Algebra for Trees

Mikotaj Bojariczyk*

University of Warsaw
email: bojan@mimuw.edu.pl

2010 Mathematics Subject Classification: 68Q70

Key words: Tree automata, Forest algebra

Abstract. This chapter presents several algebraic approaches to tree languages. The idea is to
design a notion for trees that resembles semigroups or monoids for words. The focus is on the
connection between the structure of an algebra recognizing a tree language, and the kind of logic
needed to define the tree language. Four algebraic approaches are described in this chapter: trees as
terms of universal algebra, preclones, forest algebra, and seminearrings. Each approach is illustrated
with an application to logic on trees.

1 Introduction

This chapter presents several algebraic approaches to regular tree languages. ! An algebra
is a powerful tool for studying the structure of a regular tree language, often more pow-
erful than tree automata. This makes algebra a natural choice for proving lower bounds.
Another area which uses algebra a lot is the search for effective characterizations. Since
this is the guiding motivation for this chapter, we begin with a discussion on effective
characterizations.

Effective characterizations. Let . be a class of regular languages (for words or trees).
We say that .Z has an effective characterization if there is an algorithm, which inputs a
representation of a regular language, and says if the language belongs to .£. We are
mainly interested in decidability, so we do not pay too much attention to the format in
which the input language is represented, it could be e.g. an automaton or a formula of
monadic second-order logic.

On the surface, finding an effective characterization looks like a strange problem. Its

* Author supported by ERC Starting Grant “Sosna”
1T would like to thank my colleagues for their helpful comments, especially Tomasz Idziaszek, Luc Segoufin,
Howard Straubing, Igor Walukiewicz, Pascal Weil and Thomas Wilke.

2 M. Bojanczyk

practical applications seem limited. And yet for the last several decades, people have in-
tensively searched for effective characterizations of language classes, originally for word
languages, and recently also for tree languages. Why? The reason is that each time some-
one proved an effective characterization of some class of languages, the proof would be
accompanied by a deeper insight into the structure of the class. One can say that “give an
effective characterization” is a synonym for “understand”. In this sense, we have still not
understood numerous tree logics, including first-order logic with descendant, chain logic,
PDL, CTL* and CTL.

A classical example is first-order logic for words. It is one thing to prove that first-
order logic cannot define some language, such as (aa)*. It is another thing to prove the
theorem of Schiitzenberger-McNaughton-Papert, which says that a word language can be
defined in first-order logic if and only if its syntactic monoid is group-free. The theorem
does not just give one example of a language the cannot be defined in first-order logic, but
it describes all such examples, in this case the languages whose syntactic monoids contain
a group. Also, the theorem establishes a beautiful connection between formal language
theory and algebra.

In recent years, many researchers have tried to extend effective characterizations from
words languages to tree languages. This chapter describes some of the known effective
characterizations for tree languages, and it gives references to the others. Nevertheless, as
mentioned above, many important logics for trees are missing effective characterizations.

Of course, algebra has played an important role in the research on tree languages.
The goal of this chapter is to describe the algebraic structures that have been developed.
However, part of the focus is always on the applications to logic. Therefore, this chapter is
as much about logics for trees as it is about algebras for trees. This chapter is exclusively
about finite trees.

For word languages, the algebraic approach is to use monoids or semigroups. For tree
languages, there is much more diversity. This chapter describes four different algebraic
approaches, and gives a recipe to define any number of new ones. One reason for this
diversity is that trees are more complicated than words, and there are more parameters to
control, such as: are trees ranked, or unranked? are trees sibling-ordered or not? Another
reason is that the algebraic theory of tree languages is in a state of flux. We still do not
know which of the competing algebraic approaches will prove more successful in the long
run. Instead of trying to choose the right algebra, we take a more pragmatic approach.
Every algebraic approach is illustrated with some results on tree logics that can be proved
using the approach, preferably examples which would require more work using the other
approaches.

There is always the question: what is an algebra? What is the difference between an
algebra and an automaton? Two differences are mentioned below, but we make no attempt
to answer this interesting question definitively.

The first difference is that, simply put, an algebra has more elements than an au-
tomaton. For instance, in the word case, a deterministic automaton assigns meaningful
information to every prefix of a word, while a homomorphism into a finite monoid as-
signs meaningful information to every infix. This richer structure is often technically
useful. For instance, in monoids, on can define a transitive relation on elements, which
considers an infix s to be simpler than its extension ust. This relation is used as an induc-
tion parameter in numerous proofs about monoids. The relation does not make sense for

Algebra for Trees 3

automata.

The second difference is that in algebra, unlike in automata, the recognizing device
is usually split into two parts: a homomorphism and a target algebra. Consider, as an
example, the case of words and monoids. If we just know the target monoid and not the
homomorphism, it is impossible to tell if the identity of the monoid is the image of only
the empty word, or also of some other words. For reasons that are unclear, this loss of
information seems to actually make proofs easier and not harder. At any rate, separating
the recognizing device into two parts is a method of abstraction that is distinctive of the
algebraic approach.

Potthof example. Before we begin our discussion of the various algebras, we present a
beautiful example due to Andreas Potthoff, see Lemma 5.1.8 in [23]. This example shows
how intuitions gained from studying words can fail for trees.

Consider an alphabet {a,b}. This alphabet is ranked: we only consider trees where
nodes with letter a have two children, and nodes with letter b are leaves. Let P be the
set of such trees where every leaf is at even depth. For instance, b ¢ P and a(b,b) € P.
Intuition suggests that P cannot be defined in first-order logic, for the same reasons that
first-order logic on words cannot define (aa)*. If we consider first-order logic with the
descendant predicate, then this intuition is correct. Consider the balanced tree ¢,, of depth
n, defined by to = b and t,,+1 = a(¢tn,t,). An Ehrenfeucht-Fraissé argument shows that
every formula of size n will give the same results for all balanced trees of depth greater
than 2.

What if, apart from the descendant order, we also allow formulas to use sibling order?
Sibling order is the relation z < y which holds when z is a sibling of y, and x is to the left
of y. For the alphabet in question sibling order could be replaced by a unary “left child”
predicate, but we use sibling order, since it works well for unranked trees.

We first show that a formula with descendant and sibling orders can distinguish binary
complete trees of even and odd depth. The idea is to look at the zigzag path, which begins
in the root, goes to the left child, then the right child, then the left child and so on until
it reaches a leaf. We say a tree satisfies the zigzag property if the zigzag path has even
length, which is the same as saying that the unique leaf on the zigzag path is a left child.
Consequently, a balanced binary tree of depth n satisfies the zigzag property if and only
if n is even. The zigzag property can be defined in first-order logic, using the descendant
and sibling orders: one says that there exists a leaf which is a left child, and such that
for every ancestor y of x that has parent z, one of the nodes y, z is a left child, and the
other is a right child or the root.

What is more, the zigzag property can be used to actually define the language P. A
tree does not have all leaves at even depth if and only if either: a) the zigzag property is
not satisfied; or b) for some two siblings z, y the zigzag property is satisfied by the subtree
of x, but not the subtree of y. These conditions can be formalized in first-order logic; and
therefore the language P can be defined in first-order logic with descendant and sibling
orders.

This example can be used to disprove some intuitions. For instance, the language P is
order invariant (i.e. invariant under swapping sibling subtrees). It follows that first-order
logic with descendant order only is strictly weaker than order invariant first-order logic
with descendant and sibling orders.

