First Order and Chain Definability of Regular Tree Languages

Igor Walukiewicz (LaBRI); Mikołaj Bojanczyk (Warszawa)
Summary

Quick reminder of logic and languages
Summary

- Quick reminder of logic and languages
- Overview of FOL definable word languages
Summary

- Quick reminder of logic and languages
- Overview of FOL definable word languages
- FOL definable tree languages and some characterisations
Summary

- Quick reminder of logic and languages
- Overview of FOL definable word languages
- FOL definable tree languages and some characterisations
- Chain logic and some conjectures
Summary

- Quick reminder of logic and languages
- Overview of FOL definable word languages
- FOL definable tree languages and some characterisations
- Chain logic and some conjectures
- Conclusion
Let Σ be an alphabet and $w = a_0 \ldots a_n$ a word over Σ. This word is represented as a relational structure

$$w = (\text{dom}(w), S^w, <^w, (Q^w_a)_{a \in \Sigma})$$

called the \textit{word model} for w, where $\text{dom}(w) = \{0, \ldots, n\}$, S^w is the successor relation on $\text{dom}(w)$, $<^w$ is the natural order and $Q^w_a = \{i : a_i = a\}$.
MSOL definability

A language $L \subseteq \Sigma^*$ is **MSOL definable** iff there exists an MSOL formula ϕ_L such that

$$w \in L \iff w \models \phi_L$$
MSOL definability

A language $L \subseteq \Sigma^*$ is **MSOL definable** iff there exists an MSOL formula ϕ_L such that

$$w \in L \iff w \models \phi_L$$

Thm: A language is MSOL definable iff it is regular
A language $L \subseteq \Sigma^*$ is \textit{FOL definable} iff there exists a FOL formula ϕ_L such that

$$w \in L \iff w \models \phi_L$$
FOL definability

A language $L \subseteq \Sigma^*$ is **FOL definable** iff there exists a FOL formula ϕ_L such that

$$w \in L \iff w \models \phi_L$$

The language $(ab)^*$ is FOL definable using the formula:

$$\forall x.[Q_a(x) \iff \exists y.(S(x,y) \land Q_b(y))]$$
FOL definability

A language $L \subseteq \Sigma^*$ is FOL definable iff there exists a FOL formula ϕ_L such that

$$w \in L \iff w \models \phi_L$$

The language $(ab)^*$ is FOL definable using the formula:

$$\forall x. [Q_a(x) \iff \exists y.(S(x,y) \land Q_b(y))]$$

The language $(aa)^*$ is not FOL definable
FOL definability criteria

Some characterisations of FOL definable word languages:
FOL definability criteria

Some characterisations of FOL definable word languages:

1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)
FOL definability criteria

Some characterisations of FOL definable word languages:

1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)

2. The syntactic semigroup of L contains no nontrivial subgroup (Schützenberger 65).
FOL definability criteria

Some characterisations of FOL definable word languages:

1. \(L \) is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)

2. The syntactic semigroup of \(L \) contains no nontrivial subgroup (Schützenberger 65).

3. There is some \(n \in \mathbb{N} \) such that for all \(v, u, w \in \Sigma^* \)

\[v(u^n)w \in L \iff v(u^{n+1})w \in L \]
FOL definability criteria

Some characterisations of FOL definable word languages:

1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)

2. The syntactic semigroup of L contains no nontrivial subgroup (Schützenberger 65).

3. There is some $n \in \mathbb{N}$ such that for all $v, u, w \in \Sigma^*$

$$v(u^n)w \in L \iff v(u^{n+1})w \in L$$

4. L is expressible in LTL (Kamp 68)
FOL definability criteria

Some characterisations of FOL definable word languages:

1. L is star-free, that is defined by a regular expression using concatenation, sum and complementation. (McNaughton and Papert 71)

