
Factorization Forests

Miko laj Bojańczyk

Warsaw University

Abstract. A survey of applications of factorization forests.

Fix a regular language L ⊆ A∗. You are given a word a1 · · · an ∈ A∗. You
are allowed to build a data structure in time O(n). Then, you should be able
to quickly answer queries of the form: given i ≤ j ∈ {1, . . . , n}, does the infix
ai · · · aj belong to L?

What should the data structure be? What does quickly mean? There is natu-
ral solution that uses a divide and conquer approach. Suppose that the language
L is recognized by a (nondeterministic) automaton with states Q. We can divide
the word in two halves, then into quarters and so on. The result is a binary tree
decomposition, where each tree node corresponds to an infix, and its children
divide the infix into two halves. In a bottom-up pass we decorate each node
of the tree with the set R ⊆ Q2 of pairs (source, target) for runs over node’s
corresponding infix. This data structure can be computed in time linear in the
length of the word. Since the height of this tree is logarithmic, a logarithmic
number of steps is sufficient to compute the set R of any infix (and the value of
R determines membership in L).

The goal of this paper is to popularize a remarkable combinatorial result of
Imre Simon [15]. One of its applications is that the data structure above can be
modified so that the queries are answered not in logarithmic time, but constant
time (the constant is the size of a semigroup recognizing the language).

So, what is the Simon theorem? Let α : A∗ → S be a morphism into a finite
monoid1. Recall the tree decomposition mentioned in the logarithmic divide and
conquer algorithm. This tree decomposes the word using a single rule, which
we call the binary rule: each word w ∈ A∗ can be split into two factors w =
w1 · w2, with w1, w2 ∈ A∗. Since the rule is binary, we need trees of at least
logarithmic height (it is a good strategy to choose w1 and w2 of approximately
same length). To go down to constant height, we need a rule that splits a word
into an unbounded number of factors. This is the idempotent rule: a word w
can be factorized as w = w1 · w2 · · ·wk, as long as the images of the factors
w1, . . . , wk ∈ A∗ are all equal, and furthermore idempotent:

α(w1) = · · · = α(wk) = e for some e ∈ S with ee = e.

1 Recall that a monoid is a set with an associative multiplication operation, and an
identity element. A morphism is a function between monoids that preserves the
operation and identity.

An α-factorization forest for a word w ∈ A∗ is an unranked tree, where each leaf
is labelled by a single letter or the empty word, each non-leaf node corresponds
to either a binary or idempotent rule, and the rule in the root gives w.

Theorem 1 (Factorization Forest Theorem of Simon [15]). For every
morphism α : A∗ → S there is a bound K ∈ N such that all words w ∈ A∗ have
an α-factorization forest of height at most K.

Here is a short way of stating Theorem 1. Let Xi be the set of words that
have an α-factorization forest of height i. These sets can be written as

X1 = A ∪ {ε} Xn+1 = Xn ·Xn ∪
⋃
e∈S
ee=e

(Xn ∩ α−1(e))∗ .

The theorem says that the chain X1 ⊆ X2 ⊆ · · · stabilizes at some finite level.

Let us illustrate the theorem on an example. Consider the morphism α :
{a, b}∗ → {0, 1} that assigns 0 to words without an a and 1 to words with an a.
We will use the name type of w for the image α(w). We will show how that any
word has an α-factorization forest of height 5.

Consider first the single letter words a and b. These have α-factorization
forests of height one (the node is decorated with the value under α):

a

1

b

0

.

Next, consider words in b+. These have α-factorization forests of height 2: one
level is for the single letters, and the second level applies the idempotent rule,
which is legal, since the type 0 of b is idempotent:

b

0

b

0

b

0

b

0

0

In the picture above, we used a double line to indicate the idempotent rule. The
binary rule is indicated by a single line, as in the following example:

a

1

b

0

b

0

b

0

b

0

0

1

2

As the picture above indicates, any word in ab+ has an α-factorization forest of
height 3. Since the type of ab+ is the idempotent 1, we can apply the idempotent
rule to get a height 4 α-factorization forest for any word in (ab+)+:

a

1

a

1

a

1

a

1

a

1

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

0 00

1

1

1

1

1

This way, we have covered all words in {a, b}∗, except for words in b+(ab+)+.
For these, first use the height 4 factorization forest for the part (ab+)+, and then
attach the prefix b+ using the binary rule.

A relaxed idempotent rule. Recall that the idempotent rule requires the word
w to be split into parts w = w1 · · ·wk with the same idempotent type. What if
we relaxed this rule, by only requiring all the parts to have the same type, but
not necessarily an idempotent type? We claim that relaxing the idempotent rule
would not make the Factorization Forest Theorem any simpler. The reason is
that in any finite monoid S, there is some power m ∈ N such sm is idempotent
for any s ∈ S. Therefore, any application of the relaxed rule can be converted
into a height logm tree with one idempotent rule, and a number of binary rules.