4 M. Bojaniczyk
2 Trees as ground terms

The first type of algebra that we talk about works for ranked trees. Ranked trees are built
using a ranked alphabet, where each letter is assigned a number, called the letter’s arity.
A tree over a ranked alphabet is a tree where the number of children of each node is the
same as the arity of its label. We write ¢, s for trees. In particular leaves are letters of arity
zero, also called nullary letters. Since we are considering finite trees, it only makes sense
to consider alphabets with at least one nullary letter.

The algebraic approach is to see trees as terms, in an algebra whose signature is given
by the ranked alphabet. (More exactly, trees are ground terms, i.e. terms that do not
use any variables.) The free algebra corresponds to the set of all trees. A finite algebra
corresponds to a (deterministic bottom-up) tree automaton, the domain of the algebra is
the state space. The original paper [27] on regular tree languages by Thatcher and Wright
talks about trees and tree automata this way.

Here is the setup. A ranked alphabet is treated as a signature in the sense of universal
algebra. Each letter of the ranked alphabet is a function symbol of the same arity. In
particular, the nullary letters, or leaves, are constants. We study algebras over this signa-
ture. We call them A-algebras when the alphabet is A. Following universal algebra, an
A-algebra A is defined by giving a domain H, and an interpretation of each n-ary letter
a in the ranked alphabet as a function a* : H" — H.

A morphism from one A-algebra to another is a mapping from the domain of the first
algebra to the domain of the second algebra that preserves the operations in the usual
sense. We are only interested in algebras that are accessible, which means that every ele-
ment of the domain can be obtained by evaluating some expression built out of constants
and function symbols. This makes morphisms uninteresting, since there is exactly one
morphism between any two accessible A-algebras.

We use two types of A-algebra: the free algebra, and algebras with finite domain. The
free algebra will correspond to trees, and the finite algebras will correspond to automata.

The free algebra. The domain of the free A-algebra is the set of all trees over the
ranked alphabet A, which we denote trees(A). Each n-ary letter a is interpreted as an n-
ary operation which takes trees ¢1, . . ., t,, and returns the tree a(t1, . . ., ¢,,) shown below.

A

t ot e b,

This algebra is free in the following sense. For every A-algebra A, there is a unique
morphism « from the algebra to A. If A is an A-algebra and ¢ is a tree (an element of the
free A-algebra), we write ¢t for the image a/(t) under this unique morphism. (Unlike for
monoids or semigroups, the alphabet is interpreted in the signature, and not as generators.
In this sense, the set of generators for the free A-algebra is empty, since the trees are built
out of constants, or nullary letters. This will change for the other algebras in this chapter.)

Recognizing languages. A tree language L over alphabet A is said to be recognized by
an algebra A if membership ¢ € L depends only on t*. When A is finite, it can be viewed
as a deterministic bottom-up tree automaton: the state t* assigned to a tree depends only

Algebra for Trees 5

on the root label of ¢ and the states assigned to the children. Consequently, a tree language
over a ranked alphabet is regular if and only if it is recognized by some finite algebra.

Syntactic algebra. We now define the syntactic algebra of a tree language, which plays
the same role as the syntactic (or minimal) deterministic automaton for a word language.
The definition uses a Myhill-Nerode style congruence, which talks about putting trees in
different contexts. Here, a context over alphabet A is defined as a tree over an extended
alphabet A U {0}, which includes an additional nullary hole symbol 0. A context must
use the hole symbol exactly once. The hole plays the role of a variable, but we use the
name hole and the symbol O for consistency with the other parts of this chapter. We write
p, q,r for contexts. If p is a context and s is a tree, we write ps for the tree obtained by
replacing the hole of p by s.

We now define the syntactic A-algebra of a tree language L over an alphabet A. A non-
regular language also has a syntactic A-algebra, but it is infinite. We say that two trees s
and ¢ are L-equivalent if there is no context that distinguishes them, i.e. no context p such
that exactly one of the trees ps and pt is in L. This equivalence relation is a congruence
in the free A-algebra, so it makes sense to consider the quotient of the free A-algebra
with respect to L-congruence. This quotient is called the syntactic A-algebra of L. One
can show that A-algebra is a morphic image of any other A-algebra that recognizes L.
A consequence is that a tree language is regular if and only if its syntactic A-algebra is
finite.

Limitations of A-algebras. An advantage of the approach described above is that it
uses very simple concepts to describe regular tree languages. Arguably, the definition is
simpler than the algebraic approach to word languages via semigroups. But is it fair to
use the name algebra for an A-algebra? Or is it an automaton? Below we describe some
benefits from using algebra (semigroups and monoids) in the word case which do not
work well for A-algebras.

An important theme in the algebraic approach to word languages is that properties of
word languages, such as “the word language can be defined in first-order logic”, corre-
spond to properties of syntactic semigroups, such as “the semigroup is group-free”. Also,
important properties of semigroups can be stated by identities, such as the identity

Sw — Serl,
which says that a semigroup is group-free, or the identities
st=ts and $§ =8,

which say that a semigroup is commutative and idempotent. Unfortunately, we run into
problems when we try to do this for A-algebras.

The first problem is that the signature (i.e. the set of operations) in an A-algebra de-
pends on the ranked alphabet A. Suppose that we want to talk about the class of tree
languages that are invariant under reordering siblings. This property can be expressed
using identities, but in a cumbersome way: for each letter a of the alphabet, of arity n, we
need identities which imply that the children can be reordered, e.g.

a(xr, ..., Tn) = a(Zj, T2, ., Lj—1, L1, Tjgl, - Tn1,Ln) forj=2,...,n.

6 M. Bojaficzyk

A second, and more important, problem is that the set of objects is not rich enough.
Consider the group-free identity s* = s“*1. What makes this identity so powerful is
that it says that the left side can be replaced by the right side in any environment. In
terms of words, this means that for sufficiently large n, an infix w™ can be replaced by
an infix w™*!. In A-algebras, elements of the algebra correspond to subtrees, and any
identity will only allow to replace one subtree with another. For words, this would be like
using identities to describe suffixes, and not infixes. This means that very few important
properties of tree languages can be described using identities in A-algebras.

Terms. As we remarked above, talking about trees and subtrees may be insufficient.
Sometimes, we want to talk about contexts, or contexts with several holes, which we call
multicontexts. Formally speaking, a multicontext over alphabet A is a tree over alphabet
A U {0}, where O is a nullary letter. In a multicontext, there is no restriction on the
number of times (possibly zero) the hole symbol O is used, this number is called the arity
of the multicontext. We number the holes from left to right, beginning with 1 and ending
with the arity.

There are two kinds of substitution for multicontexts. Suppose that p is an n-ary
multicontext, and ¢ is an m-ary multicontext. The first kind of substitution places ¢ in
one hole. For any ¢ € {1,...,n}, we can replace the i-th hole of p by ¢, the resulting
multicontext is denoted p -; g, and its arity is n + m — 1. The second kind of substitution
places ¢ in all holes simultaneously; the resulting multicontext is denoted p- g, and its arity
is m - n. When talking about ranked trees, we will only use the first kind of substitution.

Suppose that A is an A-algebra, with domain H. Every k-ary multicontext p over
alphabet A can be interpreted, in a natural way, as a function

pA:Hk—>H.

For technical reasons, we assume that p is not the empty multicontext 0. We use the
name k-ary A-term for any such function. Nullary A-terms can be identified with the
domain H. When A is the free A-algebra, .A-terms can be identified with the set of k-
ary multicontexts over A. There is a natural definition of substitution for .A-terms which
mirrors substitution on multicontexts, defined by

preigt =gt

2.1 Definite Languages

To illustrate the power of A-algebras, but also the difficulties of trees, we will use A-
algebras to study definite languages. This is a class of languages, which in the case of
words has a simple and elegant algebraic characterization.