2. The syntactic semigroup of L contains no nontrivial subgroup (Schutzenberger 65).

3. There is some $n \in \mathbb{N}$ such that for all $v, u, w \in \Sigma^*$

 $$v(u^n)w \in L \iff v(u^{n+1})w \in L$$

4. L is expressible in LTL (Kamp 68)

Cor:[of 2,3] It is decidable whether a given regular language is FOL definable.
The tree case

For a finite binary tree t a similar structure \mathfrak{t} is considered:

$$\mathfrak{t} = (\text{dom}(t), S_0^t, S_1^t, <^t, (Q_a^t)_{a \in \Sigma})$$

where $\text{dom}(t) \subseteq \{0, 1\}^*$ is the set of nodes of the tree, S_i^t denotes the i-th successor relation

$$S_i^t = \{(v, v \cdot i) : v, v \cdot i \in \text{dom}(t)\}$$

and $<^t, Q_a^t$ are defined as in the word case.
Thm: [Thatcher and Wright, Rabin] MSOL = regular.
MSOL and FOL tree languages

Thm: [Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

\[
\exists X. \forall x. [\text{root}(x) \lor \text{leaf}(x)] \Rightarrow X(x) \land \\
(\forall x, x_0, x_1. [S_0(x, x_0) \land S_1(x, x_1)] \Rightarrow [X(x) \Leftrightarrow \neg(X(x_0) \Leftrightarrow X(x_1))])
\]
MSOL and FOL tree languages

Thm: [Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

\[\exists X. \forall x. [\text{root}(x) \lor \text{leaf}(x)] \Rightarrow X(x) \land (\forall x, x_0, x_1. [S_0(x, x_0) \land S_1(x, x_1)] \Rightarrow [X(x) \Leftrightarrow \neg(X(x_0) \Leftrightarrow X(x_1))]) \]

2. There exist two nodes labelled by \(a \) (FOL)

\[\exists x, y. x \neq y \land Q_a(x) \land Q_a(y) \]
MSOL and FOL tree languages

Thm: [Thatcher and Wright, Rabin] MSOL=regular.

1. The tree contains an odd number of nodes (MSOL)

$$\exists X. \forall x. [\text{root}(x) \lor \text{leaf}(x)] \Rightarrow X(x) \land$$

$$(\forall x, x_0, x_1. [S_0(x, x_0) \land S_1(x, x_1)] \Rightarrow [X(x) \iff \neg (X(x_0) \iff X(x_1))]]$$

2. There exist two nodes labelled by a (FOL)

$$\exists x, y. x \neq y \land Q_a(x) \land Q_a(y)$$

Fact: The property (1) is not FOL definable
Main question

Our unattained goal is two answer the question:

Given a regular tree language L decide whether L is FOL definable.
CTL* formulas over the alphabet $\Sigma = \{a_0, \ldots, a_n\}$ are defined by the following grammar:

$$F := \exists F \mid F\lor F \mid F \land F \mid \neg F \mid a_0 \mid \ldots \mid a_n$$
CTL*

CTL* formulas over the alphabet $\Sigma = \{a_0, \ldots, a_n\}$ are defined by the following grammar:

$$F := \exists F | F \cup F | F \land F | \neg F | a_0 | \ldots | a_n$$

Each CTL* formula ψ is translated to a two-variable FOL formula $[\psi](x, y)$:

1. $[a_i](x, y) = Q_{a_i}(x)$
2. $[\psi \land \varphi](x, y) = [\psi](x, y) \land [\varphi](x, y)$
3. $[\neg \psi](x, y) = \neg[\psi](x, y)$
4. $[\psi \cup \varphi](x, y) = \exists z \leq y. [[\varphi](z, y) \land \forall z' \in (x; z).[\psi](z', z))]$
5. $[\exists \psi](x, y) = \exists y.[[\psi](x, y)]$
CTL* = FOL

Thm: CTL* = FOL, both on finite and infinite trees.
CTL* = FOL

Thm: CTL* = FOL, both on finite and infinite trees.

