use the following characterisation of the language N, which can be captured by a
zero automaton.

I Lemma 14. A tree t belongs to N if and only if there exists a set of nodes S in t such that

1. every node in t has a descendant in S; and
2. for every node x ∈ S,

zero 63 {π ∈ paths t :


π passes through x; and
π does not pass through S after x; and
π has t-maxinf 2

}

Before proving the Lemma 14, we observe that the characterisation of N in it can be re-
cognised by a zero automaton which inputs t ⊗ S, and therefore N is recognised by a zero
automaton by guessing S nondeterministically. Condition 1 in Lemma 14 is recognised by a
parity automaton, and therefore thanks to the Intersection Lemma from Section 5, it suffices
to show that Condition 2 is recognised by a zero automaton. For condition 2, the automaton
has four states:

1 < 2 < 3 < s.

When the automaton sees a node from S, it uses state s. Otherwise, it copies the input
letter to its state. The set Qall is all states and the set Qzero is empty, which means that the
all paths acceptance condition and the zero acceptance condition are vacuously true. For
the nonzero acceptance condition, the unique seed state is s, and the set Qnonzero is {2}. For
this automaton, the nonzero acceptance condition is the same thing as item 2 in Lemma 14.
Therefore, Lemma 14 is sufficient to prove Corollary 5.

Proof of Lemma 14. The bottom-up implication is straightforward, and therefore we con-
centrate on the top-down implication. The key is the following observation, which says that
one can find dense sets of nodes with arbitrarily small probability.
I Claim 15. Let X ⊆ 2∗ be a factor such that every node in X has at least one child in X.
For every ε > 0, there exists a set Y ⊆ X such that every node from X has a descendant in
Y , and the following set has probability < ε:

{π ∈ X̄ : π passes through Y at least once}

Proof. By assumption on X, every node from X has a descendant from X at arbitrarily
large depth. Take some enumeration of the nodes in X, and for the i-th node choose some
descendant inX that is sufficiently deep down in the tree so that reaching the descendant has
probability at most ε/2i+1. Put all of these descendants into Y ; their combined probability
is at most ε. J

Bojanczyk 15

To prove the top-down implication, let t ∈ N. Choose some enumeration x1, x2, . . . of
the nodes in t. We define families of disjoint factors

∅ = F0 ⊆ F1 ⊆ F2 ⊆ · · ·

in the tree t, each one containing finitely many factors, such that every xi in the enumeration
has a descendant that is a root of some factor in Fi and every factor F ∈ Fi satisfies:

(a) every node in F has a descendant that is in t but not in F ;
(b) the set of paths {π ∈ F̄ : π has maxinf 2} is not in zero.

If we manage to define such families, then the claim will be proved, by taking S to be
the roots of the factors that appear in some set Fi. The construction of Fi is by induction
on i. Suppose we have already defined Fi−1 and consider the node xi. By condition (a)
and finiteness of Fi−1, there must be a descendant of xi which is in none of the factors
from Fi−1. Call this descendant y, and let X be the descendants of y that are in t. By the
assumption that t ∈ N, the set

{π ∈ X̄ : π has maxinf 2}

is not in zero. Since the above set is Borel, it has some defined probability ε > 0. Apply
Claim 15 to X and ε, yielding some Y ⊆ X. Define F to be the factor obtained from X by
removing all nodes which have an ancestor in Y . By Claim 15, conditions (a) and (b) hold
for F , and therefore we can add it to Fi−1 thus creating Fi. J

B Closure of zero automata under intersection

In this part of the appendix, we prove the Factorisation and Intersection Lemmas, which
establish closure properties of languages recognised by zero automata. Here is the plan. In
Section B.1, we show that languages recognised by zero automata are closed under intersec-
tion with languages recognised by zero automata that do not use the nonzero acceptance
condition at all. In Section B.2, we prve the Factorisation Lemma. In Section B.3, we show
that languages recognised by zero automata are closed under intersection with the most
basic languages that refer to nonzero, i.e. with languages of the form

{t ∈ trees{1, . . . , n} : zero does not contain the set of paths with even maxinf}.

Finally, in Section B.4 we put all the pieces together and prove closure under intersection
for general zero automata.

In this part of the appendix, we use the following notation for intefvals of nodes in a
tree. If x, y are nodes such that x is an ancestor of y, we define

(x..y) def= {z : x is a proper ancestor of z and z is a proper ancestor of y}.

Likewise we define [x..y], [x..y) and (x..y], with round brackets meaning “proper ancestor”
and square brackets meaning “not necessarily proper ancestor”.

B.1 Intersection with seedless automata
The main difficulty in the Intersection Lemma is going to be intersecting two instances of
the nonzero acceptance condition. Let us therefore begin by proving a special case where
this difficulty is avoided, i.e. where one of the automata is seedless, i.e. it does not have

16 Thin MSO with a probabilistic path quantifier

any seed states. In a seedless automaton, the nonzero acceptance condition is vacuously
true. In this section, we prove that languages recognised by zero automata are closed under
intersection with languages recognised by seedless zero automata.

Let us first explain what is gained in the Intersection Lemma by assuming that one
of the automata is seedless. When doing intersection, the all paths acceptance condition
and the zero acceptance condition are easier to deal with, because we can use the following
reductions, for sets of paths Π0,Π1 ⊆ 2ω:

Π0 = 2ω ∧Π1 = 2ω iff Π0 ∩Π1 = 2ω (3)
Π0 ∈ zero ∧Π1 ∈ zero iff Π0 ∪Π1 ∈ zero (4)

For the nonzero acceptance condition, we do not see such a reduction, and this is why it is
easier to assume that one of the automata is seedless.

Intersection with safety automata

As a warmup, let us consider an even more special case of zero automata, where the entire
acceptance condition is not used at all. Define a safety automaton to be the very special case
of zero automata, where the acceptance condition is trivial, i.e. every run with the initial
state in the root is accepting. On the syntactic level this corresponds to Qall being all states,
Qzero being empty, and having no seed states.

I Lemma 16. Languages recognised by zero automata are closed under intersection with
safety automata.

Proof sketch. Using a product construction, i.e. the states are pairs of states. The only
challenging question is the order: we use the lexicographic ordering, with the less important
coordinate being the safety automaton. J

Define a nondeterministic transducer to be a partial function

f : treesΣ→ treesΓ

whose graph is equal to {(s, t) : s ⊗ t ∈ L} for some L recognised by a safety automaton.
The name nondeterministic is chosen because the safety automaton can use nondeterminism,
however f itself must be a partial function, i.e. every input produces at most one output.
A corollary of Lemma 16 is that languages recognised by zero automata are closed under
inverse images of nondeterministic transducers.

McNaughton’s Latest Appearance Record

Having proved intersection with safety automata, let us move toward intersection with seed-
less automata. In the proof, we use a product construction and the reductions from (3)
and (4). There is one difficulty to overcome: how to define the total order on the states in
a product automaton? For this, use McNaughton’s Latest Appearance Record (lar).