Definite word languages. A word language L is called definite if there is a threshold
n € N, such that membership w € L depends only on the first n letters of w. Stated
differently, a definite word language over alphabet A is a finite boolean combination of
languages of the form wA* for w € A*.

There is simple algebraic characterization of definite word languages. Suppose that

Algebra for Trees 7

L C A* is a word language, whose syntactic semigroup morphism is o : AT — S. Then
L is definite if and only if the identity

st = s%u 2.1

holds for any two elements s,¢,u € S. The idea is that s* represents a long word, and
anything after it is not important>. We prove this characterization below.

We say that elements s, ¢ of the syntactic semigroup S have arbitrarily long common
prefixes if for any n € N, there are words w,v € AT, which are mapped by « to s,t
respectively, and which have the same labels up to position n. This can be stated without
referring to the morphism « as

VneN Juy,...,u, €S S,t €Uy upS.

It is easy to see that a language is definite if and only if any two elements of .S that have
arbitrarily long common prefixes are equal. We now explain how the latter property is
captured by the identity (2.1). If n is sufficiently large, then a Ramsey argument can be
used to show that for any element w1, ..., u,, thereexist 1 < i < j <n € {1,...,n}
such that u; - - - u; is idempotent. Therefore, a condition necessary for s, ¢ having arbi-
trarily long common prefixes is

s,t € xy“zS for some z,y,z € S. (2.2)

It suffices to take & = wuy -~ - Uj—1, Y = u;---u; and 2 = w11 - - - uy,. It is not difficult
to see that the above condition is also sufficient, since y* is of the form uy - - - u, for
arbitrarily large n, e.g. by taking uy = --- = u,, = y. It follows that L is definite if and
only if its syntactic semigroup S satisfies the identity

zy¥zs’ = xy“ ot

One can show that the above identity is equivalent to (2.1).

Definite tree languages. We now try to generalize the ideas above from words to trees.
As long as we are only interested in testing if a tree language is definite, then the above
approach works. On the other hand, if we want to know which trees have arbitrarily long
prefixes, maybe in a language that is not definite, then the above approach stops working.
We explain this in more detail below.

Consider an A-algebra A. We say that g, h € A have arbitrarily deep common pre-
fixes if for any n € N, there are trees s,t from the free A-algebra, with tA = g and
s = h, which have the same nodes and labels up to depth 7.

We would like to give an alternative definition, which does not mention trees, which
are elements of the infinite free A-algebra. Preferably, the alternative definition would
give an effective criterion to decide which elements have arbitrarily deep common pre-
fixes. A simple tree analogue of (2.2) would be

g, h € xy?zA={(zy“2)(f): f € A} for some unary A-terms x,y,z. (2.3)

21t is important that « is the semigroup morphism, which represents nonempty words, and not the syntactic
monoid morphism, which also represents the empty word. Otherwise, we would have to restrict the identity (2.1)
so that s represents at least one nonempty word.

8 M. Bojaficzyk

(In the notation xy“z we treat unary A-terms as elements of a finite semigroup.) Un-
fortunately, the condition above is not the same as saying that g, h have arbitrarily deep
common prefixes. The condition is sufficient (for sufficiency, it is important that our defi-
nition of .A-term does not allow the empty context), but not necessary, as demonstrated
by the following example, which is due to Igor Walukiewicz.

Example 2.1. The alphabet has a binary letter ¢ and nullary letters b, c. Consider the
language “all leaves have the same label”, and its syntactic algebra, which has three ele-
ments:

hy, = all leaves have label b, h. = all leaves have label c, 1 = the rest.

All three elements of the syntactic algebra have arbitrarily deep common prefixes, but the
elements hy and h. cannot be presented as

hy = zy* zgs, he = zy“2g.

for any choice of gy, g.. The only possible choice would be g, = hy and g. = h.. The
problem is that each context x, y, z comes with its own leaves (recall that the symbol a is
binary). The first equality requires the contexts x, y, z to have all leaves with label b, and
the second equality requires all leaves to have label c.

Tree prefix game. The above example indicates that idempotents in the semigroup of
unary A-terms are not the right tool to determine which trees have arbitrarily deep com-
mon prefixes. Then what is the right tool?

We propose a game, called the tree prefix game. The game is played by two players,
Spoiler and Duplicator. It is played in rounds, and may have infinite duration. At the
beginning of each round, there are two elements f7, fo of the algebra, which are initially
f1 =g and fo = h. A round is played as follows. First player Duplicator chooses a letter
a of the alphabet, say of arity n, and 2n elements of the algebra

f117--~7f1n7 f21a---7f2n Wlth f1 :aA(fn,...,fln) andfgza“A(fgl,...,an).

If Duplicator cannot find such elements the game is terminated, and Spoiler wins. Other-
wise, Spoiler chooses some i € {1,...,n} and the game proceeds to the next round, with
the elements f1; and fo;. If n = 0 (which implies f; = f3), then the game is terminated,
and Duplicator wins. If the game continues forever, then Duplicator wins.

Theorem 2.1. Two elements of an algebra have arbitrarily deep prefixes if and only if
Duplicator wins the tree prefix game.

Note that the above theorem gives a polynomial time algorithm to decide if two ele-
ments of a finite algebra have arbitrarily deep common prefixes, since the tree prefix game
is a safety game with a polynomial size arena, which can be solved in polynomial time.

Definite tree languages, again. We have seen before that idempotents are not the right
tool to describe trees with arbitrarily deep common prefixes. The solution we proposed
was the tree prefix game. This game provides an algorithm that decides if a tree language
is definite: try every pair of distinct elements in the syntactic algebra, and see if Duplicator

Algebra for Trees 9

can win the game. If there is a pair where Duplicator wins, then the language is not
definite. If there is no such pair, then the language is definite.

However, if we are only interested in arbitrarily deep common prefixes as a tool to
check if a tree language is definite, then idempotents are enough, as shown by the follow-
ing theorem. (The language in Example 2.1 is not definite.)

Theorem 2.2. Let L be a tree language whose syntactic algebra is A. Then L is definite
if and only if every unary A-term u and every elements f, g € A satisfy

u’f =u"g.

Proof. Itis easy to see the “only if”” direction. We prove the “if”” direction.

Let o be the syntactic morphism. Since unary .A-terms form a finite semigroup, there
must be a number 7 such that for any unary A-terms uy, . . . , Uy, there is a decomposition
uy -+ - up = xy“z for some unary A-terms x,y, z. Let a be some nullary (leaf) letter in
the alphabet. We claim that every tree s over alphabet A has the same image under « as
the tree § obtained from s by replacing all nodes at depth n by a leaf with label a. This
implies that L is definite, since « gives the same result for any two trees that have the
same nodes up to depth n.

Consider then a tree s. We prove the claim that a(s) = «(8) by induction on the
number of nodes in s that have depth n and are not a leaf with label a. The base case,
when all nodes at depth n have label a, is immediate, since it implies s = 5. Consider the
induction step. Let v be a node at depth n inside s that is not a leaf with label a. Let p be
the context obtained from s by putting the hole in v, and let ¢ be the subtree of v; we have
s = pt. By choice of v and n, there exist unary A-terms x, y, z with a(p) = zy“z. We
use the identity from the statement of the theorem to prove that pt and pa have the same
image under o

a(pt) = a(p)a(t) = 2y za(t) = wy*za(a) = alp)ala) = alpa).

The tree pa has more nodes at depth n with label a than the tree s, so we can use the
induction assumption to conclude that pa has the same image under « as pa = 5. O

2.2 First-order logic with child relations

In this section, we state one of the more advanced results connecting logic and algebra.
The result talks about a variant of first-order logic that is allowed to use the child predicate,
but not the descendant predicate.

