Two-Way Alternating Automata and Finite
Models

Mikotaj Bojariczyk

Uniwersytet Warszawski, Wydzial MIM, Banacha 2, Warszawa,Polska

Abstract. A graph extension of two-way alternating automata on trees
is considered. The following problem: ,does a given automaton accept
any finite graph?” is proven EXPTIME complete. Using this result, the
decidability of the finite model problem for the modal p-calculus with
backward modalities is shown.

1 Introduction

Alternating tree automata were introduced Muller and Schupp [12]. In terms of
expressibility these automata define the same class of languages as the simpler
nondeterministic tree automata on the one hand and as the complex monadic
second order theory on trees (S2S) on the other. Nevertheless, the formalism
of alternating automata offers a good balance between logical manageability
and computational complexity. Testing emptiness for alternating tree automata
is far easier than the non-elementary procedures in S2S; on the other hand,
closure under conjunction and negation is trivial for alternating automata and
very difficult for nondeterministic automata (cf. the famous “complementation
lemma” [13]).

An important variant of alternating tree automata are alternating tree au-
tomata with the parity condition, introduced by Emmerson and Jutla in [3]. The
parity condition assigns to each of the finite number of states of the automaton
a natural number and those runs of the automaton are considered accepting
where the least number occurring infinitely often is even. The parity condition
is of growing importance in automata theory, particularly in connection with
games [6, 11].

Alternating automata are very closely connected to Kozen’s modal p-calculus
[9]. Because of this close correspondence, the u-calculus is a standard application
for alternating automata [12, 2]. In the same spirit, the satisfiability problem for
the propositional p-calculus with backward modalities is proved decidable by
Vardi [16] via a reduction to two-way alternating automata.

The p—calculus with backwards modalities augments the one-way p-calculus
with quantification over backward modalities, denoted by ¢~ and O0~. A formula
of the form {~ ¢ states that ¢ occurs in some predecessor of the current state,
similarly for O~ . Analogously to the u-calculus, a two-way automaton can, apart
from the usual forward moves of one-way alternating automata, make backward
moves [14].

Another application of the two-way automaton can be found in [5], where
it is used to solve another satisfiability problem — this time for Guarded Fixed
Point Logic, an extension of the Guarded Fragment [7] by fix-point operators.

There is an interesting common denominator to Guarded Fixed Point Logic,
the p-calculus with backward modalities and two-way alternating automata:
none of them have a finite model property.

W say a logic has the finite model property if every satisfiable sentence is
satisfiable in some finite structure. Modal logic and even the modal p-calculus
have the finite model property; the p-calculus with backward modalities does
not (consider the sentence vX.(¢0X A pY.07Y)). A similar situation occurs in
the Guarded Fragment: the fix-point extension no longer has the finite model
property, contrary to the “bare” Guarded Fragment [4] and some of its other
extensions (most notably the Loosely Guarded Fragment [8]).

These observations give rise to the following decision problem: ,Is a given
sentence of the modal pg—calculus with backward modalities (or guarded fixed
point logic) satisfiable in some finite model?” While tackling this problem, we
took the automata approach. However, for reasons sketched out below, it turns
out that we need a new definition of two-way alternating automata.

Most modal logics have a bisimulation-invariance property and the two-way
p-calculus is no exception. In particular, a sentence of the two-way p-calculus
cannot distinguish between a model and its tree unraveling (technically, its two-
way tree unraveling) and so every satisfiable sentence is satisfiable in a tree-
like structure. Thus for the purpose of deciding satisfiability, one can constrain
attention to tree models. This was the approach taken by Vardi; in fact his
automata were alternating two-way automata on infinite trees.

As much as the tree model property is helpful in researching the satisfia-
bility problem, things get more complicated where the finite model problem is
concerned. The reason is that, unfortunately, finite models rarely turn out to be
trees. There are finitely satisfiable sentences that have no finite tree models, for
instance v X.0 X . For this reason, while investigating the finite model problem we
will consider automata on arbitrary graphs, not on trees. These automata cor-
respond very closely to the p-calculus and consequently also lack a finite model
property.