If t is a tree and π is a path contained in its domain, we use the name t-inf of π for the
set of labels seen infinitely often by π in the tree. If the alphabet is equipped with a total
order, we write t-maxinf of π for the maximal element of its t-inf. The following lemma is
proved using McNaugton’s lar construction.

I Lemma 17 (LAR lemma). Let Σ be a finite set. There exist a tree transducer

f : treesΣ→ trees{1, . . . , n}

Bojanczyk 17

recognised by a Mealy machine such that for every tree t ∈ treesΣ and every path π, the t-inf
of π is uniquely determined by the f(t)-maxinf of π.

We will use the following corollary of the lar Lemma.

I Corollary 18. Let Q0, Q1 be ordered sets. There exists some n and functions

g : trees(Q0 ×Q1)→ trees(Q1 × {1, . . . , n}) hi : Q0 × {1, . . . , n} → Qi for i ∈ 2

such that g is recognised by a Mealy machine and, assuming that Q0 × {1, . . . , n} is ordered
lexicographically with Q0 being more important, the following property holds. Let

ρ0 ∈ treesQ0, ρ1 ∈ treesQ1

be trees with the same domain X ⊆ 2∗. Then the following diagram commutes

P(Q0)

X̄
g(ρ0 ⊗ ρ1)-maxinf //

ρ0-inf
66

ρ1-inf
((

Q0 × {1, . . . , n}

h0

jj

h1
tt

P(Q1)

Proof. Apply the lar lemma to Q0 ×Q1, yielding some

f : trees(Q0 ×Q1)→ trees{1, . . . , n}

recognised by a Mealy machine. Define g as follows. Suppose that the input is ρ0⊗ ρ1. The
label of a node x is the pair (q, i) where q is the label of x in ρ0 and i is the biggest number
that appears in f(ρ0 ⊗ ρ1) on nodes from the following set:

{y : y ≤ x and all nodes in [y..x) have label < q in ρ1}.

For every path π in ρ0⊗ρ1, the g(ρ0⊗ρ1)-maxinf of π is the pair (q, i) such that q is the
ρ0-maxinf of π and i is the f(ρ0⊗ ρ1)-maxinf of π. In particular, thanks to the lar lemma,
i can be used to recover the labels that appear infinitely often in ρ0 and ρ1. J

Intersection with seedless automata

We are now ready to show how intersection with seedless automata.

I Lemma 19 (Seedless Intersection Lemma). Languages recognised by zero automata are
closed under intersection with languages recognised by seedless zero automata.

Proof. Consider two zero automata A0,A1 over a common input alphabet Σ such that A1
is seedless. Let Q0, Q1 be their states spaces. By using nondeterminism of zero automata,
it suffices to give a zero automaton which recognises the language

{ρ0 ⊗ ρ1 ∈ trees(Q0 ×Q1) : ρi is an accepting run of Ai for every i ∈ 2}

Consistency with the transitions is recognised by a safety automaton, and thus by Lemma 16
it suffices to check the acceptance conditions.

18 Thin MSO with a probabilistic path quantifier

Apply Corollary 18 toQ0, Q1, yielding some n, g and h0, h1. By again applying Lemma 16,
it suffices to show that there is zero-automaton which recognises the set

{g(ρ0 ⊗ ρ1) : ρi satisfies the acceptance condition for every i ∈ 2}

The automaton which recognises the above language has states Q0 × {1, . . . , n}, which
copy the appropriate coordinates of the input tree. The state space is ordered in the same
way as the input alphabet, i.e. lexicographically with Q0 being more important. The seed
states and Qnonzero are inherited from Q1. For Qall and Qzero we refer to the functions h0, h1
and use the reductions from (3) and (4). J

Since seedless zero automata generalise parity automata, the Seedless Intersection Lemma
implies that languages recognised by zero automata are closed under intersection with mso
definable languages.

B.2 Closure under factorisations
We now prove the Factorisation Lemma. Recall that this lemma says that if L ⊆ treesΣ is
recognised by a zero automaton, then so is

{t⊗X : t ∈ treesΣ and X is a set of nodes in t such that L contains every X-factor of t}

Proof of the Factorisation Lemma. Let Q be the states of the automaton recognising L.
By using nondeterminism of zero automata, it suffices to find a zero automaton which re-
cognises the set of trees

ρ⊗X ∈ trees(Q× 2)

such that every X-factor of ρ is an accepting run. The property “every X-factor satisfies the
all paths acceptance condition” can be formalised in mso, and is therefore recognised by a
seedless zero automaton. The property “every X-factor satisfies the all nonzero acceptance
condition” can be recognised by a zero automaton, which is simply copies the states from
the input trees, and uses a special state that is maximal in the order whenever it sees a node
from X. This maximal state ensures that the nonzero sets of paths are measured inside
X-factors.

Therefore, by closure under intersection with seedless zero automata, it suffices to find
a seedless zero automaton, which recognises the property “every X-factor satisfies the zero
acceptance condition”. In other words, we want a seedless zero automaton which checks that
every X-factor Y satisfies:

zero 3 {π ∈ Ȳ : the ρ-maxinf of π belongs to Qzero}

Because there are countably many X-factors, and zero is closed under countable union and
subsets, the above is equivalent to saying the the following set of paths is in zero:

zero 3
⋃
Y

{π ∈ Ȳ : the ρ-maxinf of π belongs to Qzero}

where Y ranges over X-factors. By definition of X-factors, a path is eventually contained
in some X-factor if and only if it sees nodes from X finitely often. Therefore, the above
condition is the same as:

zero 3 {π ∈ 2ω : π sees X finitely often and the ρ-maxinf of π belongs to Qzero}

Bojanczyk 19

Using the lar lemma, we can find a transducer

f : trees(Q× 2)→ trees{1, . . . , n}

such that a path π sees X infinitely often and has ρ-maxinf in Qzero if and only if it has
even f(t⊗X)-maxinf. This condition can be expressed by a seedless zero automaton. J

B.3 Products with basic nonzero languages
We say t ∈ trees{1, . . . , n} satisfies the basic nonzero condition if

zero 63 {π : π is contained in t and has even t-maxinf}.

This the same as the language Zn from Theorem 10, except that label ⊥ is not used. The
basic nonzero condition can be seen as the special case of the nonzero automaton where a
seed state is used only once and in the root. The goal of this section is to show Lemma 20,
which says that languages recognised by zero automata are closed under products with basic
nonzero conditions. The product of two languages L0, L1 is defined as:

{t0 ⊗ t1 : t0 ∈ L0 and t1 ∈ L1}.

Recall that in order for t0 ⊗ t1 to be defined, both trees need to have the same domain.

I Lemma 20. Languages recognised by zero automata are closed under products with lan-
guages of the form

{t ∈ trees{1, . . . , n} : t satisfies the basic nonzero condition}.

The rest of Section B.3 is devoted to proving the above lemma. Let then A be a zero
automaton with states Q and let n ∈ N. Let us begin with the following simple observation,
which shows that the nonzero acceptance condition works well with factorisations.