1 Proof of the theorem

This section contains a proof of the Factorization Forest Theorem, based on
a proof by Manfred Kufleitner [9], with modifications suggested by Szymon
Toruńczyk. The proof is self-contained. Implicitly it uses Green’s relations, but
these are not explicitly named.

We define the Simon height ||S|| of a finite monoid S to be the smallest
number K such that for every morphism α : A∗ → S, all words in A∗ have an
α-factorization forest of height at most K. Our goal is to show that ||S|| is finite
for a finite monoid S. The proof is by induction on the number of elements in S.
The induction base, when S has one element, is obvious, so the rest of the proof
is devoted to the induction step.

Each element s ∈ S generates three ideals: the left ideal Ss, the right ideal sS
and the two-sided ideal SsS. All of these are submonoids and contain s. Elements
of S are called H-equivalent if they have the same left and right ideals. First, we
show a lemma, which bounds the height ||S|| based on a morphism β : S → T .
We use this lemma to reduce the problem to monoids where there is at most
one nonzero two-sided ideal (nonzero ideals are defined later). Then we use the

3

lemma to further reduce the problem to monoids where H-equivalence is trivial,
either because all elements are equivalent, or because all distinct elements are
nonequivalent. Finally, we consider the latter two cases separately.

Lemma 1. Let S, T be finite monoids and let β : S → T be a morphism.

||S|| ≤ ||T || ·max
e∈T
ee=e

||β−1(e)||

Proof
Let α : A∗ → S be morphism, and w ∈ A∗ a word. We want to find an α-
factorization forest of height bounded by the expression in the lemma. We first
find a (β ◦ α)-factorization forest f for w, of height bounded by ||T ||. Why is f
not an α-factorization? The reason is that f might use the idempotent rule to
split a word u into factors u1, . . . , un. The factors have the same (idempotent)
image under β ◦ α, say e ∈ T , but they might have different images under
α. However, all the images under α belong to the submonoid β−1(e). Treating
the words u1, . . . , un as single letters, we can find an α-factorization for u1 · · ·un
that has height ||β−1(e)||. We use this factorization instead of the idempotent rule
u = u1 · · ·un. Summing up, we replace each idempotent rule in the factorization
forest f by a new factorization forest of height ||β−1(e)||. �

For an element s ∈ S, consider the two-sided ideal SsS. The equivalence
relation ∼s, which collapses all elements from SsS into a single element, is a
monoid congruence. Therefore, mapping an element t ∈ S to its equivalence
class under ∼s is a monoid morphism β, and we can apply Lemma 1 to get

||S|| ≤ ||S/∼s
|| · ||SsS|| .

When can we use the induction assumption? In other words, when does this
inequality above use smaller monoids on the right side? This happens when SsS
has at least two elements, but is not all of S. Therefore, it remains to consider
the case when for each s, the two-sided ideal SsS is either S or has either one
element s. This case is treated below.

At most one nonzero two-sided ideal. From now on, we assume that all two-sided
ideals are either S or contain a single element. Note that if SsS = {s} then s is
a zero, i.e. satisfies st = ts = s for all t ∈ S. There is at most one zero, which
we denote by 0. Therefore a two-sided ideal is either S or {0}.

Note that multiplying on the right either decreases or preserves the right
ideal, i.e. stS ⊆ sS. We first show that the right ideal cannot be decreased
without decreasing the two-sided ideal.

if SsS = SstS then sS = stS (1)

Indeed, if the two-sided ideals of s and st are equal, then there are x, y ∈ S with
s = xsty. By applying this n times, we get s = xns(ty)n. If n is chosen so that
(ty)n is idempotent, which is always possible in a finite monoid, we get

s = xns(ty)n = xns(ty)n(ty)n = s(ty)n,

4

which gives sS ⊆ stS, and therefore sS = stS.
We now use (1) to show that H-equivalence is a congruence. In other words,

we want to show that if s, u are in H-equivalent, then for any t ∈ S, the elements
st, ut are H-equivalent and the elements ts, tu are H-equivalent. By symmetry,
we only need to show that st, ut are H-equivalent. The left ideals Sst, Sut are
equal by assumption on Ss = Su, so it remains to prove equality of the right
ideals stS, utS. The two-sided ideal SstS = SutS can be either {0} or S. In the
first case, st = ut = 0. In the second case, SsS = SstS, and therefore sS = stS
by (1). By the same reasoning, we get uS = utS, and therefore utS = stS.

Since H-equivalence is a congruence, mapping an element to its H-class
(i.e. its H-equivalence class) is a morphism β. The target of β is the quotient of S
under H-equivalence, and the inverse images β−1(e) are H-classes. By Lemma 1,

||S|| ≤ ||S/H|| · max
s∈S

β(ss)=β(s)

||[s]H||.

We can use the induction assumption on smaller monoids, unless: a) there is one
H-class; or b) all H-classes have one element. These two cases are treated below.