\[\exists x. Q_c(x) \land \forall y < x. \exists z > y. (Q_a(z) \land \forall (x' \in [y; z]). Q_b(x')) \]

\[\psi \cup^* \varphi := \psi \land (\psi \cup \varphi) \]

\[\exists[(\exists b \cup^* a) \cup^* c] \]
\[\exists \left(\exists b U^* a \right) U^* c \]
\(\exists[(\exists b U^* a) U^* c] \)
\[\exists[(\exists b U^* a) U^* c] \]
\[\exists (\exists b^* a)U^* c \]
Word-sum automata

Consider a deterministic word automaton $\mathcal{A} = \langle Q, q_0, \delta \rangle$ over the alphabet $\Sigma \times \{0,1\}$. Let $Q \cdot (a, i) = \{\delta(q, (a, i)) : q \in Q\}$. The automaton $\mathcal{A}_{ws} = \langle P(Q), \{q_0\}, \delta' \rangle$ is a automaton over Σ-labelled trees whose transition function δ' is defined as follows:

$$Q_0 \cdot (a, 0) \cup Q_1 \cdot (a, 1)$$

\[
\begin{array}{c}
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ / \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ / \ \\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ / \ \\
Q_0 \quad Q_1
\end{array}
\]
Word-sum automata

Consider a deterministic word automaton $\mathcal{A} = \langle Q, q_0, \delta \rangle$ over the alphabet $\Sigma \times \{0, 1\}$. Let $Q \cdot (a, i) = \{\delta(q, (a, i)) : q \in Q\}$. The automaton $\mathcal{A}_{ws} = \langle P(Q), \{q_0\}, \delta' \rangle$ is a automaton over Σ-labelled trees whose transition function δ' is defined as follows:

$$Q_0 \cdot (a, 0) \cup Q_1 \cdot (a, 1)$$

Df: A tree automaton \mathcal{A} is a word-sum automaton iff $\mathcal{A} = \mathcal{A}_{ws}'$ for some word automaton \mathcal{A}'. The automaton \mathcal{A} is an aperiodic word-sum automaton if \mathcal{A}' is aperiodic.
Word-sum automata, continued

For a tree language L, the following are equivalent:

- L is definable by some word-sum automaton.
Word-sum automata, continued

For a tree language L, the following are equivalent:

- L is definable by some word-sum automaton.
- L is a boolean combination of deterministic top-bottom automata.
Word-sum automata, continued

For a tree language L, the following are equivalent:

- L is definable by some word-sum automaton.
- L is a boolean combination of deterministic top-bottom automata
- L admits a certain slicing characterisation
For a tree language L, the following are equivalent:

- L is definable by some (aperiodic) word-sum automaton.
- L is a boolean combination of deterministic top-bottom (aperiodic) automata
- L admits a certain slicing (aperiodic) characterisation
For a tree language L, the following are equivalent:

1. L is definable by some (aperiodic) word-sum automaton.
2. L is a boolean combination of deterministic top-bottom (aperiodic) automata.
3. L admits a certain slicing (aperiodic) characterisation.

Fact: Aperiodic word-sum automata recognize precisely CTL^* formulas of \exists-depth 1.
Word-sum automata, continued

For a tree language L, the following are equivalent:

- L is definable by some (aperiodic) word-sum automaton.
- L is a boolean combination of deterministic top-bottom (aperiodic) automata
- L admits a certain slicing (aperiodic) characterisation

Fact: Aperiodic word-sum automata recognize precisely CTL^* formulas of \exists-depth 1.

Thm: It is decidable whether a given language is word-sum definable.
Let $\mathcal{A} = \langle Q, q_s, \delta \rangle$ be an automaton over Σ labelled trees and $\mathcal{A}' = \langle Q', q'_s, \delta' \rangle$ an automaton over $\Sigma \times Q$ labelled trees. Assume that both are bottom-up deterministic.
Wreath product

Let $\mathcal{A} = \langle Q, q_s, \delta \rangle$ be an automaton over Σ labelled trees and $\mathcal{A}' = \langle Q', q'_s, \delta' \rangle$ an automaton over $\Sigma \times Q$ labelled trees. Assume that both are bottom-up deterministic.