I Lemma 21. A tree ρ ∈ treesQ satisfies the nonzero acceptance condition if and only if
there exists a subset X of its domain which contains the root and such that every X-factor
of ρ satisfies the nonzero acceptance condition.

Proof. For the left-to-right implication, we take to contain only the root, and therefore
there is only one X-factor, namely the entire tree itself. Consider the converse right-to-left
implication. By definition, the nonzero acceptance condition for ρ says that for every node
x in ρ with state q ∈ Qseed:

zero 63 {π ∈ paths ρ :


π passes through x, and
π sees only states < q after x, and
π has maxinf state in Qnonzero

}

By prefix independence of zero and the assumption that all X-factors of ρ satisfy the nonzero
acceptance condition, we know that

zero 63 {π ∈ paths ρ :


π passes through x, and
π sees only states < q after x, and
π does not pass through X after x, and
π has maxinf state in Qnonzero

}

Therefore, we can conclude by closure of zero under taking subsets. J

20 Thin MSO with a probabilistic path quantifier

The key to the proof of Lemma 20 is the following characterisation.

I Lemma 22. The following conditions are equivalent for every

ρ⊗ t ∈ trees(Q× {1, . . . , n})

1. ρ satisfies the nonzero acceptance condition and t ∈ Zn;
2. there exists a set X of nodes in the domain of ρ⊗ t, which contains the root, such that:

a. every X-factor of ρ satisfies the nonzero acceptance condition; and
b. there is some X-factor Y such that

{π ∈ Ȳ :
{
π has ρ-maxinf q, and
π has even t-maxinf

} (5)

holds for some q such that every seed state appearing in Y is ≤ q.

Proof. Let us begin with the simpler bottom-up implication. By Lemma 21, Condition 2a
implies that ρ satisfies the nonzero acceptance condition. Condition 2b implies that t ∈ Zn
because zero is prefix independent and closed under subsets.

The top-down implication remains. Let ρ ⊗ t satisfy condition 1. Choose some state q
such that

zero 63 {π ∈ paths ρ :
{
π has ρ-maxinf q, and
π has even t-maxinf

}.

Such a state must exist, by closure of zero under countable – and therefore also finite –
unions. Again by closure of zero under countable unions, there must be some z0 such that

zero 63 {π ∈ paths ρ :


π has ρ-maxinf q, and
π passes through z0, and
π sees only states ≤ q after z0, and
π has even t-maxinf

}.

Define Z to be those descendants z of z0 such that [z..z0] has only labels ≤ q in ρ. The
above condition then becomes

zero 63 {π ∈ Z̄ :
{
π has ρ-maxinf q, and
π has even t-maxinf

}.

Define A ⊆ Z to be those nodes z ∈ Z such that

zero 63 {π ∈ Z̄ :


π passes through z, and
π has ρ-maxinf q, and
π has even t-maxinf

}.

By definition z0 ∈ A.
I Claim 23. There is some x ∈ Z ∩A such that if we define

X = {root, x} ∪ {z ∈ ∂Z : z is a descendant of x}

then for every z ∈ X, the nonzero acceptance condition is satisfied by the tree ρz obtained
from ρ by removing z and its subtree.

Bojanczyk 21

Proof. Because zero is prefix independent and closed under countable unions, every element
of A has some descendant in A which has label q. For a state p, define Ap to be the set of
descendants z of z0, not necessarily belonging to Z, such that

zero 63 {π ∈ paths ρ :


π passes through z, and
π sees only states ≤ p in ρ after z, and
π has ρ-maxinf in the set Qnonzero for A

}.

Because zero contains all singletons, if Ap is nonempty then it is not contained in a single
path. Note that the mapping p 7→ Ap is monotone with respect to inclusion on the right.
In particular, there are two distinct paths that are contained in all of the sets Ap which are
nonempty. Therefore, or there is some x ∈ A which has label q and such that there is some
node which is in all nonempty sets Ap and is not an ancestor of x.

Choose this x.
Let z be as in the statement of the claim. Let us check the nonzero acceptance condition

for ρz. Let then y be a node in ρz that is labelled by a seed state, say p. If y is not an
ancestor of z then the subtree of y is the same in ρ and ρz, and therefore we are done.
Suppose that y is an ancestor of z. If p ≤ q then, because z has label ≥ q, it follows that the
nonzero acceptance condition is not affected in in y by removing z. The last case is when
p > q, which means necessarily that y is a proper ancestor of z0, since all nodes in Z have
label ≤ q. By choice of x, if there is some descendant of y in some Ap, then there is also
a descendant that is not in the removed subtree of z. Therefore removing the subtree of z
does not affect the nonzero acceptance condition in y. J

Apply the above claim, yielding some x and X. We show below that conditions 2a and 2b
from the statement of the lemma are satisfied for this choice of X.

(2a) Take an X-factor of ρ, call it σ. By definition of X, the root of this X-factor is either
the root of the entire tree, or it is x, or it is a descendant of x in ∂Z. If the root of the
X-factor is the root of the entire tree, then σ is equal to ρx, according to the notation
from the above claim, and therefore the nonzero acceptance condition is satisfied. If the
root is ∂Z, then σ is a subtree of ρ, and the nonzero acceptance condition is easily seen
to be preserved under taking subtrees. The last case is when σ is obtained from ρ by
moving the root ot x, and removing all subtrees in ∂Z. Since nodes in ∂Z have state
q, it follows that the nonzero acceptance condition is satisfied for all seed states ≤ q.
However, by definition of Z, σ has only states ≤ q, and thus the nonzero acceptance
condition holds.

(2b) Let Y be the X-factor which has root x. In other words, Y is the intersection of Z
with the descendants of x. Because Y is contained in Z, it has only states ≤ q. By the
assumption that x ∈ Z ∩A, we get (5).

J

Before proving Lemma 20, we present one final closure property of zero automata.

I Lemma 24. Let q ∈ Q. There is a zero automaton which accepts

ρ⊗ t ∈ trees(Q× {1, . . . , n})

if and only if ρ satisfies the nonzero acceptance condition in A, only states ≤ q appear in ρ,
and

zero 63 {π ∈ paths ρ :
{
π has ρ-maxinf q, and
π has even t-maxinf

}

22 Thin MSO with a probabilistic path quantifier

Proof sketch. Let us consider the special case of the lemma where the language is restricted
to those trees where the root of ρ not to have a seed state. Here we use Corollary 18 in
the same way as in Lemma 19, with a the root being a special seed state of maximal rank,
which tests the condition on t-maxinf. For the general case, we observe that if the root is
seed state in ρ, then this seed can be delayed to one of the children in the root. J

Proof of Lemma 20. It suffices to show that a zero automaton can recognise the property
in item 2 of Lemma 22. The set X and the factor Y can be guessed nondeterministically.
By the Factorisation Lemma, it suffices to show that there is zero-automaton which checks
the property in item 2 for each X-factor individually. Here we use Lemma 24. J

B.4 The general case of intersection
In this section we complete the proof of the Intersection Lemma. The key lemma is that lan-
guages recognised by zero automata are closed under intersection with languages recognised
by zero automata that have only one seed state.