Fix a ranked alphabet A. We now define a logic that is used to describe trees over
alphabet A. For each label a € A, there is a unary predicate a(x), which says that node
« has label a. Let n be the maximal arity of a symbol from A. For any i € {1,...,n}
we have a predicate child;(x, y), which says that y is the i-th child of 2. Importantly, we
do not have a predicate x < y for the descendant relation. In this section, we talk about
first-order logic with these predicates, which we call first-order logic with child relations.

Which tree languages can be defined in first-order logic with child relations? We begin
with the straightforward observation that the logic can only define “local” properties.

10 M. Bojariczyk

Then we state the main result, Theorem 2.3, which characterizes the logic in terms of two
identities.

Suppose that p is a multicontext of arity k. We say that p appears in node x of a tree ¢,
if the subtree of ¢ in node z can be decomposed as p(t1, . .., ty) for some trees t1, . . ., t.
A local formula is a statement of the form “multicontext p appears in at least m nodes
of the tree”, or a statement of the form “multicontext p appears in the root of the tree”.
Of course every local formula can be expressed in first-order logic with child relations.
The Hanf locality theorem gives the converse: any formula of first-orer logic with child
relations is equivalent, over trees, to a boolean combination of local formulas.

This normal form using local formulas explains what can and what cannot be ex-
pressed in first-order logic with child relations. We give an illustration below.

Example 2.2. The alphabet has a binary letter a, a unary letter b and nullary letters c, d.
Consider the language L that consists of trees where the root has label a, and some de-
scendant of the root’s left child has label c. We will show that L cannot be described by
a boolean combination of local formulas, and therefore L cannot be defined in first-order
logic with child relations. For n € N, consider the two trees

a(b™(c),b"(d)) € L and a(d™(d),b"(c)) € L.

Consider any multicontext p. If all holes in p are at depth at most n, then p appears in
the same number of nodes in both trees above. Consequently, the two trees cannot be
distinguished by any local formula that uses a multicontext with all holes at depth at most
n. It follows that any boolean combination of local formulas will confuse the two trees,
for sufficiently large n.

In the example above, any local formula would be confused by swapping two subtrees
b™(c) and b™(d) for sufficiently large n. The reason is that the two subtrees agree on nodes
up to depth n. This leads us back to the notion of trees that have arbitrarily deep common
prefixes, which was discussed in Section 2.1. This notion will be key to the following
Theorem 2.3, which characterizes the tree languages that can be defined in first-order
logic with child relations.

To state the theorem, we extend the notion of having arbitrarily deep common prefixes
from elements of A to A-terms. We say two .A-terms u, v have arbitrarily deep common
prefixes if for any n € N, one can find multicontexts p, g that have the same nodes and
labels up to depth 7, and such that « = p* and v = ¢*.

Theorem 2.3. A tree language is definable in first-order logic with child relations if and
only if its syntactic algebra A satisfies the following two conditions.

e Vertical swap. Suppose that uy,us are unary A-terms with arbitrarily deep com-
mon prefixes, likewise for vy, ve. Then

V1UIV2U2 = VU1V UQ.

e Horizontal swap. Suppose that hy, hy € A have arbitrarily deep common prefixes,
and w is a binary A-term. Then

w(hl, hg) = ’LU(hQ, hl)

Algebra for Trees 11

References. The algebraic approach presented in this section dates from the first paper
on regular tree languages [27]. Variety theory for tree languages seen as term algebras
was developed in [26]. Theorem 2.2, one of the first effective characterizations of logics
for trees, was first proved in [15]. The idea to study languages via the monoid of contexts
is from [28]. The generalization of classical concepts, such as aperiodicity, star-freeness,
and definability in logics such as first-order logic, chain logic or anti-chain logic was
studied [28, 16, 17, 25, 24] Theorem 2.3 was proved in [1]. Effective characterizations
for some temporal logics on ranked trees were given in [9, 13, 21], while [22] gives an
effective characterization of locally testable tree languages.

3 A recipe for designing an algebra

Here are some disadvantages of the A-algebras discussed in Section 2.

e The principal disadvantage is that the set of objects described by an A-algebra,
namely trees, is not rich enough. Almost any nontrivial analysis of a tree language
requires talking about contexts (terms with one hole), or even terms with more than
one hole. Why not make these part of the algebra?

e The set of operations depends on the ranked alphabet A. One consequence of this
is that one cannot define any class of tree languages by a single set of identities;
since identities need to refer to a common set of operations. Of course a quick fix
is to give separate identities for each alphabet.

e The trees are ranked. Unranked trees, where there is no limit on the number of
children of a node, are important in computer science, especially in XML. In the
unranked case, an alphabet provides just names for the letters, without specifying
their arities.

e From the point of view of many logics, fixing the number of children for each node
is artificial. Consider modal logic, which accesses the tree structure via operators
“in some child ¢ and “in all children ¢”. A property of trees defined in modal
logic should be closed under reordering and duplicating children. Reordering is not
a problem, but duplicating is disallowed by the syntax of ranked trees.

In the rest of this chapter, we present some algebras that try to solve these problems.
However, a problem with designing an algebra for trees is that there are so many parame-
ters to control. Are the trees ranked or unranked? Does the algebra represent only trees?
Or does it also represent contexts? Or maybe also terms of arbitrary arity? Is it legal for
a context to have the hole in the root? When studying unranked trees, it makes sense to
study trees, contexts and terms which have many roots — which leads to a whole new set
of parameters.

For each choice of parameters there is an algebra. Due to a lack of space and interest,
we will not enumerate all these algebras.

One solution for controlling the parameters is the framework of C-varieties from [20],
which also works for trees.

We choose a different solution. We give a general recipe for designing an algebra, and
then uses it to design some algebras for trees. The recipe requires three steps. Each step
is described by a question.

12 M. Bojanczyk

(1) What are the objects? In the first step, we choose what objects will be represented.

Some possible choices:

(a) Multicontexts of arities {0, 1, ...}, which may have several roots.

(b) Multicontexts as above, but where none of the holes is in a root.

(c) Multicontexts of arity at most one, which may have several roots.
If there are different kinds of objects, the algebra might require several sorts. For
instance, in the last case we would have two sorts: for arities zero and one.

(2) What are the operations? In the second step, we design the operations. The
operations should not depend on the alphabet. These are designed so that if we take
an unranked alphabet A, and start with contexts of the form a0 (a node with label «,
with a single child that is a hole), then all the other objects can be generated using
the operations. There are other ways of interpreting letters as generators, but we
stay with a0 in the interest of reducing the already large number of models. Note
that the objects represented in the algebra, as chosen in the first step, must include
at least the generator contexts.

(3) What are the axioms? In the first two steps, we have basically designed the free
algebra. In the last step, we provide the axioms. These should be chosen so that the
free algebra designed in the first two steps is free in the sense of universal algebra.
In other words, if we take all possible expressions that can be constructed from the
generators a0 and the operations designed in the second step; and quotient these
expressions by the least congruence including the axioms, then we get the objects
designed in the first step.

We use the recipe to design three algebras: preclones in Section 4, seminearrings in
Section 6, and forest algebra in Section 5. The reader can use the recipe to design other
algebras.

An important algebra not included in this chapter is the tree algebra of Thomas Wilke,
see [29]. The algebraic approach to tree languages, as described in the recipe above,
was pioneered by this tree algebra. Also, tree algebra was used to give one of the first
nontrivial effective characterizations of a tree logic, namely an effective characterization
of frontier testable languages, again see [29]. Nevertheless, tree algebra is omitted from
this chapter, mainly due to its close similarity with the forest algebra, which is described
in Section 5, and which was inspired by tree algebra.