Df: The *wreath* product of \mathcal{A}' and \mathcal{A} is the automaton $\mathcal{A}' \circ \mathcal{A} = \langle Q \times Q', (q_s, q'_s), \delta_\circ \rangle$ over Σ labelled trees whose transition function is defined as follows:

$$\delta_\circ(((q_0, q'_0), a, (q_1, q'_1)) = (q, q')$$

where $q = \delta(q_0, q_1)$ and $q' = \delta'(q'_0, (a, q), q'_1)$.
Another characterisation

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages.
Another characterisation

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages

Since wreath product can simulate boolean combinations we also have:

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic top-bottom deterministic languages
Another characterisation

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages.

Since wreath product can simulate boolean combinations we also have:
Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic top-bottom deterministic languages.

Question: What if the word-sum languages are not aperiodic?
Another characterisation

Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic word-sum languages.

Since wreath product can simulate boolean combinations we also have:
Thm: A language is FOL definable iff it is recognized by a wreath product of aperiodic top-bottom deterministic languages.

Question: What if the word-sum languages are not aperiodic?

Thm: A language is chain definable iff it is recognized by a wreath product of word-sum languages.
Chain logic

Df: A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq.

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

$$ t \models \exists X . \psi \iff \text{there is a chain } C \text{ such that } t[X := C] \models \psi $$
Chain logic

Df: A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq.

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

$$t \models \exists X.\psi \text{ iff there is a chain } C \text{ such that } t[X := C] \models \psi$$

- Obviously $\text{FOL} \subseteq \text{CL} \subseteq \text{MSOL}$.

First Order and Chain Definability of Regular Tree Languages – p.17/30
Chain logic

Df: A set of tree vertices \(C \) is a *chain* iff it is totally ordered by the relation \(\leq \).

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \(\exists \) are different:

\[
\begin{align*}
t & \models \exists X. \psi \quad \text{iff there is a chain } C \text{ such that } \ t[X := C] \models \psi
\end{align*}
\]

- Obviously \(\text{FOL} \subseteq \text{CL} \subseteq \text{MSOL} \).
- A tree property definable in CL (but not in FOL) is: “there exists a path of even length”.
Definition (Df): A set of tree vertices C is a *chain* iff it is totally ordered by the relation \leq.

Chain logic (CL) has the same syntax as monadic second order logic, but the semantics for the monadic quantifier \exists are different:

$$ t \models \exists X.\psi \iff \text{there is a chain } C \text{ such that } t[X := C] \models \psi $$

- Obviously $\text{FOL} \subseteq \text{CL} \subseteq \text{MSOL}$.

- A tree property definable in CL (but not in FOL) is: “there exists a path of even length”.

- A regular tree property not definable in CL is: “the tree has an even number of vertices”.
Plan B

Our unattained plan B is two answer the question:

Given a regular tree language \(L \) decide whether \(L \) is chain definable.
Aperiodic tree languages

$t[]$: a tree with a hole.
Aperiodic tree languages

- $t[]$: a tree with a hole.
- $t[t']$: the substitution of some tree t' into the hole.
Aperiodic tree languages

- $t[]$: a tree with a hole.
- $t[t']$: the substitution of some tree t' into the hole
- Given a tree with a hole $t[]$, we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$
Aperiodic tree languages

- $t[]$: a tree with a hole.
- $t[t']$: the substitution of some tree t' into the hole

Given a tree with a hole $t[]$, we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

Df: A language is *aperiodic* if there is some $n \in \mathbb{N}$ such that for every tree with a hole $t[]$ and every tree t', the trees $t^n[t']$ and $t^{n+1}[t']$ have the same type.
Aperiodic tree languages

- $t[]$: a tree with a hole.
- $t[t']$: the substitution of some tree t' into the hole.
- Given a tree with a hole $t[]$, we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

Df: A language is *aperiodic* if there is some $n \in \mathbb{N}$ such that for every tree with a hole $t[]$ and every tree t', the trees $t^n[t']$ and $t^{n+1}[t']$ have the same type.