All H-classes have one element. Take a morphism α : A∗ → S. For w ∈ A∗, we
will find an α-factorization forest of size bounded by S. We use the name type of
w for the image α(w). Consider a word w ∈ A∗. Let v be the longest prefix of w
with a type other than 0 and let va be the next prefix of w after v (it may be the
case that v = w, for instance when there is no zero, so va might not be defined).
We cut off the prefix va and repeat the process. This way, we decompose the
word w as

w = v1a1v2a2 · · · vnanvn+1
v1, . . . , vn+1 ∈ A∗, a1 . . . , an ∈ A
α(v1), . . . α(vn+1) 6= 0 α(v1a1), . . . , α(vnan) = 0.

The factorization forests for v1, . . . , vn+1 can be combined, increasing the height
by three, to a factorization forest for w. (The binary rule is used to append ai to
vi, the idempotent rule is used to combine the words v1a1, . . . , vnan, and then
the binary rule is used to append vn+1.) How do we find a factorization forest
for a word vi? We produce a factorization forest for each vi by induction on how
many distinct infixes ab ∈ A2 appear in vi (possibly a = b). Since we do not
want the size of the alphabet to play a role, we treat ab and cd the same way if
the left ideals (of the types of) of a and c are the same, and the right ideals of b
and d are the same. What is the type of an infix of vi? Since we have ruled out
0, then we can use (1) to show that the right ideal of the first letter determines
the right ideal of the word, and the left ideal of the last letter determines the left
ideal of the word. Since all H-classes have one element, the left and right ideals
determine the type. Therefore, the type of an infix of vi is determined by its first
and last letters (actually, their right and left ideals, respectively). Consider all
appearances of a two-letter word ab inside vi:

vi = u0abu1ab · · · abum+1

5

By induction, we have factorization forests for u0, . . . , um+1. These can be com-
bined, increasing the height by at most three, to a single forest for vi, because
the types of the infixes bu1a, . . . , buma are idempotent (unless m = 1, in which
case the idempotent rule is not needed).

There is one H-class.2 Take a morphism α : A∗ → S. For a word w ∈ A∗ we
define Pw ⊆ S to be the types of its non-trivial prefixes, i.e. prefixes that are
neither the empty word or w. We will show that a word w has an α-factorization
forest of height linear in the size of Pw. The induction base, Pw = ∅, is simple:
the word w has at most one letter. For the induction step, let s be some type in
Pw, and choose a decomposition w = w0 · · ·wn+1 such that the only prefixes of
w with type s are w0, w0w1, . . . , w0 · · ·wn. In particular,

Pw0 , s · Pw1 , s · Pw2 , . . . , s · Pwn
⊆ Pw \ {s} .

Since there is oneH-class, we have sS = S. By finiteness of S, the mapping t 7→ st
is a permutation, and therefore the sets sPwi have fewer elements than Pw. Using
the induction assumption, we get factorizations for the words w0, . . . , wn+1. How
do we combine these factorizations to get a factorization for w? If n = 0, we use
the binary rule. Otherwise, we observe the types of w1, . . . , wn are all equal, since
they satisfy s · α(wi) = s, and t 7→ st is a permutation. For the same reason,
they are all idempotent, since

s · α(w1) · α(w1) = s · α(w1) = s.

Therefore, the words w1, . . . , wn can be joined in one step using the idempotent
rule, and then the words w0 and wn+1 can be added using the binary rule.

Comments on the proof. Actually ||S|| = 3|S|. To get this bound, we need a
slightly more detailed analysis of what happens when Lemma 1 is applied (omit-
ted here). Another important observation is that the proof yields an algorithm,
which computes the factorization in linear time in the size of the word

2 Fast string algorithms

In this section, we show how factorization forests can be used to obtain fast
algorithms for query evaluation. The idea3 is to use the constant height of fac-
torization forests to get constant time algorithms.

2.1 Infix pattern matching

Let L ⊆ A∗ be a regular language. An L-infix query in a word w is a query of
the form “given positions i ≤ j in w, does the infix w[i..j] belong to L?’

Below we state formally the theorem which was described in the introduction.
2 Actually, in this case the monoid is a group.
3 Suggested by Thomas Colcombet.

6

Theorem 2. Let L ⊆ A∗ be a language recognized by α : A∗ → S. Using an
α-factorization forest f for a word w ∈ A∗, any L-infix query can be answered
in time proportional to the height of f .

Note that since f can be computed in linear time, the above result shows
that, after a linear precomputation, infix queries can be evaluated in constant
time. The constants in both the precomputation and evaluation are linear in S.
Proof
The proof is best explained by the following picture, which shows how the type of
any infix can be computed from a constant number of labels in the factorization
forest:

a

1

a

1

a

1

a

1

a

1

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

0 0

0·0·0=00

0

1

1

1

1

1·1=1 1

{ {{ {

1

b

0

a

1

a

1

b

0

b

0

b

0

0

1

a

1

b

0

b

0

b

0

Below follows a more formal proof. We assume that each position in the word
contains a pointer to the leaf of f that contains letter in that position. We also
assume that each node in f comes with the number of its left siblings, the type
of the word below that node, and a pointer to its parent node.