I Lemma 25. Let A0,A1 be zero automata such that A0 has only one seed state. Then the
intersection of the languages recognised by these automata is recognised by a zero automaton.

Before proving the above lemma, we show how it completes the proof of the Intersection
Lemma.

Proof of the Intersection Lemma. Consider zero automata A0,A1 with states Q0, Q1. By
induction on the number of seed states in A1, we prove that there is a zero automaton
recognising the intersection of the two languages. The induction base is when A0 has no
seed states, which is Lemma 19. Let us do the induction step.

Because languages recognised by zero automata are closed under projections, it suffices
to show that there is a zero automaton which recognises the set of trees

ρ0 ⊗ ρ1 ∈ trees(Q0 ×Q1)

such that for every i ∈ 2, the run ρi is an accepting run ofAi over t. LetA′1 be the automaton
obtained from A1 be taking some seed state q and removing it from the set of seed states.
By induction assumption, there is a zero automaton which checks if ρ0⊗ρ1 is a combination
of runs for A0 and A′1. Adding the state q to the seed states corresponds to intersecting
with an automaton that has only one seed state, which is where we use Lemma 25. J

Using the same proof as for Lemma 24, one shows the following lemma.

I Lemma 26. Let A be a zero automaton with states Q. Let q ∈ Q be such that the maximal
seed state in A is ≤ q. For every n ∈ N there is a zero automaton which recognises the set
of trees

ρ⊗ t ∈ trees(Q× {1, . . . , n})

such that ρ satisfies the nonzero acceptance condition in A and for every node x with label
q in ρ, if i is the label of x in t then

zero 63 {π ∈ paths ρ :


π passes through x, and
π sees q infinitely often, and
π sees only labels < i in t after x, and
π has even t-maxinf

}

Bojanczyk 23

Proof of Lemma 25. Fix zero automata A0,A1 such that A0 has only one seed state. Let
Q0, Q1 be their state spaces. By nondeterminism of zero automata and closure under in-
tersection with seedless zero automata, it suffices to prove that there is a zero automaton
recognising the language:

{ρ0 ⊗ ρ1 ∈ trees(Q0 ×Q1) : ρi satisfies the nonzero acceptance condition for i ∈ 2}.

The key is the following characterisation of the above language.
I Claim 27. Let ρ0, ρ1 be runs of the automata A0,A1 with the same domain, and let X
be the set of nodes where the unique seed state of A0 appears in ρ0. Then ρ0, ρ1 satisfy
the nonzero acceptance conditions in their respective automata if and only if there exists
families

{Intq}q∈Q1 {Extq}q∈Q1 (6)

of sets of nodes in the domain such that

1. if y is a node whose state q in ρ1 is a seed state, then there is a descendant x of y such
that all nodes in (y..x) have label < q and x ∈ Intp ∪ Extp for some p ≤ q.

2. if Y is an X-factor then both conditions below are satisfied:
a.

zero 63 {π ∈ Ȳ : the ρ0-maxinf of π belongs to Qnonzero from A0}

b. for every q ∈ Q1 and x ∈ Y ∩ Intq,

zero 63 {π ∈ Ȳ :


π passes through x, and
π sees only states < q after x, and
the ρ1-maxinf of π belongs to Qnonzero from A1.

}

3. for every x ∈ X ∩ Extq,

zero 63 {π ∈ paths ρ0 :


π passes through x, and
π sees only states < q after x in ρ1, and
π passes through X infinitely often, and
the ρ1-maxinf of π belongs to Qnonzero from A1.

}

Proof. We begin with the simpler bottom-up implication. Suppose that ρ0, ρ1, X and fam-
ilies as in (6) are such that the above conditions 1, 2, 3 are satisfied. For the automaton
A0, the nonzero condition is exactly the same as saying that condition 2a holds for every
X-factor. Consider the automaton A1. Let y be a node in ρ1 which has a seed state q.
Choose x ∈ Intp ∪Extp as in item 1. Using condition 3 or 2b, depending on whether Intp or
Extp contains x, we show that

zero 63 {π ∈ paths ρ0 :


π passes through x, and
π sees only states < p after x in ρ1, and
the ρ1-maxinf of π belongs to Qnonzero from A1.

}.

By prefix independence of zero, and the assumption that only states < q appear in (y..x],
we see that the nonzero condition is satisfied in y.

24 Thin MSO with a probabilistic path quantifier

We are left with the top-down implication. Let ρ0, ρ1 and X be as in the assumptions
of the claim. Assume that ρ0, ρ1 satisfy the nonzero condition in their respective automata.
Condition 2a is satisfied by the assumption that ρ0 satisfies the nonzero condition. Define
the sets from (6) to be the maximal ones which make conditions 2b and 3 hold. It remains
to check that condition 1 holds. Suppose then that y is a node which is labelled by a seed
sate q in ρ1. By the assumption that ρ1 satisfies the nonzero condition, we know that

Π def= {π ∈ paths ρ0 :


π passes through y, and
π sees only states < q after x in ρ1, and
π has ρ1-maxinf state in Qnonzero for A1

}

is not in zero. Let x be a node of ρ0, or equivalently of ρ1. Define

Πint
x

def= {π ∈ Π : π passes through x and does not visit X after x}
Πext
x

def= {π ∈ Π : π passes through x and visits X infinitely often}

It is easy to see that the above sets cover all of Π. By closure of zero under countable unions,
one of the above sets must be outside zero. Condition 1 in the statement of the claim then
follows from the following straightforward observations:

if Πint
x or Πext

x is nonempty, then (y..x] contains only labels < q in ρ1;
if Πint

x is nonempty then x ∈ Intp for some p ≤ q;
if Πext

x is nonempty then x ∈ Extp for some p ≤ q.
J

Consider sets as in (6). Note that if a node belongs to Intp, then we can safely add it to Intq
for all p ≤ q without affecting condition 2b. Therefore, by Claim 27, to prove the lemma it
suffices to show that there is a zero automaton which accepts a tree

ρ0 ⊗ ρ1 ⊗ int⊗ ext ∈ trees(Q0 ×Q1 × (Q0 ∪ {⊥})× (Q0 ∪ {⊥})) (7)

if and only if the three conditions from the claim are satisfied assuming that

Intp = {x : int(x) is not ⊥ and int(x) ≤ p}
Extp = {x : int(x) is not ⊥ and ext(x) ≤ p}.

Condition 1 is definable in mso, and therefore it suffices to find a zero automaton for con-
ditions 2 and 3. Condition 2a, as a property of the factor in Y , is an instance of Zn, up to
relabeling the alphabet. Condition 2b, as a property of the factor in Y , is recognised by a
zero automaton on partial trees. Therefore, by Lemmas 20 and the Factorisation Lemma,
Condition 2 is recognised by a zero automaton. From the construction in Lemma 7, we can
assume that the automaton recognising Condition 2 uses its maximal state in nodes from
X. Therefore, to add condition 3, we use Lemma 26. J

C From logic to transducers

In this part of the appendix, we prove Theorem 10. Define T to be the class of transducers in
the statement of the theorem. The theorem says that a language is definable in tmso+zero
if and only if its characteristic transducer belongs to T.