The suitable example, presented in more detail in Example 1, is as follows.
An alternating automaton is constructed that accepts a graph if every reach-
able state has a successor and every backward path is finite. From this follows
that every graph accepted by this automaton must be infinite. A typical graph
accepted by A has natural numbers as vertices, with edges representing the
successor relation.

The paper [1] presented an incomplete solution to the finite model problem.
The automata considered used the Biichi acceptance condition or, equivalently,
the parity condition for the colors {0,1}. The solution presented used a com-
plicated technical pumping argument and the accompanying algorithm ran in
doubly exponential time. Although an important step toward the solution of
the general problem, the Biichi condition is insufficient for both the translations

from p-calculus and the guarded logics which use the full power of the parity
condition. This old result is improved here in two ways: we solve the finite model
problem for the general parity condition, and we do this in singly exponential
time, which turns out to be optimal:

Theorem 1
The finite model problem for alternating two-way automata with the full parity
condition is EXPTIME complete

Here we present an outline of the proof. First of all, we immediately get
rid of graphs and start working on trees, since tree automata are much easier
to work with. A finite graph is represented as an infinite tree — its two-way
tree unraveling. Of course, not all infinite trees represent finite graphs — for this
a special condition, called bounded signature, must be satisfied. This way, the
finite model problem is reduced to the emptiness problem for the tree language
consisting of trees with bounded signature. Although this language is not regular
itself, its emptiness is equivalent to the emptiness of an appropriate (effectively
found) regular language.

2 The automaton

In this section we define our automata. Since our definition of acceptance uses
games with the parity condition, we first briefly define them and recall some
fundamental properties. A more detailed presentation can be found in [15].

2.1 Games with the parity condition

Games with the parity condition are powerful tool in the field of infinite tree
automata. We take the game approach in defining the semantics of our two-way
alternating automata.

Definition 2 (Parity condition game) A game with the parity condition is
a tuple G = (Vg, V1, E, v, 2), where Vj and V; are disjoint sets of positions, the
function 2 : V = VUV, — {0,..., N} is called the coloring function, E C V xV
is the set of edges, and vg € V is some fixed starting position. We additionally
assume that for every position v € V, the set of outgoing edges (v,w) € E is
finite.

The game is played by two players, 0 and 1, and consists of moving a token
from one position in V' to another along the edges of the graph. The first position
is vg. If the token is in a position from Vj, the player 0 makes the move, otherwise
the second player decides. If at some point one of the players cannot make a move,
she loses. Otherwise, the winner depends on the infinite sequence vg, vy, ... of
vertices visited in the game. This infinite play is winning for player 0 if the
sequence 2(vp), 2(v1), . .. satisfies the parity condition defined below, otherwise
the play is winning for player 1.

Definition 3 (Parity condition) An infinite sequence of natural numbers be-
longing to some finite set is said to satisfy the parity condition if the smallest
number occurring infinitely often in the sequence is even.

The case when the set of natural numbers in question is {0,1} is called the
Biichi condition. The dual case of {1,2} is called the co-Biichi condition.

A strategy for the player ¢ € {0,1} is a mapping s : V* x V; = V such that
for each vovy .. .v; € V*V}, there is an edge in E from v; to s(vovs ... v;). We say
a strategy is memoryless if s(vov1 ... v;) depends solely upon v;. The concept of
winning strategy is defined in the usual way. A very important theorem [3,11],
which will enable us to consider only memoryless strategies, says:

Theorem 4 (Memoryless determinacy theorem)
Every game with the parity condition is determined, i. e. one of the players has a
winning strategy. Moreover, the winner also has a memoryless winning strategy.

2.2 Graphs and trees

In this paper, when speaking of graphs, we mean labeled graphs with a starting
position. Such a graph is a tuple G = (V,E, X e,vy), where V is the set of
vertices, E CV x V is the set of edges, the labeling is a function e : V — X and
vg € V is the starting position. We assume that the set X' of labels is finite. Given
a graph G, its set of vertices V, or domain, is denoted as dom(G). For W C V,
the induced subgraph of G is the graph of domain W obtained by restricting the
edges and labeling in G to W.