In the following x, y, z are nodes of f . The distance of x from the root is
written |x|. We say a node y is to the right of a node x if y is not a descendant of
x, and y comes after x in left-to-right depth-first traversal. A node y is between x
and z if y is to the right of x and z is to the right of y. The word bet(x, y) ∈ A∗ is
obtained by reading, left to right, the letters in the leaves between x and y. We
claim that at most |x|+|y| steps are needed to calculate the type of bet(x, y). The
claim gives the statement of the theorem, since membership in L only depends
on the type of a word. The proof of the claim is by induction on |x|+ |y|.

Consider first the case when x and y are siblings. Let z1, . . . , zn be the siblings
between x and y. We use sub(z) for the word obtained by reading, left to right,
the leaves below z. We have

bet(x, y) = sub(z1) · · · sub(zn) .

If n = 0, the type of bet(x, y) is the identity in S. Otherwise, the parent node
must be an idempotent node, for some idempotent e ∈ S. In this case, each
sub(zi) has type e and by idempotency the type of bet(x, y) is also e.

Consider now the case when x and y are not siblings. Either the parent of x
is to the left of y or x is to the left of the parent of y. By symmetry we consider

7

only the first case. Let z be the parent of x and let z1, . . . , zn be all the siblings
to the right of x. We have

bet(x, y) = sub(z1) · · · sub(zn) · bet(z, y)

As in the first case, we can compute the type of sub(z1) · · · sub(zn) in a single
step. The type of bet(z, y) is obtained by induction assumption. �

The theorem above can be generalized to more general queries than infix
queries4. An n-ary query Q for words over an alphabet A is a function that
maps each word w ∈ A∗ to a set of tuples of word positions (x1, . . . , xn) ∈
{1, . . . , |w|}n. We say such a query Q can be evaluated with linear precomputation
and constant delay if there is an algorithm, which given an input word w:

– Begins by doing a precomputation in time linear in the length of w.
– After the precomputation, starts outputting all the tuples in Q(w), with a

constant number of operations between tuples.

The tuples will be enumerated in lexicographic order (i.e. first sorted left-to-right
by the first position, then by the second position, and so on).

One way of describing an n-ary query is by using a logic, such as monadic
second-order logic. A typical query would be: “the labels in positions x1, . . . , xn
are all different, and for each i, j ∈ {1, . . . , n}, the distance between xi and xj is
even”. By applying the ideas from Theorem 2, one can show:

Theorem 3. An query definable in monadic second-order logic can be evaluated
with linear precomputation and constant delay.

2.2 Avoiding factorization forests

Recall that the constants in Theorem 2 were linear in the size of the monoid S.
If, for instance, the monoid S is obtained from an automaton, then this can be
a problem, since the translation from automata (even deterministic) to monoids
incurs an exponential blowup. In this section, we show how to evaluate infix
queries without using monoids and factorization forests.

Theorem 4. Let L ⊆ A∗ be a language recognized by a deterministic automaton
with states Q. For any word w ∈ A∗, one can calculate a data structure in time
O(|Q| · |w|) such that any L-infix query can be answered in time O(|Q|).

It is important that the automaton is deterministic. There does not seem to
be any easy way to modify the construction below to work for nondeterministic
automata.

Let the input word be w = a1 · · · an. A configuration is a pair (q, i) ∈ Q ×
{0, . . . , n}, where i is called the position of the configuration. The idea is that
(q, i) says that the automaton is in state q between the letters ai and ai+1.
The successor of a configuration (q, i), for i < n, is the unique configuration on

4 The idea for this generalization was suggested by Luc Segoufin.

8

position i + 1 whose state coordinate is obtained from q by applying the letter
ai+1. A partial run is a set of configurations which forms a chain under the
successor relation. Using this set notation we can talk about subsets of runs.

Below we define the data structure, show how it can be computed in time
O(|Q| · |w|), and then how it can be used to answer infix queries in time O(|Q|).

The data structure. The structure stores a set R partial runs, called tapes. Each
tape is assigned a rank in {1, . . . , |Q|}.

1. Each configuration appears in exactly one tape.
2. For any position i, the tapes that contain configurations on position i have

pairwise different ranks.
3. Let (q, i) be a configuration appearing in tape ρ ∈ R. The tape of its successor

configuration is either ρ or has smaller rank than ρ.

The data structure contains a record for each tape, which stores its rank as well
as a pointer to its last configuration. Each configuration in the word stores a
pointer to its tape, i.e. there is a two-dimensional array of pointers to tapes,
indexed states q and by word positions i. We have a second two-dimensional
array, indexed by word positions i and ranks j, which on position (i, j) stores
the unique configuration on position i that belongs to a tape of rank j.