Let us begin with the simpler transducer-to-logic implication. We say that a transducer
f : treesΣ → treesΓ is definable in tmso+zero if for every a ∈ Γ there is a formula ϕa(x)
of tmso+zero with a single free node variable, such that for every t ∈ treesΣ, the formula
ϕa(x) selects those nodes in the domain of t which have label a in the output f(t).

Bojanczyk 25

I Lemma 28. Every transducer from T is definable in tmso+zero.

Proof sketch. It is not difficult to see that transducers definable in tmso+zero are closed
under composition and combination, and that they contain child number transducers, trans-
ducers recognised by Mealy machines, and characteristic transducers of languages definable
in tmso. The only difficulty is the characteristic transducers of the languages

Zn
def= {t ∈ trees{1, . . . , n,⊥} : zero 3 {π ∈ 2ω :

{
π does not visit ⊥, and
π has defined and even maxinf

}}

To define the characteristic transducer of such a language in tmso+zero, we need a formula
ϕ1(x) which is true in a node x if and only if the subtree of x satisfies the above property.
The formula is

zeroπ
(
x ∈ π ∧ “the maxinf is even for π and there is no appearance of ⊥ after x”).

To prove that the formula is correct, we use prefix independence, i.e. condition 3 in Defini-
tion 3. J

The above lemma completes the transducer-to-logic implication. Indeed, suppose that the
characteristic transducer

transL : treesΣ→ trees2

of a language L ⊆ treesΣ is definable in tmso+zero. Apply the above lemma, yielding a
formula ϕ1(x). A tree belongs to L if and only if this formula selects the root.

The rest of Appendix C is devoted to proving the logic-to-transducer implication. Our
strategy is as follows. In Section C.1 we prove an important special case, namely that
for every ω-regular language L, the class T contains the characteristic transducer of the
language “zero contains the set of paths with labels in L”. In Section C.2, we show that
the composition method works for the logic tmso+zero, i.e. to determine the truth value of
a formula on a tree, it suffices to determine the truth value of other – more complicated –
formulas on pieces of the tree. Finally, in Section C.3, we use the results from Section C.1
and C.2 to complete the proof of Theorem 10.

C.1 Applying zero to an ω-regular language
The goal of Section C.1 is to prove the following lemma. If L ⊆ Σω is a language of ω-words,
then define zeroL to be the set of trees t ∈ treesΣ such

zero 3 {π ∈ 2ω : π is contained in t and the sequence of its labels is in L}

I Lemma 29. If L ⊆ Σω is ω-regular, then the characteristic transducer of zeroL is in T.

What is the difficulty?

To explain the difficulty in proving Lemma 29, we begin by giving a wrong proof. To re-
cognise ω-regular languages, we use deterministic parity automata, but viewed as Mealy
machines executed on infinite words. The following is a corollary of the fact that determin-
istic parity automata recognise all ω-regular languages.

26 Thin MSO with a probabilistic path quantifier

I Fact 30. A language L ⊆ Σω is ω-regular if and only if there is some

f : Σω → {1, . . . , n}ω

recognised by a Mealy machine such that L is the inverse image f−1(parity condition).
Motivated by the above fact, it is tempting to use the following wrong proof of Lemma 29.

Wrong Proof of Lemma 29. Apply Fact 30 to L, yielding a Mealy machine f . View this
Mealy machine as a tree transducer

f : treesΣ→ trees{1, . . . , n},

which belongs to T, like every tree transducer recognised by a Mealy machine. Our hope
would be that the following composition, which belongs to T, is the characteristic transducer
of zeroL:

treesΣ f // trees{1, . . . , n} transZn // trees2

By unraveling definitions, to prove this hope, we would need to show that

subtreex(t) ∈ zeroL iff subtreex(f(t)) ∈ Zn for every t ∈ treesΣ and x ∈ 2∗

The problem with this reasoning is that it would require

subtreex(f(t)) = f(subtreex(t)), (8)

because only the right side of the equality describes the run of the Mealy machine f on the
subtree of t rooted in x. Such an equality does not hold in general. J

Motivated by the reasoning error described in the above proof, we call a tree transducer
memoryless if it satisfies the equality in (8). More precisely, a transducer f : treesΣ→ treesΓ
is called memoryless if the following diagram commutes for every node x ∈ 2∗:

treesΣ

f

��

subtreex // treesΣ

f

��
treesΓ subtreex // treesΓ

(9)

The idea is that the transducer has no memory about the path leading up to a node x,
but it can depend on the subtree of x. For example, the characteristic transducer of every
language is memoryless. We now turn to a correct proof of Lemma 29, where memoryless
transducers play an important role.

Ordered Mealy machines

Call a Mealy machine ordered if there is total order on its state space such that every
transition keeps the same state or makes it smaller. Consquently, runs are non-increasing
with respect to the total order. We begin by proving the special case of Lemma 29 for
ordered Mealy machines.

I Lemma 31. Let f : Σω → {1, . . . , n} be recognised by an ordered Mealy machine. Then T

contains the characteristic transducer of the language

zero{w ∈ Σω : f(w) satisfies the parity condition} = f−1(Zn).

Bojanczyk 27

Proof. The proof is by induction on the number of states in the Mealy machine. Suppose
that we have proved Lemma 29 for all ordered Mealy machines with at most k states, and
consider an ordered Mealy machine with states

q0 > q1 > · · · > qk.

We assume that the initial state is q0, since otherwise we would be done by the induction
assumption. Define

fi : Σω → {1, . . . , n} for i ∈ {0, . . . , k}

to be the function recognised by the Mealy machine obtained from the original one by
changing the initial state to qi, and define Li to be the language as in the statement of the
lemma, except that fi is used instead of f . In particular, the language from the statement
of the lemma is L0. For i ∈ {0, . . . , k} define Σi to be

Σi = {a ∈ Σ : when reading a in state q0, the Mealy machine goes to state qi}.

Because the Mealy machine is deterministic, these sets form a partition of Σ.
Consider a memoryless transducer

h : treesΣ→ trees{1, . . . , n,>,⊥}

defined as follows. Let t ∈ treesΣ and let x be a node, whose label in t is a ∈ Σ. If a ∈ Σ0,
then the label of x in h(t) is the output produced by the Mealy machine when executing
the transition from state q0 to back to state q0 over the input letter a. If a ∈ Σi for some
i ∈ {1, . . . , k} then the label of x in h(t) is > if both child subtrees of t are in Li, and ⊥
otherwise.
I Claim 32. The transducer h is in T.