4 Preclones

As we saw in the study of definite tree languages in the previous section, in some cases it
is convenient to extend an A-algebra with terms of arities 1,2, 3 and so on. So why not
include all these objects in the algebra? This is the idea behind preclones.

What are the objects? The objects represented by a preclone are all multicontexts. For
each arity, there is a separate sort. Consequently, there are infinitely many sorts.

What are the operations? Suppose that A is a ranked alphabet. Each letter of arity &
can be treated as an element of the sort for arity k. We want to design the operations so

Algebra for Trees 13

that from the letters, all possible multicontexts can be built. All we need is substitution:
for an m-ary multicontext, an n-ary multicontext, and a hole number ¢ € {1,...,m},
return the multicontext p -; g of arity m + n — 1, obtained by replacing the ¢-th hole of
p with q. Formally speaking, if the sorts are {71}, } men, then we have an infinite set of
operations

(ue€Thm,veT,) +— uv€Thin form,n € Nandi € {1,...,m}.

What are the axioms? A preclone should satisfy the following associativity axiom for
any arities k, n, m and terms u, v, w of these arities, respectively.

(U ‘5 ’LU) “itm—17 fOI'j S {1,,1—1}
(w-v)jw=u(vj_iprw) forjed{i,...,i+n—1}
(W jepprw) v forjefi+n,....,k+n—1}

The axioms are justified below, where we prove that the free algebra indeed consists of
multicontext, as we postulated in the first step of the design process.

Preclones from an algebra. Each algebra, as described in Section 2, can be extended
to a preclone. Consider a ranked alphabet A. The preclone of an A-algebra A is defined
by using k-ary A-terms as the k-th sort, and the natural notion of substitution.

Free preclone. Suppose that A is a ranked alphabet. Consider the preclone where the
sort of arity k consists of k-ary multicontexts over alphabet A, and the substitution opera-
tions are defined in the natural way. Call this preclone the free preclone over alphabet A.
It is isomorphic to the preclone of the free A-algebra.

The notion of preclone morphism is inherited from universal algebra. The only point
of interest is that preclones have multiple sorts. A preclone morphism between two pre-
clones 7 and U is a function, which maps alements of the k-th sort of 7 to elements of
the k-th sort of U, and preserves the substitution operations in the natural way.

This preclone is free in the following sense, which justifies our choice of axioms in
the design process. Let 7 be any preclone, and consider a function which maps each
letter ¢ € A to an element of 7 of the same arity. Then this function can be extended in
a unique way to a preclone morphism from the free preclone to 7.

Notation. We are only interested in preclones that are either finitary (each sort is finite)
or free. We use two different notations for elements of such preclones. For nullary ele-
ments in a finite preclone, we use letters f, g, h. For elements of arity one or more in a
finite preclone, we use letters u, v, w. For nullary elements in the free preclone, which are
trees, we use letters s, ¢, u. For elements of arity one or more in a free preclone, which
are multicontexts, we use letters p, ¢, 7.

4.1 An analogue of idempotent for binary terms

The notion of idempotent plays a very important role in the study of finite semigroups.
An idempotent is used in algebraic versions of pumping arguments, where it serves as

14 M. Bojanczyk

a placeholder for “very long word”. We have seen this in Section 2.1 on definite word
languages.

What about trees? Is there a notion of idempotent?

One notion of idempotent is a context, which is idempotent in the semigroup of con-
texts. We tried this notion, with limited success, in Section 2.1. Despite its limitations,
this notion plays an important role in algebras for tree languages.

However, there is another, less obvious notion, which we present in this section. This
notion talks about binary terms. Here is the result that we generalize: every finite semi-
group has a subsemigroup with just one element. For semigroups, the proof is straight-
forward. We start with any element s of the semigroup, and take the idempotent power
s“ of s. By idempotency, {s“} is a subsemigroup.

The generalization for preclones is stated below. It talks about finitary preclones.
Recall that a preclone is called finitary if for every k, the sort of arity k is finite.

Theorem 4.1. Consider a finitary preclone with terms of all arities. There is a sub-
preclone where there is only one nullary, one unary, and one binary term.

The theorem does not generalize to include ternary terms. The assumption on having
terms with all arities is not as strong as it looks: a preclone has terms of all arities if and
only if it has a nullary term and some term of arity at least two. The rest of Section 4.1 is
devoted to showing the theorem. We start with a simple lemma.

Lemma 4.2. Consider a finitary preclone with terms of all arities. There is a sub-preclone
where there are terms of all arities, but only one nullary term.

Proof. Fix a term u of arity at least £ > 2 in the clone, and a nullary term h. For i € N,
consider the term u; of arity k* defined by

Uy = u, Uip1 = w(tgy ..., u;).

Let h; be the nullary term obtained from u; by substituting % in all holes. Since the clone
is finitary, there must be some 7 < j such that h; = h;. By induction on expression size,
one shows that any expression built out of u/~% and h; that evaluates to a nullary term
has value h;. Therefore, the sub-preclone generated by u/~* and h; has only one nullary
term, namely h;. O

We will use a lemma on finite semigroups, which is stated below. A proof can be
found in [4]. An alternative proof would use Green’s relations.
Lemma 4.3. Let s,t be elements of a finite semigroup S. For some s',t' € S we have
§=585=4 t=tt=1t5 fors=ss t=1tt.
Proof of Theorem 4.1. Let the finitary clone be 7. Thanks to Lemma 4.2, we may assume
that 7 has only one nullary term, call it 4. Let u be some binary term in 7. Our goal is to

find a sub-preclone U/, which has only one unary term v;, and one binary term vs. Define
two unary terms:

s=u-h t=wu-1h.

Algebra for Trees 15

Consider the semigroup S of unary terms generated by s, ¢, and apply Lemma 4.3, result-
ing in unary terms 5, . The term § will be the unique unary term v; in the sub-preclone
U that we are defining. The unique binary term v is defined as

st
|

U1 U1

Let U be the sub-preclone of 7 generated by h,v; and vo. We claim that v is the only
unary term in ¢/ and that vy is the only binary term in /. To prove the claim, we use two
sets of identities.

The first set of identities says that extending any term from U/ with vy, either at the
root or in some hole, does not affect that term:

vi-v=wv and vV =0 for any k-ary term v ini/, and ¢ € {1,...,k}.

(In vy - v, we use the operation - which substitutes v for all holes of v;. Since v; is a unary
term, this is the same as v; -1 v.) The identities hold when k£ = 0, since there is only one
nullary term. When &£ > 1, then the root and all holes of v are padded by vy, which is
idempotent, since it was obtained from Lemma 4.3.
The second set of identities says that plugging either hole in v, with the unique nullary
term h gives vy:
Ug'lh:’l)l and 'UQ'gh:’Ul

‘We only prove the first identity, the second one is shown the same way.

’Ug'lh: U1 = (% = V1 = V1.
| | |
U U t
PN PN \
s ¢ h ot ¢
o o
vy v V1 oy
|
h

The first equality is by definition of v,. The second equality is because h is the only
nullary term. The third equality is by definition of s = w -1 h. The last equality is by the
properties of v; = § from Lemma 4.3.

Using the two sets of identities, one shows that if an expression built from h, v, and
v9 evaluates to a term of arity at most two, then that term is one of h, vy, vs. O

4.2 An application to logic

In this section we present an application of Theorem 4.1 to logic.
Consider words, and first-order logic with the order relation < on word positions.

16 M. Bojariczyk

Every sentence (a formula without free variables) is logically equivalent to a sentence
that uses only three variables. This follows, for instance from Kamp’s theorem [18] on the
equivalence of first-order logic and LTL, or from the McNaughton-Papert theorem [19]
on the equivalence of first-order logic and star-free expressions. The reason is that any
LTL formula, or any star-free expression, can be translated into a sentence of first-order
logic with at most three variables.

