Two-Way Alternating Automata and Finite Models

Tedious proofs of irrelevant results

Mikolaj Bojanczyk

Warsaw University
Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says “yes” or “no”.
Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says “yes” or “no”.

Some example properties recognized by alternating two-way automata:
Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says “yes” or “no”.

Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by “a” in the graph
Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says “yes” or “no”.

Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by “a” in the graph
- There is an infinite path in the graph
Intuition on the automaton

A two-way alternating automaton recognizes a property of graphs with a distinguished starting vertex. In other words, such an automaton looks at a graph and the starting vertex and says “yes” or “no”.

Some example properties recognized by alternating two-way automata:

- There is a vertex labelled by “a” in the graph
- There is an infinite path in the graph
- There is an infinite path in the graph and no vertex of this path is the starting point of some infinite backward path
The automaton A
An example: \mathbb{N}
An example: \(\mathbb{N} \)
An example: \(\mathbb{N} \)
An example: \mathbb{N}
An example: \mathbb{N}
An example: \(\mathbb{N} \)
An example: \mathbb{N}
Parity condition

An infinite sequence a_1, a_2, \ldots of elements from a finite set of natural numbers satisfies the *parity condition* if the lowest number occurring infinitely often is even.
A accepts only infinite graphs

Fact 0 For any graph G, the automaton A accepts in a vertex v_1 and state q_1 iff

1. No infinite backward path condition. v_1 is not the beginning of a sequence $v_1v_2\ldots$ where for all $i \in \{1, 2, \ldots\}$, (v_{i+1}, v_i) is an edge in G.

2. Infinite forward path condition. v_1 is the beginning of a sequence $v_1v_2\ldots$ where for all $i \in \{1, 2, \ldots\}$, (v_i, v_{i+1}) is an edge in G and A accepts in v_i and q_1.

Cor: A accepts only infinite graphs.
Finite model problems

Automata
Instance: A two-way alternating automaton \mathcal{A}.
Question: Does \mathcal{A} accept some finite graph?
Finite model problems

- Automata
 Instance: A two-way alternating automaton \mathcal{A}.
 Question: Does \mathcal{A} accept some finite graph?

- μ-calculus
 Instance: A formula ϕ of the two-way modal μ-calculus
 Question: Is ϕ satisfiable in some finite structure?
Finite model problems

- Automata
 Instance: A two-way alternating automaton \mathcal{A}.
 Question: Does \mathcal{A} accept some finite graph?

- μ-calculus
 Instance: A formula ϕ of the two-way modal μ-calculus
 Question: Is ϕ satisfiable in some finite structure?

- Guarded fragment with fixed points
 Instance: A formula ϕ of the guarded fragment with fixed points
 Question: Is ϕ satisfiable in some finite structure?
Finite model problems

- Automata
 Instance: A two-way alternating automaton \mathcal{A}.
 Question: Does \mathcal{A} accept some finite graph?

- μ-calculus
 Instance: A formula ϕ of the two-way modal μ-calculus.
 Question: Is ϕ satisfiable in some finite structure?

- Guarded fragment with fixed points
 Instance: A formula ϕ of the guarded fragment with fixed points.
 Question: Is ϕ satisfiable in some finite structure?

All three are equivalent.
A strategy for the good player
Memoryless strategies

Thm: [Emmerson-Jutla/Mostowski] One of the players has a winning strategy and, moreover, it is a memoryless strategy.
The graph \mathcal{N}
Its unwinding
A strategy s for the green player
Locally possible moves under s
Locally possible moves under s with accessible positions
The graph $G_r(t, s)$
Parity length

The i-length of a sequence of numbers $a = a_1 a_2 \ldots a_n$ is the length of the longest sequence of i-s in the sequence a' resulting from a by taking out all numbers greater than i.

For example, the 1-length of 131231 is 3.
Parity length

The i-length of a sequence of numbers $a = a_1a_2 \ldots a_n$ is the length of the longest sequence of i-s in the sequence a' resulting from a by taking out all numbers greater than i.
For example, the 1-length of 131231 is 3.

The parity length of a sequence of numbers maximal i-length of the sequence for odd i.
Parity length

- The *i-length* of a sequence of numbers $a = a_1 a_2 \ldots a_n$ is the length of the longest sequence of i-s in the sequence a' resulting from a by taking out all numbers greater than i. For example, the 1-length of 131231 is 3.