Proof. For every Σ, the class T contains the transducer

treesΣ→ trees(Σ× Σ)

which maps each node the labels of both of its children; this by using characteristic trans-
ducers of languages definable in wmso with path quantifiers. Therefore, the claim follows
by using the induction assumption. J

Define the tree language

K = zero{w ∈ {1, . . . , n,>,⊥}ω :
{
w has a prefix in {1, . . . , n}∗>; or
w contains neither ⊥ nor > and satisfies the parity condition

}.

I Claim 33. The characteristic transducer of K is in T.

Proof. Define

g : trees{1, . . . , n,>,⊥} → trees{1, . . . , n,⊥}

to be the transducer which replaces > by ⊥, which is memoryless. Assuming that zero is
prefix independent and nontrival (i.e. does not contain 2ω), K is equal to the intersection

g−1(Zn) ∩ “every node with label > has an ancestor with label ⊥”︸ ︷︷ ︸
M

.

28 Thin MSO with a probabilistic path quantifier

Therefore, the characteristic transducer of K is obtained by taking the pointwise minimum
of the following two transducers, which are in T:

transZn ◦ g, transM : {1, . . . , n,>,⊥} → trees2

J

I Claim 34. For t ∈ treesΣ, t ∈ L0 if and only if h(t) ∈ K.

Proof. Fix a tree t ∈ treesΣ. Define

Π = {π ∈ 2ω : the labels of π in f(t) satisfy the parity condition}.

By definition, t belongs to L0 if and only if zero contains the set Π. Define X ⊆ 2∗ to be
those nodes of t which have a label outside Σ0, but all their proper ancestors have label in
Σ0. For x ∈ X, define Πx to be those paths in Π which pass through x. The nodes from
X form an antichain, and therefore the sets {Πx}x∈X are disjoint. Finally, define Π⊥ to be
those paths in Π which are in none of the sets Πx, i.e. those paths in t that only visit labels
from Σ0. Because zero is closed under subsets and countable unions, the tree t belongs to L0
if and only if zero contains all sets Πx with x ∈ X ∪ {⊥}. Finally, by prefix-independence,
the set Πx belongs to zero if and only if the label of x in h(t) is ⊥. J

Therefore, by Claim 32 and closure of T under composition, the lemma will follow once
we prove that the characteristic transducer of the language L0 is the composition transK ◦h:

treesΣ h // trees({1, . . . , n,>,⊥}) transK // trees2 .

By definition of characteristic transducers, we need to show that

subtreex(t) ∈ L0 iff subtreex(h(t)) ∈ K for every t ∈ treesΣ and x ∈ 2∗

Because h is memoryless, the equivalence becomes

subtreex(t) ∈ L0 iff h(subtreex(t)) ∈ K for every t ∈ treesΣ and x ∈ 2∗,

which follows from Claim 32. J

Having proved proved the special case of Lemma 29 for ordered Mealy machines, we now
move to the general case. We use the following lemma, which factors every Mealy machine
through an ordered one in a way that is consistent with taking subtrees.

I Lemma 35. Let f : treesΣ → treesΓ be recognised by a Mealy machine. There exists an
alphabet ∆ and tree transducers recognised by Mealy machines

treesΣ g // trees∆ trees∆ h // treesΓ ,

such that the Mealy machine recognising h is ordered and the following diagram commutes
for every x ∈ 2∗

treesΣ f //

g

��

treesΓ subtreex// treesΓ

trees∆
subtreex

// trees∆

h

OO

Bojanczyk 29

Proof. Using the construction as in Lemma 12 from [3]. J

We are now ready to finish Section C.1 and prove Lemma 29.

Proof of Lemma 29. Let L ⊆ Σω be an ω-regular language. We want to prove that T

contains the characteristic transducer of the tree language zeroL. By Fact 30, one find a
function f : treesΣ→ trees{1, . . . , n} recognised by a Mealy machine such that

t ∈ zeroL iff f(t) ∈ Zn for every t ∈ treesΣ.

Apply Lemma 35 to the Mealy machine recognising f , yielding ∆, g and h. Let t ∈ treesΣ
and let x ∈ 2∗ be a node. We have

subtreex(t) ∈ L iff︸︷︷︸
by definition of f

f(subtreex(t)) ∈ Zn iff︸︷︷︸
by Lemma 35

h(subtreex(g(t))) ∈ Zn.

The above equivalence proves that

trans(h−1(Zn)) ◦ g.

is the characteristic transducer of L. The transducer g belongs to T because it is recog-
nised by a Mealy machine, while the characteristic transducer of h−1(Zn) belongs to T by
Lemma 31. J

C.2 Compositionality of tmso+zero
In this section we show a composition theorem for tmso+zero, which says that if a tree is
cut into many pieces, then evaluating a formula in the whole reduces to evaluating similar
formulas in the pieces.

Quantifier rank

We modify the logic tmso+zero as follows, without changing its expressive power. For every
input letter a we add a predicate “root has label a” of arity zero. Using this predicate, we
can test the root label using a quantifier-free formula. We eliminate node variables, and
keep only thin set variables. We lift the tree predicates to sets as follows:

childi(X) says that all nodes in set X are i-th children;
X ≤ Y says that some node in Y is a descendant of some node in X;
X ⊆ a says that all nodes in X have label a.

The above logic has the same expressive power as tmso+zero, and from now on when talking
about tmso+zero we mean the above syntax.

Define the quantifier rank of a formula in tmso+zero, according the the syntax above,
possibly with free variables, to be the nesting depth of quantifiers in the formula, with all
quantifiers treated the same. Call two trees over the same alphabet n-equivalent if they
satisfy the same sentences of tmso+zero that have quantifier rank at most n. We write ≡n
for n-equivalence, and write

treesΣ/≡n

for the set of n-equivalence classes for trees over an input alphabet Σ. By induction on n
one can prove that the above set is finite for every choice of n and Σ.

30 Thin MSO with a probabilistic path quantifier

Truncation

For a prefix-closed set of nodes X ⊆ 2∗, define ∂X ⊆ 2∗ to be the nodes that are not in X,
but have their parent in X. Let n ∈ N and X ⊆ 2∗ be a prefix-closed set of nodes. For a
tree t ∈ treesΣ whose domain contains X, define the (n,X)-truncation of t to be the tree
where the domain is X ∪ ∂X and the label of a node x is defined by{

label of x in t if x ∈ X
subtreex(t)/≡n

if x ∈ ∂X

In particular, the alphabet of the (n,X)-truncation is

Σ/n
def= Σ ∪ (treesΣ)/≡n

.

The goal of this Section C.2 is to prove the following lemma, which says that for every
tmso+zero formula ϕ there is some n such that truth value of ϕ in a tree is uniquely
determined by its (n,X)-truncation, for every prefix closed set X. The lemma is proved
by induction on the quantifier rank. To make the induction work, we need deal with free
variables. We code free variables in a tree as follows: if t ∈ treesΣ is and X is a set of nodes,
we write t ⊗ X ∈ trees(Σ × 2) for the tree obtained from t by extending the label of each
node with a bit saying whether or not the node belongs to X.