Given k € NV, a k-ary tree is a special kind of graph whose domain is the set
[k]* of finite sequences over [k] and the edge set is {(v,v - i) : v € [k]*,i € [k]}.
The starting position is the empty sequence € and there are no restrictions on
the labeling.

2.3 Nondeterministic automata

Definition 5 (Nondeterminitic parity automaton) A nondeterministic par-
ity automaton on k-ary trees is the tuple:

<Q7q0a276a ‘Q)

The finite set X' is called the alphabet, Q) is a finite set of states, go € @ is called
the initial state and the function £2 : Q — N assigns to each state q its color
2(Q). The transition function § assigns to each pair (¢,0) € Q X X a set of
transitions §(q,0) C QF.

Given a k-ary tree ([k]*,E, X, e,€) , a run of the automaton is a function
p: [k]* = @ such that for each vertex v € [k]*,

(p(v-1),...,p(v-k)) € 6(p(v),e(v))

A run p is accepting if p(€) = qo and on each infinite path v, vy, . .., the sequence
2(p(vo)), 2(p(v1)) ... satisfies the parity condition. An automaton accepts a tree
if there exists an accepting run.

Theorem 6 (Rabin)
Regular tree languages are closed under boolean operations and set quantification

2.4 Alternating automata

Two-way alternating automata on infinite trees were studied by Vardi in [16] as a
tool for deciding the satisfiability problem of the modal p-calculus with backward
modalities. As opposed to “normal” alternating automata, two-way automata
can travel backwards across edges. For reasons explained in the introduction,
when dealing with the finite model problem, we consider a graph version of the
automata.

Definition 7 (Two-way alternating automaton) A two-way alternating au-
tomaton on X-labeled graphs is the tuple:

<Q37QV7q07 2757 ‘Q)

@3, Qv are disjoint finite sets of states, go € Q = Q3 U Qv is called the starting
state and (2 is a function assigning to each state ¢ € @) a natural number 2(q)
called the color of q. The transition function ¢ is of the form

6:QXE_)P({07+7_}XQ)

Intuitively, a run of A over some graph G is based on a game between two
players: 3 and V. The automaton starts in state qo in the starting position of
G. Afterwards, A moves around the graph, the player deciding which move to
make depending on whether the current state is in Q3 or Qv. The set of possible
moves depends on the value assigned by § to current state of A and the label
of the current position in G. A choice of the form (g, +) (respectively (q,—))
means the automaton changes the state to ¢ and must move to some position
along a forward (respectively backward) edge. Choosing (g,0) does not change
the position, only the state of the automaton. The winner is determined as in
the parity game.

A precise definition is as follows. Given a labeled graph G = (V, E, X, e, vg)
and a two-way alternating automaton A = (Q3, Qv, qo, X, J, 2), we define the
game G(A,G) = (Vo, 1, E', v(l]a 2'):

- W=QaxVand Vs =Qy x V.

— vy = (o, vo)-

- ((g,v)(¢',v")) € E' iff either:
e (0,q') € 6(g,e(v)) and v =o'
* (=,¢') €6(g,e(v)) and (v',v) € E
* (+,¢') €6(g,e(v)) and (v,0") € B

— 2'(q,v) = 2(q)-

Definition 8 (Acceptance by the automaton) We say that the automaton
A accepts a graph G under the strategy s if s is a winning strategy for player
3 in the game G(A, G). Such a strategy s is called accepting. We say A accepts
graph G if there exists a strategy s such that A accepts G under s.

Note that without loss of generality we assume that accepting strategies are
memoryless. We will conclude this section with an example of an automaton
that accepts a graph, yet no finite one.