The three variable theorem fails on trees if the signature has the descendant order, but
does not have access to sibling order. The counterexample is very simple. Consider an
alphabet with a letter a of arity 2n 4 1, and nullary letters b and c. A sentence with n
variables, which uses the descendant order and labels, cannot distinguish the two trees

ntimes , 4 1 times n+1tmes 4 times
— N ——
a(b,...,b, ¢,...,c) and a(b,...,b ;¢0).

A sentence with n 4 1 variables can distinguish the two trees. For n = 3, the example
above shows that three variables are not sufficient to capture all first-order logic.

The counterexample above no longer works if we allow sibling order. (Sibling order is
the partial order which orders siblings, and does not order node pairs that are not siblings.
Equivalently, one can use the lexicographic linear order on nodes. This is because in the
presence of the descendant order, the sibling and lexicographic orders can be defined in
terms of each other.) Actually, under the signature which has the descendant and sibling
orders, every sentence can be expressed using only three variables.

The picture becomes more interesting if we allow free variables in formulas. Of
course, if a formula has more than three free variables, then some special statement of
the three variable theorem is needed. Here is a solution, which works for words: any for-
mula with free variables z1, ..., z, is equivalent, over words, to a boolean combination
of formulas 6(x;,z;) that have two free variables and use three variables. What about
trees? The following theorem shows that the result fails.

Theorem 4.4. Consider first-order logic with the descendant and sibling orders. The
following formula with free variables x,y, z

Yu (u<zAu<y) = (u<z)

is not equivalent to any boolean combination of formulas with two free variables.

A corollary is that the formula from the theorem is not equivalent to any formula which
uses only three variables, including the bound variables. Suppose that the equivalent
formula is ¢(x,y, z). By stripping ¢ to the first quantifiers, we see that ¢ is a boolean
combination of two-variable formulas, which is impossible by Theorem 4.4.

The rest of this section is devoted to proving Theorem 4.4. The proof uses preclones
and Theorem 4.1. We first show how preclones can describe formulas with free variables.

Letz = x1,...,z, be a tuple of nodes in a tree t. The order type of T in ¢ consists
of information about how the nodes in the tuple are related with respect to the descendant
and lexicographic order. Define z(to be the root. The Z-decomposition of ¢ is a tuple
(po, p1,- - - » Pn), Where p; is the multicontext obtained from ¢ by setting the root in z; and
placing holes in all the minimal proper descendants of x; from {x1, ..., 2z, }.

Algebra for Trees 17

Lemma 4.5. Let 0 be a formula with free variables, over a ranked alphabet A. There is a
morphism o from the free preclone over A into a finitary preclone T such that the answer
of 0 for a tuple of nodes T in a tree t depends only on the order type of T and the image
under o of the X-decomposition of t.

The lemma above actually holds even if § is defined in a stronger logic, namely MSO.
Since the lemma is our only interface to the logic in the proof below, we see that a stronger
version of Theorem 4.4 holds: the formula from the theorem is not equivalent to any
boolean combination of MSO formulas with two free variables.

Proof of Theorem 4.4. Suppose that ¢)(x, y, z) is equivalent to a boolean combination
of formulas with two free variables. These formulas can be of the form 6(z, y), 6(y, z) or
O(x, z). Let I' be the set of these formulas 6. Toward a contradiction, we will construct
trees t1, t2 and tuples of nodes (1, y1, 21), (T2, Y2, 22) such that

t1 = (w1, 91, 21) and ty £ (w2, Y2, 22) 4.1)
but for every formula § € I, we have

tl): a(irlayl) — t2 ': 9($27y2)7

t1 = 0(y1, 21) = to = 0(y2, 22),

tq)zﬁ(xl,zl) < to ':9(332,,22).

For each § € T', apply Lemma 4.5, resulting in a morphism g from the free preclone
over alphabet A into a finitary preclone 7. Let 7 be the product of these preclones, and
let « be the corresponding product morphism. Apply Theorem 4.1 to the preclone 7,
obtaining a sub-preclone U{. Let s be some tree that is mapped by « to the unique nullary
term v in U, and let p be some binary multicontext that is mapped by « to the unique
binary term vs in ¢/. Consider the two trees

ti= p ty = D
/\ /\
s D D s
o~ o~
S S S S

Define x1, y1, 41 to be the roots of the three s trees in ¢, from left to right. Likewise for
T2,Y2, z2. It is not difficult to see that (4.1) holds. We now show that each binary query
6 € A gives the same answer for (x1,y;) in ¢; as it does for (za,y2) in t5. The same
argument works for the other two combinations of variables. By Lemma 4.5, it suffices
to show that the order type is the same for (27, y1) is the same as for (22, y2), which it
is, and that the images under « are the same for the (1, 31)-decomposition of ¢; and for
the (2, y2)-decomposition of ¢». But these images are necessarily the same, since they
belong to the pre-clone ¢/, which has only one term in the nullary and binary sorts.

References. Preclones where introduced in [14]. One of the themes studied in [14]
was the connection of first-order logic to the block product for preclones; we will come
back to such questions in Section 7. Theorem 4.1 was proved in [4], although not in the
formalism of preclones. Theorem 4.4 was suggested by Balder ten Cate.

18 M. Bojariczyk
S Forest Algebra

We now present the second algebraic structure designed according to the recipe from
Section 3, which is called forest algebra [10]. Forest algebra is defined for unranked
trees. In an unranked tree, the alphabet A does not give arities for the letters. A tree over
an unranked alphabet has no restriction on the number of children, apart from finiteness.

What are the objects? We work with ordered sequences of unranked trees, which we
call forests. We adapt the definition of contexts to the unranked setting in the natural
way, with the added difference that we allow several roots. More formally, a context over
an unranked alphabet A is an ordered sequence of trees over alphabet A U {O}, where
the symbol O appears in exactly one leaf. We allow the hole to appear in a root, and
also a context O that consists exclusively of the hole. (Multicontexts, which have several
holes, are not considered in forest algebra. They will appear in seminearrings, an algebra
described in Section 6). Here are some examples.

a tree atree a forest a context a context

In a forest algebra, we choose our objects to be forests and contexts. These live in two
separate sorts. These sorts are denoted H (as in horizontal), for the forest sort, and V' (as
in vertical) for the context sort.

What are the operations? We interpret each letter a of an unranked alphabet as the
following context, which is also denoted aO.

The operations below are designed so that for any alphabet, starting with contexts above,
we can build all forests and contexts.

e Two constants: an empty forest 0, and an identity context 0.

o Concatenating forests s and ¢, written s + ¢. This operation is illustrated below.

@+@@

We can also concatenate a context p and a forest ¢, the result is a context p + t;
likewise we can get ¢t + p. We cannot concatenate two contexts, since the result
would have arity two. Formally speaking, there are three concatenation operations,
of types forest-forest, context-forest and forest-context, which formally should be
denoted + 77, +v g and + . In most cases, we will skip these subscripts, which
are determined by the sorts of the arguments.

Algebra for Trees 19

e Composing two contexts p and ¢, written p - g. This operation is illustrated below.

(@) (©) @@

(@ (B (@) (B

OO0 ©O©ne
p q

We can also substitute a forest ¢ into the hole of a context p, the result is written
p - t. (Again, we have two different types of - operation, which should formally be
distinguished by subscripts -y and -y z.) As usual with multiplicative notation,
we sometimes skip the dot and write pq instead of p - q. We also assume that - has
precedence over +, so pq + s means (p-q) + sandnotp - (¢ + s).