I Lemma 36. Let ϕ(X1, . . . , Xk) be a formula of tmso+zero over alphabet Σ. There exists
some n and a tmso+zero definable language

L ⊆ trees((Σ× 2k)/n)

such that for every prefix closed set X ⊆ 2∗, every thin sets X1, . . . , Xk and t ∈ treesΣ,

t |= ϕ(X1, . . . , Xk)

if and only if L contains the (n,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk.

Proof. Induction on the size of ϕ. We only do the induction step where

ϕ(X1, . . . , Xk) = zeroπ ψ(X1, . . . , Xk, π).

Because zero is a σ-ideal, a tree t satisfies the above formula if and only if both conditions
below are satisfied:

1. Internal. The following set of paths is in zero:

{π ∈ 2ω : π does not pass through ∂X and t |= ψ(X1, . . . , Xk, π)}

2. External. For every x ∈ ∂X, the following set of paths is in zero:

{π ∈ 2ω : π passes through x and t |= ψ(X1, . . . , Xk, π)}

Lemma 36 will follow once we show that the internal and external conditions defined
above can be expressed using tmso+zero in terms of the (n,X)-truncation of t⊗X1⊗· · ·⊗Xk,
for some n. This is stated in the following lemma.

I Lemma 37. There is some n ∈ N and language

Lint, Lext ⊆ trees((Σ× 2k)/n)

definable in tmso+zero such that for every t ∈ treesΣ and subsets X,X1, . . . , Xk of its
domain such that X is prefix closed and X1, . . . , Xk are thin:

Bojanczyk 31

1. Internal. The internal condition is satisfied if and only if Lint contains the (n,X)-
truncation of t⊗X1 ⊗ · · · ⊗Xk.

2. External.The external condition is satisfied if and only if Lext contains the (n,X)-
truncation of t⊗X1 ⊗ · · · ⊗Xk.

As mentioned above, the above lemma yields the induction step in Lemma 36. The rest
of Section C.2 is devoted to proving Lemma 37.

Internal.

Let us begin by proving the internal item in Lemma 37. The key to the proof is the following
claim.
I Claim 38. For every alphabet Γ and m ∈ N there is a tree transducer

f : trees((Γ/m)× 2)→ (Γ× 2)/m)

which is definable in tmso and makes the following diagram commute for every prefix closed
X and every path π not passing through ∂X:

treesΓ

(m,X)-truncate
��

_⊗π // trees(Γ× 2)

(m,X)-truncate
��

trees(Γ/m)
_⊗π

// trees((Γ/m)× 2)
f

// trees((Γ× 2)/m)

.

Proof of Claim 38. The claim says that for every tree s ∈ treesΓ and path π that does not
pass through ∂X, the (m,X)-truncation of s⊗π can be computed by a tree transducer based
on the (m,X)-truncation of s combined with the path π. Actually, a stronger result holds,
namely that the label of a node x in the (m,X)-truncation of s⊗ π is uniquely determined
by membership x ∈ π and the label of x in the (m,X)-truncation of s. This stronger result
is obtained by unraveling the definition of (m,X)-truncation. J

Using the claim, show how to define the internal condition. By induction assumption, there
is a language K definable in tmso+zero and some m such that

t |= ψ(X1, . . . , Xk, π)

if and only if K contains the (m,X)-truncation of t ⊗ X1 ⊗ · · · ⊗ Xk ⊗ π. Therefore, the
internal condition is equivalent to saying that zero contains the set of paths π ∈ 2ω which
satisfy both conditions below:

1. the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk ⊗ π belongs to K.
2. π does not pass through ∂X; and

Apply Claim 38 tom and the alphabet Σ×2k, yielding a transducer f . The first condition
above is rephrased as:

1. if s is the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk, then f(s⊗ π) ∈ K.

Whether or not the above holds can be expressed by a formula of tmso+zero with a
free variable π executed on the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk. By applying a zero
quantifier to it, we get a sentence of tmso+zero defining the internal condition in terms of
the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk.

32 Thin MSO with a probabilistic path quantifier

External

To deal with the external condition, it suffices to show that there is a language

L ⊆ trees(((Σ× 2k)/n)× 2)

definable in tmso+zero such that for every prefix closed set X and every x ∈ ∂X, if s is the
(n,X)-truncation of t ⊗X1 ⊗ · · · ⊗Xk then s ⊗ {x} ∈ L if and only if the following set of
paths is in zero:

{π ∈ 2ω : π passes through x and t |= ψ(X1, . . . , Xk, π)} (10)

In the following, we write x2ω for the set of paths which pass through x. A similar proof
as for Claim 38 gives us the following claim.
I Claim 39. Let m ∈ N and let τ be an m-equivalence class of trees over some alphabet
Γ× 2. There is a transducer

f : trees((Γ/m)× 2)→ (Γ× 2)/m)

which is definable in tmso and makes the following diagram commute

treesΓ

(m,X)-truncate
��

_⊗π // trees(Γ× 2)

(m,X)-truncate
��

trees(Γ/m)
_⊗x

// trees((Γ/m)× 2)
f

// trees((Γ× 2)/m)

for every x ∈ ∂X and π ∈ x2ω such that τ is the m-equivalence class of

subtreex(t⊗ π)

where t ∈ treesΓ is the tree in the upper left corner of the diagram.
Using the above claim, we show how to define the external condition. By induction

assumption, there is a language K and some m such that

t |= ψ(X1, . . . , Xk, π)

holds if and only if K contains the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk ⊗ π. In terms of
K, condition (10) becomes

{π ∈ 2ω : K contains the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk ⊗ xπ}

Let T be all the m-equivalence classes of trees over alphabet Σ× 2k+1. Because T is finite,
in order to check that the above set is in zero, it suffices to check that for every τ ∈ T the
set zero contains the set of paths π which satisfy both conditions below:

1. the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk ⊗ xπ is in K; and
2. the m-equivalence class of subtreex(t⊗X1 ⊗ · · · ⊗Xk ⊗ xπ) is τ .
By Claim 39, there is a transducer f such that the above two conditions become:

1. the (m,X)-truncation of t⊗X1 ⊗ · · · ⊗Xk is in {s : f(s⊗ x) ∈ K}; and
2. the m-equivalence class of subtreex(t⊗X1 ⊗ · · · ⊗Xk ⊗ xπ) is τ .

Bojanczyk 33

The first condition can be checked in tmso+zero given x and the the (m,X)-truncation of
t⊗X1 ⊗ · · · ⊗Xk. For the second condition, we observe that

subtreex(t⊗X1 ⊗ · · · ⊗Xk ⊗ xπ) = subtreex(t⊗X1 ⊗ · · · ⊗Xk)⊗ π.

Therefore, whether or not the second condition holds can be uniquely determined by the
(m+ 3)-equivalence class of the subtree

subtreex(t⊗X1 ⊗ · · · ⊗Xk).