Example 1. Consider the following two-way automaton

A={t} {9, e}, qy,1a}, 6, 2)
Let £2 be {(¢s,0),(gy,0), (g=,1)} and the transition function d be:

0(¢e;a) ={(+:q)} (@ a) ={(0,¢2), (= ¢=)} d(gz,0) = {(—¢:)}

We will examine the game G(A,G), where G = (N, {(n,n+1) : n €
N}, e,0}), such that e(n) = a for all n € A. Consider first the following ex-
ample play. Since the starting state is g, and the starting position is 0 , the
play begins in (gy,0). This is a game position for player V — she has to choose a
move from §(gy, a) = {(0,¢z), (—, ¢z)}, let’s assume she picks (0, g;). This means
we stay in the vertex 0 and now player 3 has to choose from (g, a). There is
only one possibility — namely (+, g,). This means 3 has to choose a neighboring
(in G) position along a forward edge. Again, 3 has no choice, he has to choose
1; the game position is now (gy,1). This goes on, through the game positions
(gz,1), (gy,2), (¢z,2), . .. until, say, we reach (gy, 10). Let’s assume that this time
player V chooses (—, g,). Now it is her choice to choose a neighboring position in
@G, along a backward edge; she has to choose 9 — there is no other backward edge
from 10. The play then goes on through game positions (g, 9), (¢.,8),-- -, (g2, 0)
in which last position player V loses for a lack of possible moves.

In the game G(A, G) there are essentially two kinds of play: a finite play like
the one above, where player 3 wins, or an infinite one where player V always
chooses (+,¢,) from 6(gy,a). The play goes through positions (gy,0), (¢gz,0),
(gy,1), (gz,1), ... The only color appearing infinitely often in this play is 0,
thus, again, player 3 wins.

So we see that in the game G(A, G) player 3 has a winning strategy, in other
words, A accepts G. It can also be proven, that the automaton A accepts only
graphs with an infinite forward path where no infinite backward path is ever
reachable. In particular A accepts only infinite graphs.

3 The finite model problem

The example above is a motivation for the following problem: ,does a given
alternating two-way automaton accept some finite graph?” This is the problem
— called the finite model problem — tackled in this section.

Our plan is as follows. In the next subsection we prove an auxiliary decid-
ability result about certain graphs with red and green edges. This is then used
to prove the decidability of the finite model problem.

3.1 RG-graphs

An RG-graph is a directed graph with two types of edges — red ones and green
ones. More formally, it is a tuple (V, E;, E;) where E;, E; CV x V. RG-graphs
have no labels.

Definition 9 Assuming that for i € Z, (v;,vi41) € Ex U Eg:

— A finite path is a sequence vy - . . Up,-

— A backward infinite path is a sequence ...v_1vq.
— A forward infinite path is a sequence vgvy . . .

— A path is any one of the above.

Given a set X, an RG-graph over {¢,0,...,m} x X is (m, X)-V-shaped iff
for all edges ((,x), (j,v)), either i = € or j = ¢ or i = j. By VG we denote the
set of (m, X)-V-shaped RG-graphs.

ORONG) |
A 2-V-shaped graph over {a,b,c} t for some tree over VG%a,b,c}

Given an m-ary tree t (which is not an RG-graph) whose vertices are labeled
by elements of VG%, the RG-graph ¢ is defined as follows. The vertex set of
is dom(t) x X. If there is an edge from (i,z) to (j,y) in the label of v in ¢ for
i,j € {¢,0,...,m}, then there is an edge from (v -4,z) to (v - j,y) of the same
color in the graph . Note that % is not a tree.

The trees in the lemmas in this subsection are m-ary trees labeled by VG';.

Definition 10 A tree t is path bounded iff there is a finite bound on the number
of red edges in paths in .

Definition 11 A treet is path finite iff there is no (infinite) path with an infinite
number of red edges in ¢

Given an m € N, a path is m-acyclic if it visits each vertex at most m times.
Given n € NV, we say a path 7 in a labeled tree is n-upward if there exist paths
T,...,Tpt1 and vertices v < ... < vy, such that:

— T =T1U1T2V2 ... TpUnTpt1
— All v; have the same label.
— 7 contains a red edge for some i € {2,...,n}.

A path is n-vertical if it is n-upward or the reverse path is. The rather easy
proof of the following lemma, is omitted:

Lemma 1. For every m,n € N and every labeled tree t, there is a constant
M™"™ such that every m-acyclic path in t containing more than M;"" red edges
s n-vertical.