It is not difficult to see that any forest or context over alphabet A can be constructed
using the above operations from the contexts 0, O and {aO},c 4. The construction is by
induction on the size of the forest or context, and corresponds to a bottom up-pass.

What are the axioms? So far, we know that a forest algebra is presented by giving two
sorts: forests H and contexts V, along with operations:
0eH OeV
+yg:HxH—H +gy HXV -V +yvg:VxXH-—->V
v VXXV -V v :VxH—-H
Of course, there are some axioms that need to satisfied, if we want the objects represented
by the algebra to be forests and contexts.

(1) (H,+gmu,0)is a monoid (called the horizontal monoid).
(2) (V,-vv,0) is a monoid (called the vertical monoid).
(3) The operations

+gy HXV =V +vg:VxH->V vg:VxH—-H

are, respectively, a left monoidal action of H on V, a right monoidal action of H
on V, and a left monoidal action of V on H. In other words, the following hold for
any g,h € Handv,w € V.

(h+mH 9) +avv="h+pyv (9+uv) O+pyvov=v
vty (h+g)=@W+vuh)+vug v+yg0=v
(vvvw) veh=v-vg(w-vgh) O-vah=h
(h+uvv)tvag=h+pv (v+veg)
This completes the design process. Below, when talking about the free forest alge-

bra, we will justify why the axioms above are the right ones. First though, we define
morphisms.

20 M. Bojariczyk

Free forest algebra. The notion of forest algebra morphism is inherited from universal
algebra. A forest algebra morphism between two forest algebras is a function which maps
the horizontal sort of the first algebra into the horizontal sort of the second algebra, and
which maps the vertical sort of the first algebra into the vertical sort of the second algebra.
We write a morphism « from a forest algebra (H, V') into a forest algebra (G, W) as

a: (H,V)— (G,W).

For an unranked alphabet A, we define free forest algebra over an alphabet A, which
is denoted by (H,V4). The elements of the horizontal sort H 4 are all forests over
A, and the elements of the vertical sort are all contexts over A. This is indeed a free
object in the category of forest algebras, as stated by the following result. Let (H,V)
be a forest algebra, and consider any function f : A — V. There exists a unique forest
algebra morphism « : (H4,V4) — (H, V') which extends the function f in the sense that
a(a0) = f(a) foralla € A.

Recognizing languages. A forest language L over alphabet A is said to be recognized
by a morphism « from the free forest algebra over A into a forest algebra (H,V) if
membership ¢ € L depends only on a(t). A language is recognized by a forest algebra if
it is recognized by a forest algebra morphism into that algebra. One can show finite forest
algebras recognize exactly the regular forest languages, in any one of the many equivalent
definitions of regularity for forest languages (such as hedge automata [] or MSO).

Syntactic forest algebra. Forest algebra also has a notion of syntactic object. Consider
a forest language L over an alphabet A, which is not necessarily regular. We define a
Mpyhill-Nerode equivalence relation on the free forest algebra as follows.

s~y t holds for s,t € H4 if ps €L < pt e Lforallp € Vy,
p~Lq holds for p, q € V4 if rps € L <= rqs € Lforallr € Vy,s € Hyu.

This two-sorted equivalence relation is a congruence for all operations of forest-algebra,
hence it makes sense to consider a quotient of the free forest algebra with respect to the
equivalence. This quotient is called the syntactic forest algebra of L, and it is denoted
by (Hp, V5). The morphism which maps each forest or context to its equivalence class
is called the syntactic forest algebra morphism, and is denoted by a;,. As is typical for
syntactic morphisms, any (surjective) forest algebra morphism that recognizes L can be
uniquely extended to a;,. Consequently, a language is regular if and only if its syntactic
forest algebra is finite.

A simple example: label testable languages A forest language is called label testable
if membership of a forest in the language depends only on the set of labels that appear
in the forest. In other words, this is a boolean combinations of languages of the form
“forests that contain some node with label a”.

Theorem 5.1. A forest language L is label testable if and only if its syntactic forest
algebra (Hp,, V1) satisfies the identities:

VU = 0, VW = WU forv,w e Vg,

Algebra for Trees 21

Proof. The “only if” part is straightforward, we only concentrate on the “if” part. Sup-
pose that identity in the statement of the theorem is satisfied. We will show that for every
forest ¢, its image «,(¢) under the syntactic forest algebra morphism «, depends only on
the set of labels appearing in ¢.

We start by showing that the two equations from the statement of the theorem imply
another three. The first is the idempotency of the horizontal monoid:

h+h=((h+0)(h+0)0=(h+0)0=nh.
The second is the commutativity of the horizontal monoid:
htg=(h+0)g+0)0=(g+0)(h+0)0=g+h.
Finally, we have an equation that allows us to flatten the trees:
vh =h+v0.
The proof uses, once again, commutativity of the vertical monoid:
vh=v(h+0)0=(h+0)v0=h+0.

We will show that using the identities above, every forest ¢ has the same image under
« as a forest in a normal form a;0 + - - - + a,,0, where each tree contains only one node,
labeled a;. Furthermore, the labels aq,...,a, are exactly the labels used in ¢, sorted
without repetition under some arbitrary order on the set A. Starting from the normal form
one can first use idempotency to “produce” as many copies of each label as the number
of its appearances in the tree. Then using the last equation and the commutativity one can
reconstruct the tree starting from leaves and proceeding to the root. O

If we omit the equation vv = v, we get languages that can be defined by a boolean
combination of clauses of the forms: “’label a occurs at least &£ times”, or ”the number of
occurrences of label a is £ mod n”.

5.1 A more difficult example: the logic EF

In this section we use forest algebras to give an effective characterization of a temporal
logic called EF. Even thought the proof is a bit (but not too much) involved, we present
it in full, because it illustrates how concepts familiar from semigroup theory appear in
forest algebra, in a suitably generalized form. These concepts include ideals and Green’s
relations.

The logic EF. We begin by defining the logic. Because forest algebras are better suited
to studying forests, rather than trees, we provide a slightly unusual definition of the logic
EF, which allows formulas to express properties of forests.

There are two kinds of EF formulas: tree formulas, which define tree languages, and
forest formulas, which define forest languages. The most basic formula is a, for any letter
of the alphabet, this is a tree formula that is satisfied by trees with a in the root. If ¢
is a tree formula, then EFy is a forest formula, which defines the set of forests ¢ where
some subtree satisfies ¢. (If ¢4, . .., t,, are trees, then a subtree of the forestt; + --- + ¢,

22 M. Bojanczyk

is a subtree of any of the trees ¢1,...,%,, possibly one of these trees.) If ¢ is a forest
formula, then [¢] is a tree formula that is satisfied by trees of the form at, where ¢ is a
forest satisfying ¢, and a is any label. Finally, both tree and forest formulas allow boolean
operations V, A and —.

As far as properties of trees are concerned, our definition of EF is equivalent to the
standard definition — just use [EF] instead of EF .

Theorem 5.2. A forest language is definable by a forest formula of EF if and only if its
syntactic forest algebra satisfies the following identities, called the EF identities:

g+h=h+g (5.1)
vh =h+vh. (5.2)

This theorem is stated for the nonstandard forest variant of EF. However, it can be
used to characterize the tree variant. One can show that a tree language L can be defined
by a tree formula of EF if and only if for every label a, the forest language {t : at € L}
can be defined by a forest formulas of EF.