Computing the data structure. The data structure is constructed in a left-to-right
pass through the word. Suppose we have calculated the data structure for a prefix
a1 · · · ai and we want to extend it to the prefix a1 · · · ai+1. We extend all the tapes
that contain configurations for position i with their successor configurations. If
two tapes collide by containing the same configuration on position i+1, then we
keep the conflicting configuration only in the tape with smaller rank and remove
it from the tape with larger rank. We start new tapes for all configurations on
position i+ 1 that are not successors of configurations on position i, and assign
to them ranks that have been freed due to collisions.

Using the data structure. Let (q, i) be a configuration. For a position j ≥ i, let
π be the run that begins in (q, i) and ends in position j. We claim that O(|Q|)
operations are enough to find the configuration from π on position j. How do
we do this? We look at the last configuration (p,m) in the unique tape ρ that
contains (q, i) (each tape has a pointer to its last configuration). If m ≥ j, then
ρ ⊇ π, so all we need to do is find the unique configuration on position j that
belongs to a tape with the same rank as ρ (this will actually be the tape ρ). For
this, we use the second two-dimensional array from the data structure. If m < j,
we repeat the algorithm, by setting (q, i) to be the successor configuration of
(p,m). This terminates in at most |Q| steps, since each repetition of the algorithm
uses a tape ρ of smaller rank.

Comments. After seeing the construction above, the reader may ask: what is
the point of the factorization forest theorem, if it can be avoided, and the re-
sulting construction is simpler and more efficient? There are two answers to this

9

question. The first answer is that there are other applications of factorization
forests. The second answer is more disputable. It seems that the factorization
forest theorem, like other algebraic results, gives an insight into the structure of
regular languages. This insight exposes results, which can then be proved and
simplified using other means, such as automata. To the author’s knowledge, the
algorithm from Theorem 2 came before the algorithm from Theorem 4, which,
although straightforward, seems to be new.

3 Well-typed regular expressions

In this section, we use the Factorization Forest Theorem to get a stronger version
of the Kleene theorem. In the stronger version, we produce a regular expression
which, in a sense, respects the syntactic monoid of the language.

Let α : A∗ → S be a morphism. As usual, we write type of w for α(w). A
regular expression E is called well-typed for α if for each of its subexpressions
F (including E), all words generated by F have the same type.

Theorem 5. Any language recognized by a morphism α : A∗ → S can be defined
by a union of regular expression that are well-typed for α.

Proof
By induction on k, we define for each s ∈ S a regular expression Es,k generating
all words of type s that have an α-factorization forest of height at most k:

Es,1 :=
⋃

a∈A∪{ε}
α(a)=s

a Es,k+1 :=
⋃
u,t∈S
ut=s

Eu,k · Et,k ∪ (Es,k)+︸ ︷︷ ︸
if s = ss

.

Clearly each expression Es,k is well-typed for α. The Factorization Forests The-
orem gives an upper bound K on the height of α-factorizations needed to get all
words. The well-typed expression for a language L ⊆ A∗ recognized by α is the
union of all expressions Es,K for s ∈ α(L). �

3.1 An effective characterization of Σ2(<)

In this section, we use Theorem 5 to get an effective characterization for Σ2.
First, we explain what we mean by effective characterization and Σ2.

Let L be a class of regular languages (such as the class of finite languages, or
the class of star-free languages, etc.). We say L has an effective characterization
if there is an algorithm, which decides if a given regular language L belongs to
the class L. As far as decidability is concerned, the representation of L is not
important, here we use its syntactic morphism. There is a large body of research
on effective characterizations of classes of regular languages. Results are difficult
to obtain, but the payoff is often a deeper understanding of the class L.

Often the class L is described in terms of a logic. A prominent example is
first-order logic. The quantifiers in a formula range over word positions. The

10

signature contains a binary predicate x < y for the order on word positions, and
unary a predicate a(x) for each letter a ∈ A of the alphabet that tests the label
of a position. For instance, the word property “the first position has label a”
can be defined by the formula ∃x

(
a(x)∧ (∀y y ≥ x)

)
. A theorem of McNaughton

and Papert [11] says that first-order logic defines the same languages as star-free
expressions, and Schützenberger [13] gives an effective characterization of the
star-free languages (and therefore also of first-order logic).

A lot of attention has been devoted to the quantifier alternation hierarchy
in first-order logic, where each level counts the alterations between ∀ and ∃
quantifiers in a first-order formula in prenex normal form. Formulas that have
n − 1 alternations (and therefore n blocks of quantifiers) are called Σn if they
begin with ∃, and Πn if they begin with ∀. For instance, the language “nonempty
words with at most two positions that do not have label a” is defined by the Σ2

formula

∃x1∃x2∀y. (y 6= x1 ∧ y 6= x2) ⇒ a(y) .