A labeled tree t is regular if it contains a finite number of nonisomorphic
subtrees. The following observation is crucial in our proof:

Lemma 2. A regular tree is path bounded iff it is path finite.

Proof The left to right part is obvious. For the other direction, assuming that
a regular tree t is not path bounded we will prove it is not path finite.

Let 71, ..., T, be the isomorphism types of t. Let ¢’ be the {1,...,7,} x VG-
labeled tree obtained from ¢ by additionally labeling each vertex with its iso-
morphism type. Take some path 7 in ¥ with more than Mtl,X b1 X1 edges. We can
assume that 7 is acyclic, otherwise the proof would be done. Consider its projec-
tion (by erasing the X component) onto the tree ¢'. Obviously, this projection
is | X |-acyclic and, using Lemma 1, we can find two comparable vertices v and
v’ in #' such that for some z € X, (v,) and (v, z) are linked in ¢ by a path =’
containing a red edge.

Since v and v' a roots of isomorphic trees (because they have the same label
in ¢'), we can pile infinitely many copies of 7’ on each other obtaining a path
that is either forward or backward infinite. O

The reason why we consider path finite trees is that they are regular:

Lemma 3. There is a co-Biichi automaton recognizing the path finite trees.

Proof We will show a Biichi automaton recognizing the complement of this lan-
guage. Our automaton needs to check if there is a path in ¢ containing infinitely
many red edges. The automaton accepts if either:

— There is a cycle (v, z),. .., (v,x) containing a red edge.
— There exists an infinite acyclic path vg, vy, ... in the tree t labeled by pairs
(o, 2p), (x1,2}),... € X x X such that:
e There is an edge in ¢ between (v;,z}) and (vit1, Tit1).
e There is a path (perhaps of zero length) in # linking (v;, z;) with (v;, z}).
e The edges and cycles mentioned above are directed accordingly to create
either an infinite forward path or an infinite backward path.
e This path has infinitely many red edges.

Both of these conditions can be checked by a nondeterministic Biichi automaton
similar to the one constructed in [16]. O
The proof of the following can be found in [15]:

Theorem 12 (Rabin)
FEvery nonempty regular tree language contains a regular tree

Theorem 13
For a regular tree language L, the following conditions are equivalent:

1. L contains some path bounded tree.

2. L contains some regular path bounded tree.
3. L contains some regular path finite tree.

4. L contains some path finite tree.

Proof Since, by Lemma 3, the set of path finite trees in L is regular, 3 & 4
follows from Theorem 12. On the other hand, the equivalence 2 < 3 follows from
Lemma, 2.

The implication 2 = 1 is obvious, for the other direction more care is needed
because the set of path bounded trees is not regular. For a given M, however,
it can be shown that the language Ljs of trees where each path has at most M
red vertices is regular. If L contains a path bounded tree, then Lj; is nonempty
for some M. Thus Ljs contains a regular tree, which gives us 2. O

Using Lemma, 3 and Theorem 13 we obtain:

Lemma 4. Given a regular language L over VG%, it is decidable whether there
s a path bounded tree in L.

Assume the language L is recognizable by a Biichi nondeterministic automa-
ton. Because emptiness for co-Biichi and Biichi automata is polynomial and the
automaton in Lemma 3 is of exponential size with respect to m and |X|, the
time taken by such a procedure is exponential in |X|-m and polynomial in the
size of the automaton recognizing L.

3.2 Signatures and induced RG-graphs

We are now set to show the decidability of the finite model problem. We use
Theorem 15, which represents finite graphs as trees satisfying a certain condition.
This condition, in turn, can be expressed using bounded paths and, using the
results from the previous section, the finite model problem is proved decidable.

Consider an alternating two-way automaton A = (@3, Qv, g0, =, 9, 2). Fix a
graph G with vertices V and a strategy s for the player 3 in the game G(A, G).
For an odd color 7 € 2(Q) assumed by the acceptance condition we will define
the relations —;, =;C (Q x V')? and the partial function Sig; : @ xV — N'U{oo}
as follows:

— (q1,v1) =i (g2,v2) if 2(¢1) > ¢ and in the game G(A,G) there exists a
play compliant with s with a move from (q;,v1) to (g2, v2). In other words,
A can go from the position v; and state ¢; to the position vy and state
g2 in one move: either any move by V or the single move by 3 compliant
with s. The transitive closure of this relation is denoted as —;. Note that
(q1,v1) = (g2, v2) implies the position (g1, v1) is reachable in G(A4, G) under
s.