Fact: [Potthoff 95] All FOL definable languages are aperiodic.
Aperiodic tree languages

- $t[]$: a tree with a hole.
- $t[t']$: the substitution of some tree t' into the hole.
- Given a tree with a hole $t[]$, we define $t^1[] = t[]$, $t^n[] = t[t^{n-1}[]]$

Df: A language is *aperiodic* if there is some $n \in \mathbb{N}$ such that for every tree with a hole $t[]$ and every tree t', the trees $t^n[t']$ and $t^{n+1}[t']$ have the same type.

Fact: [Potthoff 95] All FOL definable languages are aperiodic.

Fact: [Potthoff 95] Not all aperiodic languages are FOL definable.
Potthoff example (simplified)

One operator \otimes. Leaves labelled with 0, 1. All triples but the below two evaluate to \bot, which propagates.

\[
\begin{array}{cc}
\begin{array}{c}
1 \\
\otimes \\
0 \\
 0
\end{array} & \begin{array}{c}
0 \\
\otimes \\
1 \\
 1
\end{array}
\end{array}
\]
Potthoff example (simplified)

One operator \otimes. Leaves labelled with 0, 1. All triples but the below two evaluate to \bot, which propagates.

Let L_T be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.

\[
\begin{array}{c}
\begin{array}{c}
\otimes \\
0 \\
0
\end{array} & \quad & \\
\begin{array}{c}
\otimes \\
1 \\
1
\end{array}
\end{array}
\]
Potthoff example (simplified)

One operator \otimes. Leaves labelled with 0, 1. All triples but the below two evaluate to \(\perp \), which propagates.

\[
\begin{array}{c}
\frac{1}{\otimes} \\
0 & 0
\end{array}
\quad \quad
\begin{array}{c}
\frac{0}{\otimes} \\
1 & 1
\end{array}
\]

Let \(L_{\tau} \) be the set of trees evaluating to \(\tau \in \{0, 1, \perp\} \).

\(L_1 \cup L_{\perp} \) is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.
Potthoff example (simplified)

One operator \otimes. Leaves labelled with 0, 1. All triples but the below two evaluate to \bot, which propagates.

$$\begin{align*}
\begin{array}{c}
1 \\
\otimes
\end{array} & \begin{array}{c}
0 \\
\otimes
\end{array} \\
0 & 0 & 1 & 1
\end{align*}$$

- Let L_τ be the set of trees evaluating to $\tau \in \{0, 1, \bot\}$.
- $L_1 \cup L_\bot$ is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.
- L_\bot is the language of trees such that some vertex within has one son in $L_1 \cup L_\bot$ and the other in $L_0 \cup L_\bot$.
Potthoff example (simplified)

One operator \otimes. Leaves labelled with 0, 1. All triples but the below two evaluate to \perp, which propagates.

$$
\begin{align*}
\begin{array}{c}
\otimes \\
0 & \otimes \\
0 & 1 & 1
\end{array}
\end{align*}
$$

- Let L_τ be the set of trees evaluating to $\tau \in \{0, 1, \perp\}$.
- $L_1 \cup L_\perp$ is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.
- L_\perp is the language of trees such that some vertex within has one son in $L_1 \cup L_\perp$ and the other in $L_0 \cup L_\perp$.
- $L_0 = (L_0 \cup L_\perp) \setminus L_\perp$
Potthoff example (simplified)

One operator \(\otimes \). Leaves labelled with 0, 1. All triples but the below two evaluate to \(\bot \), which propagates.

\[
\begin{array}{c}
\begin{array}{c}
1 \\
\otimes
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
0 \\
\otimes
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
0 \\
1
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
1 \\
1
\end{array}
\end{array}
\]

\(L_{\tau} \) be the set of trees evaluating to \(\tau \in \{0, 1, \bot\} \).