Effective characterizations are known for levels Σ1 (a language has to be
closed under adding letters), and similarly for Π1 (the language has to be closed
under removing letters). For languages that can be defined by a boolean combi-
nation of Σ1 formulas, an effective characterization is given by Simon [14]. The
last levels with a known characterization are Σ2 and Π2. For all higher finite
levels, starting with boolean combinations of Σ2, finding an effective character-
ization is an important open problem.

Below, we show how the well-typed expressions from Theorem 5 can be used
to give an effective characterization of Σ2. The idea to use the Factorization
Forests Theorem to characterize Σ2 first appeared in [12], but the proof below
is based on [2]. Fix a regular language L ⊆ A∗. We say a word w simulates a
word w′ if the language L is closed under replacing w′ with w. That is, uw′v ∈ L
implies uwv ∈ L for any for any u, v ∈ A∗. Simulation is an asymmetric version
of syntactic equivalence: two words are syntactically equivalent if and only if
they simulate each other both ways.

Theorem 6. Let L ⊆ A∗ be a regular language, and α : A∗ → S be its syntactic
morphism. The language L can be defined in Σ2 if and only if

(*) For any words w1, w2, w3 mapped by α to the same idempotent e ∈ S
and v a subsequence of w2, the word w1vw3 simulates w1w2w3.

Although it may not be immediately apparent, condition (*) can be decided
when given the syntactic morphism of L. The idea is to calculate, using a fixpoint
algorithm, for each s, t ∈ S if some word of type s has a subsequence of type t.

The “only if” implication is done using a standard logical argument, and
we omit it here. The more difficult “if” implication will follow from Lemma 2.
The lemma uses overapproximation: we say a set of words K overapproximates
a subset K ′ ⊆ K if every word in K simulates some word in K ′.

11

Lemma 2. Assume (*). Any regular expression that is well-typed for α can be
overapproximated by a language in Σ2.

Before proving the lemma, we show how it gives the “if” part in Theorem 6.
Thanks to Theorem 5, the language L can be defined as a finite union of well-
typed expressions. By Lemma 2, each of these can be overapproximated in Σ2.
The union of overapproximations gives exactly L: it clearly contains L, but
contains no word outside L by definition of simulation.

Proof (of Lemma 2)
Induction on the size of the regular expression. The induction base is simple. In
the induction step, we use closure of Σ2 under union and concatenation.

Union in the induction step is simple: the union of overapproximations for
E and F is an overapproximation of the union of E and F . For concatenation,
we observe that simulation is compatible with concatenation: if w simulates w′

and u simulates u′, then wu simulates w′u′. Therefore, the concatenation of
overapproximations for E and F is an overapproximation of E · F .

The interesting case is when the expression is F+. Since F is well typed, all
words in F have type, say e ∈ S. Since F+ is well-typed, e must be idempotent.
Let M be an overapproximation of F obtained from the induction assumption.
Let Ae be the set of all letters that appear in words of type e. As an overap-
proximation for F+, we propose

K = M ∪ M(Ae)∗M .

A Σ2 formula for K can be easily obtained from a Σ2 formula for M . Since every
word in F is built from letters in Ae, we see that K contains F+. To complete
the proof of the lemma, we need to show that every word in K simulates some
word in F+. Let then w be a word in K. If w is in M , we use the induction
assumption. Otherwise, w can be decomposed as w = w1vw3, with w1, w3 ∈ M
and v a word using only letters from Ae. By induction assumption, w1 simulates
some word w′1 ∈ F and w3 simulates some word w′3 ∈ F . Since simulation is
compatible with concatenation, w1vw3 simulates w′1vw

′
3. Since e is idempotent,

each word in (Ae)∗ is a subsequence of some word of type e. In particular, v
is a subsequence of some word v′ of type s. By condition (*), w′1vw

′
2 simulates

w′1v
′w′2 ∈ F+. The result follows by transitivity of simulation. �

Corollary 1 A language is definable inΣ2 if and only if it is a union of languages
of the form

A∗0a1A
∗
1 · · ·A∗n−1anA

∗
n (2)

Proof
The “if” part is immediate, since each expression as in (2) can be described in
Σ2. The “only if” part follows by inspection of the proof of Lemma 2 where,
instead of a formula of Σ2, we could have just as well produced a union of
languages as in (2). �

12

4 Transducers

The proof of the Factorization Forests Theorem also shows that factorization
forests can be computed in linear time. In this section we strengthen that state-
ment by showing that factorization forests can be produced by transducers.

A tree can be written as a word with matched parentheses. This idea can be
applied to factorizations, as shown by the following picture:

a

1

a

1

a

1

a

1

a

1

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

b

0

0 00

1

1

1

1

1

(((((((())))))))

To aid reading, we have removed the parentheses around individual letters (which
correspond to factorization forests of height 1).

We can therefore define the word encoding of a factorization as a word over
an extended alphabet A ∪ {(,)} that also contains an opening parenthesis, and
a closing one. We write wf for the word encoding of a factorization f . The
following lemma shows that factorizations can be calculated by a transducer.