= (q1,v1) =i (g2,v2) if (q1,v1) =4 (g2,v2) and 2(q1) = i.
— Sig; (g, v) is defined only for states ¢ such that £2(¢) > i and equals the upper

bound on the n € N such that for some ¢1, ¢}, v1,0] - - - qn, G, Vn, Ul

(g,v) =7 (g1,v1) = (q{,v{) = (g2,v2) =i ... -7 (gn,vn) =i (QL,U'H)

Intuitively, given a strategy s for 3, Sig;(g,v) tells us how many “bad” states of
odd color ¢ can be visited by the automaton starting from (g, v) before they are
either annulled by a state of color less than 4 or no more states of color i can be
visited. This can be encoded by the very local relations —;,=>; which say what
are the possible moves between neighboring vertices of the graph.

We will illustrate the concept of signature using Example 1. Recall that we
were dealing with the graph G = (N, {(n,n + 1) : n € N}, e, 0}). Consider
the winning strategy for the player 3 described in the example, call it s. We
will define the signature for this strategy. There is only one odd color in the
acceptance condition — so only the relations —1, =; and the function Sig; need
be defined.

Consider first the state g,. Since d(g;,a) = {(—1,¢.)}, only backward moves
to g, are possible and we obtain that (g,,v) =1 (¢,v') iff ¢ = ¢, and v’ =v—1.
Since g, gy are of color 0, (¢,v) —1 (¢',v") does not hold for ¢ € {qz,qy}-
Moreover, in this particular example, — is the same relation as =1, since there
are no states of color greater than 1.

Now we turn to the signature Sig, (¢, v), which is only defined if ¢ = ¢,. Given
a vertex v, it is easy to see that at most v steps can be made using =>1:

(qZ7U) =1 (QZav - 1) =101 (qz;o)

This shows that Sig; (g.,v) is v for all vertices v € A of the example graph.

Definition 14 A two-way k-ary tree is a graph whose domain is k* and where
all edges are exclusively either (v,vi) or (vi,v) for v € k* and i < k.

In particular, every k-ary tree is a two-way k-ary tree.

We say an automaton accepts a graph G with a bounded signature if there
is some strategy s and bound M € N such that Sig;(¢g,v) < M for all ¢,v and
odd i. The following was proved in [1] for automata with the Biichi acceptance
condition, but the proof for the general parity condition is the same:

Theorem 15 (Bounded signature theorem)
An alternating two-way automaton accepts some finite graph iff it accepts some
two-way |Q|-ary tree with a bounded signature.

Given an automaton A with states) and m colors in the acceptance con-
dition, let VG(A) stand for VGlQQj< (m)- Note that [VG(A)] is exponential in |Q).
This alphabet will be used to encode the relations —; and =-; in the tree itself.

Definition 16 Given a X-labeled two-way |Q|-ary tree ¢ and a memoryless
strategy s for the player 3, the induced tree Ty, is the unique VG(A)-labeled
tree such that Ty ; has:

— A red edge from (v, q,%) to (v',q',i) iff (¢,v) = (¢',v').
— A green edge from (v,q,7) to (v',¢,4) iff (g,v) = (¢',v").

The construction of Ty s yields:
Lemma 5. The signature of t,s is bounded iff T; ; is path bounded.

To prove the next lemma, we need to encode strategies for 3 in trees. Note
that in a graph G, a memoryless strategy in the game G(A, G) is a function
s : Q@ x dom(G) = @ x dom(G) such that for s(q,v) = (¢',v"), either v = v/
or (v,v') € EU E~L. If the graph in question is a two-way tree, we can use a
different format:

s:dom(t) > Q - Q@ x {-1,¢,1,...,k}

Let us denote the finite set @ — @ x {—1,¢,1,...,k} by S4. Given a strategy
s over the tree t, the encoding of s is the relevant mapping 5 : dom(t) — S4.
This allows us to encode strategies within a tree using an alphabet whose size is
exponential in |Q).