The reason we use m+ 3 instead of m+ 1 is that we need to load the path π from the labels
in the tree into a path variable. Summing up, we have shown that there is a formula of
tmso+zero, with a free variable x, such that the set of paths in (10) belongs to zero if and
only if the formula is true in (m+ 3, X)-truncation of t⊗X1⊗ · · ·⊗Xk. This completes the
external case, and therefore also the proof of Lemma 36. J

C.3 Proof of Theorem 10
In this section we complete the proof of the logic-to-transducer implication in Theorem 10.
We will prove the following lemma.

I Lemma 40. Let Σ be an alphabet and let n ∈ N. Then T contains the tree transducer

τn : treesΣ→ trees(treesΣ/≡n
)

which labels each node by the n-equivalence class of its subtree.

Every sentence of tmso+zero with quantifier rank n is equivalent to a finite union of n-
equivalence classes, and therefore the above lemma gives the logic-to-transducer implication
in Theorem 10, and thus completes the proof of the theorem. We prove the lemma by
induction on n. The only information stored by 0-equivalence is the root label, and therefore
the base case of n = 0 is trivial. We turn to the induction step. By definition, the (n+ 1)-
equivalence class of a tree t ∈ treesΣ is uniquely determined by the set of formulas that are
true in t and have the form QXϕ(X) where Q is one of the quantifiers “exists thin set” or
“zero” and ϕ has quantifier rank at most n. Therefore, the induction step in Lemma 40 will
follow from the following lemma.

I Lemma 41. Let Q be one of the quantifiers “exists thin set” or “zero”, and let ϕ(X) have
quantifier rank at most n. Let τn be as in Lemma 40. Then T contains a transducer

f : trees(treesΣ/≡n
)→ trees2

such that f ◦ τn is the characteristic transducer of QXϕ(X).

The rest of Section C.3 is devoted to proving the above lemma.

Eliminating zero

The following lemma says that if the domain of a partial tree is small enough, then there is
no need to use the zero quantifier. Although very simple, the lemma explains why we use
thin sets in the logic.

I Lemma 42. Let ϕ be a sentence of tmso+zero. There is a sentence of tmso which is
equivalent to ϕ over trees whose domain is a thin set.

34 Thin MSO with a probabilistic path quantifier

Proof. By conditions 1 and 2 in Definition 3, zero contains every countable set of paths.
Therefore, for trees with a thin domain, the zero quantifier always returns true. J

The following is an immediate corollary of Lemmas 36 and 42.

I Corollary 43. Let ϕ(Y) be a formula of tmso+zero with a single free variable Y . There
is some n ∈ N and a language definable L in tmso such that

t |= ϕ(Y) ∧ Y ⊆ X iff L contains the (n,X)-truncation of t.

holds for every tree t and every thin prefix-closed subset of its domain X ⊆ 2∗:

Proof of Lemma 41

We now prove Lemma 41. Let Q be one of the quantifiers “exists thin sets” or “zero” and
let ϕ(Y) have quantifier rank at most n. We need to show that T contains a transducer

f : trees(treesΣ/≡n
)→ trees2

such that f ◦ τn is the characteristic transducer of QXϕ(Y). We deal with each quantifier
separately.

Consider the case when Q is existential quantification over thin sets, i.e. the formula
is ∃Y ϕ(Y). Apply Corollary 43 to ϕ(Y) yielding some n and L. If Y is thin, then if
we take X to be the closure of Y under prefixes, we also get a thin set. Therefore, by
Corollary 43, a tree t ∈ treesΣ satisfies ∃Y ϕ(Y) if and only if the (n,X)-truncation of
t belongs to L for some thin prefix closed X. The above property is can be defined in
tmso using the tree τn(t). Therefore, the characteristic transducer of the property is in
T, this is the transducer f in the conclusion of Lemma 41.
We are left with the case when Q is the zero quantifier. Consider a formula of the form
zeroπϕ(π). Apply Corollary 43 to ϕ(π), yielding a some n and L. By abuse of notation,
we define the (n, π)-truncation of a tree to be the (n,X)-truncation where X is the set
of nodes on the path π. Since the only path contained in such an X is π, and zero
contains all singletons, it follows from Corollary 43 that t |= ϕ(π) holds if and only if the
(n, π)-truncation of t belongs to L.
I Claim 44. There is an ω-regular language K ⊆ Γω and memoryless transducer

h : trees(treesΣ/≡n
)→ Γ

in the class T such that for every tree t ∈ treesΣ and path π, the following conditions
are equivalent:

the (n, π)-truncation of t belongs to L;
the labels on π in the tree h(τn(t)) belong to K.

Proof sketch. The transducer from the statement of the claim has the following type

h : trees(treesΣ/≡n
)→ trees

(left child︷ ︸︸ ︷
(treesΣ/≡n

)×
right child︷ ︸︸ ︷

(treesΣ/≡n
)×

child number︷︸︸︷
2 ×

label︷︸︸︷
Σ︸ ︷︷ ︸

Γ

)
.

Given an input tree, h produces a tree where each node x is labelled by: the labels of its
two children in the input tree, its child number, and the unique root label of trees in the

Bojanczyk 35

n-equivalence class that labels the node x in the input tree. This is clearly a memoryless
procedure, and it can be implemented using tmso, and therefore the transducer h belongs
to T. By definition, for every tree t and path π, the (n, π)-truncation of t is uniquely
determined by the sequence of labels given by π in h(τn(t)), and furthermore the function

sequence of labels in h(τn(t)) given by π 7→ the (n, π)-truncation of t

is realised by an mso transduction from ω-words to partial trees, in the sense of the book
by Courcelle and Engelfriet. In particular, by the Backwards Translation Theorem in
that book, every mso definable property of the (n, π)-trnucation of t can be translated
back to an mso definable property of the sequence of labels in h(τn(t)), thus proving the
claim. J

Let us now complete the proof of Lemma 41. Let K and h be as in the above claim. By
the claim, we know that for every tree t ∈ treesΣ, node x and path π,

subtreex(t) |= ϕ(π)

is equivalent to saying that the labels on π in the tree h(τn(subtreex(t))) belong to K.
Because both τn and h are memoryless,

h(τn(subtreex(t))) = subtreex(h(τn(t)))

It follows that

subtreex(t) |= zeroπ ϕ(π) iff subtreex(h(τn(t))) ∈ zeroK.

This means that the characteristic transducer of zeroπϕ(π) is equal to

in T by Lemma 29︷ ︸︸ ︷
trans(zeroL) ◦

in T by Claim 44︷︸︸︷
h ◦τn.

Therefore, taking g to be the composition of the first two transducers above, we get the
conclusion of Lemma 41.

	Introduction
	The logic and the automaton
	The logic
	The automaton

	Fat Cantor
	From logic to automata
	Closure properties of zero automata
	Transducers
	From transducers to zero automata.
	Conclusion
	Probability zero satisfies the assumptions of Theorem 4
	Closure of zero automata under intersection
	Intersection with seedless automata
	Closure under factorisations
	Products with basic nonzero languages
	The general case of intersection

	From logic to transducers
	Applying zero to an -regular language
	Compositionality of tmso+zero
	Proof of Theorem 10