Lemma 3. Fix a morphism α : A∗ → S and a height k ∈ N. There is a nonde-
terministic transducer Tk : A∗ → (A ∪ {(,)})∗, which produces on input w ∈ A∗
the word encodings of all α-factorizations of w of height at most k.

Proof
Induction on k. �

There are two problems with the transducer Tk.
The first is nondeterminism. For instance, we might want to use the trans-

ducer to find a factorization forest, and nondeterminism seems to gets in the
way. This particular problem with nondeterminism can be dealt with: as for any
nondeterministic transducer, one can compute (some) output in Tk(w) in time
proportional to the length of w times the number of states in Tk. (In particular,
assuming that the morphism α is fixed, we get a linear time algorithm for com-
puting an α-factorization.) However, nondeterminism turns out to be a serious
problem for applications to tree languages, as we will see later.

A second problem is that Tk has a lot of states. This is because the construc-
tion of Tk, at least the easy inductive construction suggested above, gives a state
space that is exponential in k.

13

A nice solution to this problem was proposed by Thomas Colcombet. He
shows that if the conditions on a factorization forest are relaxed slightly, then
the factorization can be output by a deterministic transducer with O(|S|) states.

What is the relaxation on factorizations? Recall the idempotent rule, which
allowed to split a word w into w = w1 · · ·wn as long as all the factors w1, . . . , wn
had the same idempotent type. This requirement could be stated as

α(wi) · α(wj) = α(wj) · α(wi) = α(wi) for all i, j ∈ {1, . . . , n}.

In other words, the type of any word wi absorbs the type of any other word wj ,
both on the left and on the right. In [5, 6] Colcombet proposed a relaxed version
of this rule, where the type only absorbs to the right:

α(wi) · α(wj) = α(wi) for all i, j ∈ {2, . . . , n− 1}.

We will use the term forward Ramseyan rule for a rule that allows a split
w = w1 · · ·wn under the above condition. A factorization that uses the forward
Ramseyan rule instead of the idempotent rule is called a forward Ramseyan
factorization. Every factorization that uses the idempotent rule is a forward
Ramseyan factorization (since the condition in the forward Ramseyan rule is
weaker than the condition in the idempotent rule), but not vice versa.

Despite being more relaxed, in most cases the forward Ramseyan rules gives
the same results as the idempotent rule. Consider, for example, the infix problem
from Theorem 2. Suppose we have a word split w = w1 · · ·wn according the
forward Ramseyan rule, and that we know the values α(w1), . . . , α(wn). Suppose
that we want to calculate the type α(wi · · ·wj) for some i ≤ j ∈ {2, . . . , n− 1}.
Thanks to the forward Ramseyan rule, this type is

α(wi · · ·wj) = α(wi)α(wi+1)α(wi+2 · · ·wj) = α(wi)α(wi+2 · · ·wj) = · · · = α(wi) .

If we are interested in the case of i = 1 (a similar argument works for j = n),
then we first find the type α(w2 · · ·wj) and then prepend the type of α(w1).

The reason why Colcombet introduced forward Ramseyan factorizations is
that they can be produced by a deterministic transducer (we use the same en-
coding of factorizations as words over the alphabet AS).

Theorem 7 (Colcombet [5, 6]). Fix a morphism α : A∗ → S. There is a
deterministic transducer Tk : A∗ → (A ∪ {(,)})∗, which produces, on input w ∈
A∗, the word encoding of a forward Ramseyan factorization of w of height at
most |S|.

We cite below two applications of this result. The first concerns trees, and
the second concerns infinite words.

Trees. Suppose we have a tree, and we want to calculate factorizations for words
that label paths in the tree. There are two difficulties, both related to the fact
that paths have common prefixes, as in the picture below:

14

a

aa

a

a

a

b
b

b

b
b

b

b

b

a a

bb

b
b

b

a

b

a

b
b

.

The first difficulty is that the combined length of all paths in the tree can be
quadratic in the number of nodes. The second difficulty is that the factoriza-
tions for two different paths may be inconsistent on their common prefixes.
Both of these difficulties are solved by using the deterministic transducer from
Theorem 7, and running it on each path, from root to leaf. Along these lines,
Theorem 7 was used in [4] to provide a linear time algorithm for evaluating
XPath queries on XML documents.

Infinite words. The transducer in Theorem 7 can also be used on an infinite
word w = a1a2 · · · . It also produces a forward Ramseyan factorization. The only
difference is that after some point, we will start to see an infinite sequence of
matched parentheses (..)(..)(..) · · · at the same nesting level (some of the initial
parentheses might remain open forever). This construction has been used in [6]
to determinize automata on infinite words (that is, convert a Büchi automaton
into an equivalent Muller automaton).