\(L_1 \cup L_{\bot} \) is the language of trees such that either: the leftmost path is of even length and ends in 0 or is of odd length and ends in 1.

\(L_{\bot} \) is the language of trees such that some vertex within has one son in \(L_1 \cup L_{\bot} \) and the other in \(L_0 \cup L_{\bot} \).

\(L_0 = (L_0 \cup L_{\bot}) \setminus L_{\bot} \)

Fact: \(L_0 \) is in CL, not in FOL and is aperiodic.
Fact: L_0 is in CL, not in FOL and is aperiodic.
Fact: L_0 is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:
Potthoff example continued

Fact: L_0 is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:

- A language is FOL definable iff it is aperiodic.
Potthoff example continued

Fact: L_0 is in CL, not in FOL and is aperiodic.

The Potthoff example contradicts the following conjectures:

- A language is FOL definable iff it is aperiodic
- A chain definable language is FOL definable iff it is aperiodic
Confusion

Let $\mathcal{A} = \langle Q, q_0, \delta \rangle$ be a deterministic bottom-up automaton. Consider a tree t with a designated subset of leaves V and a function $\sigma : V \to Q$. $t[s] \in Q$ is defined as the state assumed by \mathcal{A} in the root of t starting from state $\sigma(v)$ in leaves $v \in V$ and from q_0 in the remaining vertices.
Let $\mathcal{A} = \langle Q, q_0, \delta \rangle$ be a deterministic bottom-up automaton. Consider a tree t with a designated subset of leaves V and a function $\sigma : V \rightarrow Q$. $t[s] \in Q$ is defined as the state assumed by \mathcal{A} in the root of t starting from state $\sigma(v)$ in leaves $v \in V$ and from q_0 in the remaining vertices.

Df: Let $R \subseteq Q$. We say \mathcal{A} contains R-confusion if there is a tree t with a designated set of leaves V such that for every $v \in V$ and every $q, q' \in R$, there is some assignment $\sigma : V \rightarrow R$ such that $t[\sigma[v := q]] = q'$.
Example of confusion
Example of confusion
Example of confusion

\[
\begin{array}{c}
\lor \\
\lor \\
0 & 1 & 1 & 1
\end{array}
\]
Example of confusion
Example of confusion

\[
\begin{array}{c}
\wedge \\
\top \\
\vee \\
\top \\
\top \\
\top \\
0 \\
\end{array}
\quad
\begin{array}{c}
\wedge \\
\top \\
\vee \\
\top \\
0 \\
\vee \\
\top \\
\end{array}
\]
Example of confusion
Confusion conjecture

Df: A language L *contains confusion* if the minimal deterministic bottom-up automaton recognizing L contains confusion. Otherwise L is *non-confusing.*
Confusion conjecture

Df: A language L contains confusion if the minimal deterministic bottom-up automaton recognizing L contains confusion. Otherwise L is non-confusing.

Thm: A chain definable language is non-confusing
Confusion conjecture

Df: A language L contains confusion if the minimal deterministic bottom-up automaton recognizing L contains confusion. Otherwise L is non-confusing.

Thm: A chain definable language is non-confusing

Conjecture: A language is chain definable iff it is non-confusing
Arguments in favor of the conjecture

Works for languages with two types (i.e. whose minimal deterministic bottom-up automaton has two states)

Works for yield languages

Nonconflation behaves like a logic.
Arguments in favor of the conjecture

- Works for languages with two types (i.e. whose minimal deterministic bottom-up automaton has two states)
Arguments in favor of the conjecture

- Works for languages with two types (i.e., whose minimal deterministic bottom-up automaton has two states)
- Works for yield languages
Arguments in favor of the conjecture

- Works for languages with two types (i.e. whose minimal deterministic bottom-up automaton has two states)
- Works for yield languages
- Nonconfusion behaves like a logic.
Yield languages

Df: The *yield* $y(t)$ of a tree t is the word consisting of the labels in the leaves of t, read from left to right.