Lemma 6. The set of all induced trees is a regular tree language

Proof It is easy to find a nondeterministic Biichi automaton that, given a tree
t labeled by VG(A), guesses a labeling ¢ : dom(¢t) — X and an encoding 3 :
dom(t) — S 4 and verifies that ¢ is indeed the induced tree for ¢ and the strategy
s. The state space of this automaton is exponential on |Q|. O

Corollary 17 The finite model problem is decidable in time exponential in |Q|.

Proof By Theorem 15, A accepts some finite graph iff A accepts some tree ¢
with a bounded signature. This, by Lemma 5 is equivalent to the existence of
an induced path bounded tree. Since the language of induced trees is regular by
Lemma 6, we can use Lemma 4 to show the decidability. O

We prove the lower bound by a reduction from the emptiness problem for
one-way automata. Such an automaton is a two-way automaton where é does not
use the transitions {—} x Q. This is the original alternating automaton [12, 3]. In
the one-way case, one can prove using Rabin’s Theorem 12 that every nonempty
one-way alternating automaton accepts some finite graph. This means that for
one-way automata, the emptiness and finite model problems are equivalent. Since
the emptiness for PDL, which is EXPTIME hard [10], can be reduced to the
emptiness problem for alternating one-way automata, the finite model problem
for one-way automata is also EXPTIME hard. The one-way automata being a
special case of two-way automata, we obtain:

Theorem 18
The finite model problem for alternating two-way automata is EXPTIME com-
plete

Without going into any details, we only state the application of our result to
the p-calculus. Readers interested in the translation should refer to [16, 1].

Theorem 19
The finite model problem for the propositional modal p-calculus with backward
modalities is decidable in EXPTIME.

Before we conclude, we state one possible extension of this work. Two-way

alternating automata are also used in the paper [5] to decide the satisfiability of
formulas of the so-called Guarded Fragment with fixed points. It is possible that
our result can be applied to solving the open problem of whether the finite model
property for formulas of the Guarded Fragment with fixed points is decidable.

References

10.

11.

12.

13.

14.

15.

16.

. Mikotaj Bojariczyk. The finite graph problem for two-way alternating automata.

In FOSSACS 2001, volume 2030 of LNCS, pages 88-103, 2001.

A. Saoudi D. E. Muller and P. E. Shupp. Weak alternating automata give a simple
explanation why most temporal and dynamic logics are decidable in exponential
time. In Proceedings 3rd IEEE Symposium on Logic in Computer Science, pages
422-427, 1988.

E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In
Proc. 32th IEEE Symposium on Foundations of Computer Science, pages 368-377,
1991.

E. Gradel. On the restraining power of guards. Journal of Symbolic Logic, 1999.
E. Gridel and I. Walukiewicz. Guarded fixed point logic. In Proceedings 14th IEEE
Symp. on Logic in Computer Science, pages 45-54, 1999.

Y. Gurevich and L. Harrington. Automata, trees and games. In Proc. 14th. Ann.
ACM Symp. on the Theory of Computing, pages 60—65, 1982.

J. van Benthem H. Andreka and I. Nemeti. Modal logics and bounded fragments
of predicate logic. Journal of Philosophical Logic, pages 217-274, 1998.

I. Hodkinson. Loosely guarded fragment has finite model property. J. Symbolic
Logic, to appear.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science,
27:333-354, 1983.

R. Ladner M. Fischer. Propositional dynamic logic of regular programs. Journal
of Computer and System Sciences, 18:194-211, 1979.

A. Mostowski. Games with forbidden positions. Technical report, University of
Gdansk, 1991.

D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267-276, 1987.

M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc., 141, 1969.

G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305-318,
1985.

Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal Lan-
guage Theory, III, pages 389-455. Springer, 1997.

M. Vardi. Reasoning about the past with two-way automata. In vol. 1443 LNCS,
pages 628—641, 1998.