5 Limitedness

In this last section, we talk about limitedness of automata. This is the original
setting in which the Factorization Forests Theorem were used, so a discussion
of the theorem would be incomplete without mentioning limitedness. On the
other hand, the subject is quite technical (but fascinating), so we only sketch
the problem, and point the reader to the literature.

A distance automaton is a nondeterministic automaton where a subset of the
states is declared costly. The cost of a run ρ is the number of times it uses the
costly states. The cost of a word w ∈ A∗ is the minimal cost of a run (from
an initial to a finite state) over this word. If there is no run, the cost is 0. The
automaton is called limited if there is a finite bound on the cost of all words.

We want an algorithm that decides if a distance automaton is limited. In
other words, we want to decide if the expression

max
w∈A∗

min
ρ∈runs(w)

cost(ρ)

has a finite value. The difficulty of the problem comes from the alternation
between max and min. If the expression had been max max, the problem could

15

be decided by simply searching for a loop in the automaton that uses a costly
state. (In particular, the limitedness problem is straightforward for deterministic
automata.) If the expression had been min min or min max, the problem would
trivialize, since the value would necessarily be finite.

The limitedness problem is closely related to star height. The star height
of a regular expression is the nesting depth of the Kleene star. For instance,
the expression a∗ + b∗ has star height 1, while the expression ((a+ b)∗aa)∗ has
star height 2, although it is equivalent to (a + b)∗aa, which has star height 1.
Complementation is not allowed in the expressions (when complementation is
allowed, we are talking about generalized star height). The star height prob-
lem is to decide, given a regular language L and a number k, if there exists
an expression of star height k that defines L. This famous problem has been
solved by Hashiguchi [7]. An important technique in the star height problem
is limitedness of distance automata. Distance automata have been introduced
by Hashiguchi, and the limitedness problem was studied by Leung [10] and Si-
mon [16]. The latter paper is the first important application of the Factorization
Forests Theorem.

The current state of the art in the star height problem is the approach of
Daniel Kirsten [8], who uses an extension of distance automata. The extended
model is called a distance desert automaton, and it extends a distance automaton
in two ways. First, a distance desert automaton keeps track of several costs
(i.e. if the cost is seen as the value of a counter, then there are several counters).
Second, the cost can be reset, and the cost of a run is the maximal cost seen at
any point during the run. The star height problem can be reduced to limitedness
of distance desert automata: for each regular language L and number k, one can
write a distance desert automaton that is limited if and only if the language L
admits an expression of star height k. In [8], Daniel Kirsten shows how to decide
limitedness for distance desert automata, and thus provides another decidability
proof for the star height problem.

A related line of work was pursued in [3]. This paper considered a type of
distance desert automaton (under the name BS-automaton), which would be
executed on an infinite word. (The same type of automata was also considered
in [1], this time under the name of R-automata.) The acceptance condition in a
BS-automaton talks about the asymptotic values of the cost in the run, e.g. one
can write an automaton that accepts infinite words where the cost is unbounded.
The main contribution in [3] is a complementation result. This complementation
result depends crucially on the Factorization Forests Theorem.

References

1. P. A. Abdulla, P. Krcál, and W. Yi. R-automata. In CONCUR, pages 67–81, 2008.

2. M. Bojańczyk. The common fragment of ACTL and LTL. In Foundations of
Software Science and Computation Structures, pages 172–185, 2008.

3. M. Bojańczyk and T. Colcombet. Omega-regular expressions with bounds. In
Logic in Computer Science, pages 285–296, 2006.

16

4. M. Bojanczyk and P. Parys. XPath evaluation in linear time. In PODS, pages
241–250, 2008.

5. T. Colcombet. A combinatorial theorem for trees. In ICALP’07, Lecture Notes in
Computer Science. Springer-Verlag, 2007.

6. T. Colcombet. Factorisation forests for infinite words. In FCT’07, 2007.
7. K. Hashiguchi. Algorithms for determining relative star height and star height.

Inf. Comput., 78(2):124–169, 1988.
8. D. Kirsten. Distance desert automata and the star height problem. Theoretical

Informatics and Applications, 39(3):455–511, 2005.
9. Manfred Kufleitner. The height of factorization forests. In MFCS, pages 443–454,

2008.
10. Hing Leung. The topological approach to the limitedness problem on distance

automata. Idempotency, pages 88–111, 1998.
11. R. McNaughton and S. Papert. Counter-Free Automata. MIT Press, Cambridge

Mass., 1971.
12. J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory

Comput. Systems, 30:1–30, 1997.
13. M. P. Schützenberger. On finite monoids having only trivial subgroups. Informa-

tion and Control, 8:190–194, 1965.
14. I. Simon. Piecewise testable events. In Automata Theory and Formal Languages,

pages 214–222, 1975.
15. I. Simon. Factorization forests of finite height. Theoretical Computer Science,

72:65–94, 1990.
16. Imre Simon. On semigroups of matrices over the tropical semiring. ITA, 28(3-

4):277–294, 1994.

17