- The *parity length* of a sequence of numbers maximal i-length of the sequence for odd i.

- The *parity length* of a path labelled by priorities is the parity length of the corresponding sequence of priorities.
Properties of $Gr(t, s)$

s is a winning strategy for the green player iff no infinite path in $Gr(t, s)$ violates the parity condition (the parity length of paths in $Gr(t, s)$ is finite).
Properties of $\text{Gr}(t, s)$

- s is a winning strategy for the green player iff no infinite path in $\text{Gr}(t, s)$ violates the parity condition (the parity length of paths in $\text{Gr}(t, s)$ is finite).

- t can be wound back into a finite graph iff for some s, the parity length of paths in $\text{Gr}(t, s)$ is bounded, i.e., there is some $M \in \mathcal{N}$ such that all paths in $\text{Gr}(t, s)$ have parity length not greater than M.
Properties of $Gr(t, s)$

- s is a winning strategy for the green player iff no infinite path in $Gr(t, s)$ violates the parity condition (the parity length of paths in $Gr(t, s)$ is finite).

- t can be wound back into a finite graph iff for some s, the parity length of paths in $Gr(t, s)$ is bounded, i.e. there is some $M \in N$ such that all paths in $Gr(t, s)$ have parity length not greater than M.

- The finite graph question thus becomes: is there some tree t and strategy s such that the parity length of paths in $Gr(t, s)$ is bounded.
Regular trees and languages

A tree language is regular iff it is recognized by some finite automaton.

A tree is regular iff it contains a only finitely many non-isomorphomorphic subtrees.

Thm:[Rabin] Every regular tree language contains some regular tree.
Let \mathcal{LB} be the set of graphs $\mathcal{G}_r(t,s)$ where the parity length of paths is bounded.
Let \mathbf{LB} be the set of graphs $G_r(t, s)$ where the parity length of paths is bounded.

Let \mathbf{LF} be the set of graphs $G_r(t, s)$ where the parity length (both ways) of paths is finite.
Let \mathbb{L}_B be the set of graphs $\mathcal{G}_r(t, s)$ where the parity length of paths is bounded.

Let \mathbb{L}_F be the set of graphs $\mathcal{G}_r(t, s)$ where the parity length (both ways) of paths is finite.

\mathbb{L}_B is not regular.
Let \mathbb{LB} be the set of graphs $\mathbb{Gr}(t, s)$ where the parity length of paths is bounded.

Let \mathbb{LF} be the set of graphs $\mathbb{Gr}(t, s)$ where the parity length (both ways) of paths is finite.

\mathbb{LB} is not regular.

\mathbb{LB} and \mathbb{LF} are not equal, but ...
Let LB be the set of graphs $Gr(t, s)$ where the parity length of paths is bounded.

Let LF be the set of graphs $Gr(t, s)$ where the parity length (both ways) of paths is finite.

LB is not regular.

LB and LF are not equal, but ...

LF and LB coincide on regular trees
Let LB be the set of graphs $Gr(t, s)$ where the parity length of paths is bounded.

Let LF be the set of graphs $Gr(t, s)$ where the parity length (both ways) of paths is finite.

LB is not regular.

LB and LF are not equal, but ...

LF and LB coincide on regular trees.

Since LF is regular and LB is a sum of regular languages, we obtain:
Let LB be the set of graphs $Gr(t, s)$ where the parity length of paths is bounded.

Let LF be the set of graphs $Gr(t, s)$ where the parity length (both ways) of paths is finite.

LB is not regular.

LB and LF are not equal, but ...

LF and LB coincide on regular trees.

Since LF is regular and LB is a sum of regular languages, we obtain:

Thm: LF is nonempty iff LB is nonempty.
Thm: The finite graph problem is decidable
Signature
Signature

Two-Way Alternating Automata and Finite Models – p.16/18
Another graph
Another graph
Another graph
Tree unwinding

```
  a  b  c  a
  a  a  a  a
```

Two-Way Alternating Automata and Finite Models – p.18/18
Tree unwinding

![Diagram of tree unwinding](image-url)
Tree unwinding
Tree unwinding