Df: Let L be a word language. A tree language of the form $\{t : y(t) \in L\}$ is called a *yield language*.
Yield languages

Def: The *yield* $y(t)$ of a tree t is the word consisting of the labels in the leaves of t, read from left to right.

Def: Let L be a word language. A tree language of the form \(\{ t : y(t) \in L \} \) is called a *yield language*.

Thm: A yield language is in CL iff it is in FOL iff it is non-confusing.
Nonconfusion behaves like a logic

Thm: Nonconfusing languages are closed under homomorphic images, direct and wreath products.
Nonconfusion behaves like a logic

Thm: Nonconfusing languages are closed under homomorphic images, direct and wreath products.

Cor: Nonconfusing languages are closed under boolean operations and chain quantification.
Simple algebras

1. Take the minimal deterministic bottom-up automaton \(\mathcal{A} \) recognizing \(L \). \(\mathcal{A} \) is non-confusing.
Simple algebras

1. Take the minimal deterministic bottom-up automaton A recognizing L. A is non-confusing.

2. Find a congruence \sim in A. Then $A = A' \circ A_{/\sim}$ for some automaton A'. Both automata A', $A_{/\sim}$ have fewer states. L is non-confusing iff both $L(A')$ and $L(A_{/\sim})$ are chain definable.
Simple algebras

1. Take the minimal deterministic bottom-up automaton \(\mathcal{A} \) recognizing \(L \). \(\mathcal{A} \) is non-confusing.

2. Find a congruence \(\sim \) in \(\mathcal{A} \). Then \(\mathcal{A} = \mathcal{A}' \circ \mathcal{A}/\sim \) for some automaton \(\mathcal{A}' \). Both automata \(\mathcal{A}' \), \(\mathcal{A}/\sim \) have fewer states. \(L \) is non-confusing iff both \(L(\mathcal{A}') \) and \(L(\mathcal{A}/\sim) \) are chain definable.

3. Go back to 1.
Simple algebras

1. Take the minimal deterministic bottom-up automaton A recognizing L. A is non-confusing.

2. Find a congruence \sim in A. Then $A = A' \circ A/\sim$ for some automaton A'. Both automata A', A/\sim have fewer states. L is non-confusing iff both $L(A')$ and $L(A/\sim)$ are chain definable.

3. Go back to 1.

The base case: There is no congruence in A (A is a simple algebra).
Separation

The L-type of a tree t is the state assumed in the root of t by the minimal deterministic bottom-up automaton recognizing L.

An automaton \mathcal{A} separates two types τ, σ if \mathcal{A} accepts all trees of type τ and rejects all trees of type σ.
Separation

The L-type of a tree t is the state assumed in the root of t by the minimal deterministic bottom-up automaton recognizing L.

An automaton A separates two types τ, σ if A accepts all trees of type τ and rejects all trees of type σ.

Conjecture If no deterministic top-bottom automaton can separate any two types then no chain logic formula can separate any two types.
The L-type of a tree t is the state assumed in the root of t by the minimal deterministic bottom-up automaton recognizing L.

An automaton \mathcal{A} separates two types τ, σ if \mathcal{A} accepts all trees of type τ and rejects all trees of type σ.

Conjecture If no deterministic top-bottom automaton can separate any two types then no chain logic formula can separate any two types.

Fact: If no deterministic top-bottom automaton can separate any two types then boolean combination of such automata can do it.
Summary and future work

- Try to characterise other logics such as CTL, MPL
Summary and future work

- Try to characterise other logics such as CTL, MPL
- Understand simple algebras
Summary and future work

- Try to characterise other logics such as CTL, MPL
- Understand simple algebras
- Understand word-sum automata (the order approach)
Summary and future work

- Try to characterise other logics such as CTL, MPL
- Understand simple algebras
- Understand word-sum automata (the order approach)
- Do something easier