We begin the proof with the “only if”” implication in the theorem. Fix a forest formula
o of EF. For a forest ¢, consider the set of tree subformulas of ¢ that are true in some
subtree of . We say that two forests are (-equivalent if these sets coincide for them.
Observe that if forests s, ¢ are p-equivalent, then so are ps, pt for any context p. Consider
the syntactic forest algebra morphism of the forest language defined by (. By definition
of the syntactic morphism, it follows that p-equivalent forests have the same image under
thee syntactic forest algebra morphism. It is also easy to see that s + ¢ is @-equivalent
to t + s for any forests s,t. Likewise, pt is -equivalent to ¢ + pt. It follows that the
EF identities must be satisfied by the syntactic forest algebra of a forest language defined
by ¢.

The rest of Section 5.1 is devoted to the more interesting “if”” implication in Theo-
rem 5.2. Consider a forest algebra morphism « from a free forest algebra (H 4, V4) into
a finite forest algebra (H, V') that satisfies the two EF identities. We will show that any
forest language recognized by o can be defined by a forest formula of EF. This gives the
“if” implication in the case when « is the syntactic forest algebra morphism.

The proof is by induction on the size of H. The induction base, when H has one
element, is immediate. A forest algebra with one element in H can only recognize two
forest languages: all forests, or no forests. Both are definable by forest formulas of EF.

The key to the proof is a relation on H, which we call reachability. We say that h € H
is reachable from g € H if there is some v € V such that A = vg. Another definition is
that h is reachable from ¢ if V'h C Vg. That is why we write h < g when h is reachable
from g. This relation is similar in spirit to Green’s relations. (Note that both H and V" are
monoids, so they have their own Green'’s relations in the classical sense.)

Lemma 5.3. [f the EF identities are satisfied, then reachability is a partial order.

Proof. The reachability relation is transitive and reflexive in any forest algebra. To prove
that it is antisymmetric, we use the EF identities. Suppose that g, h € H are reachable

Algebra for Trees 23

from each other, i.e. ¢ = vh and h = wg for some v, w € V. Then they must be equal:

h=woh & vh+woh=vh+h ' h+oh & oh =

The reachability order has smallest and greatest elements, which we describe below.
Every forest is reachable from the empty forest O, which is the greatest element. The
smallest element, call it h_ , is obtained by concatenating all the elements of H into a
single forest h; + - - - 4 h,,. This element is reachable from all elements of H, by

hL:(h1+"'+hi—1+D+hi+1+”'+h")hi'

For h € H, we define H;, C H to be the set of elements from which £ is not reachable.
This set is an ideal of forest algebra in the sense that the following inclusions hold.

Hh +H C Hh H+ Hh C Hh VHh c Hh

Consider the equivalence ~y, which identifies all elements of H}, into one equivalence
class, and leaves all other elements distinct. We can extend this equivalence to V' by
keeping all elements of V distinct. Because Hj, is an ideal, the resulting two-sorted
equivalence is a congruence for all operations of forest algebra. Therefore, it makes sense
to consider the quotient forest algebra morphism «, from (H, V') into the quotient forest
algebra (H,V') /., .

Our strategy for the rest of the proof is as follows. For every element h € H, we will
prove that the inverse image a~!(h) can be defined by a forest formula of EF, call it ¢,.
Consequently, every language recognized by « is definable by a forest formula of EF, as
finite disjunction of formulas ¢,.

In our analysis, we pay special attention to subminimal elements. An element h € H
is called subminimal if there is exactly one element g < h, the smallest element /| .

Consider an element . that is neither subminimal nor the smallest element. Recall the
congruence ~, and the resulting forest algebra morphism «,. By definition of oy, for
any forest ¢ with h reachable from «(t), the images of ¢ under oy, and « are the same.
It follows that a~1(h) is recognized by the morphism ay,. Since Hj, contains at least
two elements (a subminimal element and the smallest element) then ~;, is a nontrivial
congruence. Consequently, a~!(h) can be defined by a forest formula of EF, using the
induction assumption.

Consider an element A that is subminimal. Then H;, contains the smallest element h |
and all the subminimal elements different than i. (Here we use the assumption that < is
a partial order.) Therefore, if there are at least two subminimal elements, then a1 (h) is
definable by a forest formula of EF, call it ¢y, for any element i # h . It remains to give
a formula for % . This formula says that & correponds to all other forests: =\/, 4h, Ph-

We are left with the case where there is exactly one subminimal element, call it h,.
By the reasoning above we have formulas for all elements except the smallest & and the
unique subminimal .. It is therefore enough to give a formula that distinguishes between
the two. We do this below.

We begin by defining some tree formulas. Consider an element h that is neither h

24 M. Bojanczyk

nor h,. Below we define a tree formula vy, of EF that describes trees mapped by « to h.

Y = \/ a [‘Pg]'

a€A,g=h
a(a)g=h

Thus far, for each element A other than h and h, we have a forest formula ¢; and a
tree formula ;. We would like similar formulas for h,. However, we will have to deal
with a certain loss of precision: instead of saying that a tree (or forest) is mapped to h,,
we will say that it is mapped to either h, or h . This is accomplished by the formulas

o= N en ad = A

h#h ks h#h | k.,

We now conclude the proof, by giving a forest formula of EF that describes a1 (h,).
When is a forest ¢ mapped by « to i ? One possibility is that ¢ has a subtree mapped
to h, . If that subtree is taken minimal, then it is of the form as, with a(s) # h, and
a(a)a(s) = h. Another possibility is that ¢ has no subtrees with mapped to hg, in which
case t is a concatenation of trees t = t1 + - - - + t,, with

a(tr), ..., otn) € H —{hr}, alt)+- - +alta) =hy.

By expressing the above analysis in a formula, we see that any forest mapped by v to h |
satisfies the following formula.

\V anlen v \/ EFn, A--- ANEFy,, .
a€A,h#h | hi,...;hn€H—{h }
a(a)h=h | hi+-+hn=h

We also prove the converse implication: any forest that satisfies the above formula is
mapped by awto h .

Suppose that a forest satisfies the first disjunct, for some a and h with a(a)h = h .
This means that the forest has a subtree as, where s satisfies ¢p. If h is not h,, then we
know that s is mapped to h by «, and therefore as is mapped to h by a.. Any forest that
has a subtree mapped to h; must necessarily be mapped to & itself, by definition of the
reachability order.

Suppose that a forest ¢ satisfies the second disjunct, for some choice of hq, ..., h,.
Letty,...,t, be the subtrees of ¢ that satisfy the formulas %y, , ..., %, . One possibility
is that some h; is h., and the tree ¢; is mapped to h; (recall the loss of precision in the
formula vy,). In this case we are done since also ¢ is mapped to h . Otherwise, every
tree ¢; is mapped to h,;. Consider now any of the trees ¢;. Since it is a subtree of ¢, there is
a context p; with ¢ = p;t;. Therefore, we have

a(t) = alpits) = alts) + a(pits) = b + alt).

By applying the above to all the trees ¢;, we get
at)=h1+-+hy,+alt)=h, +at)=h,.
References Forest algebra was introduced in [10]. The characterization of EF also

comes from [10], although it is based on a characterization for ranked trees from [9].
Forest algebra was used to obtain algebraic characterizations of several tree logics: a vari-

Algebra for Trees 25

ant of EF with past modalities [3]; boolean combinations of purely existential first-order
formulas [7]; languages that correspond to level As of the quantifier alternation hierarchy
[6]. A variant of forest algebra for infinite trees was proposed in [5].

6 Seminearring

In this section we present the third and final algebraic structure that is designed using the
recipe in Section 3. The algebraic structure is called a seminearring; it is like a semiring,
but with some missing axioms.

What are the objects? We want to represent all multicontexts, which are unranked
forests with any number of holes. More formally, a multicontext over an unranked alpha-
bet A is an ordered sequence of unranked trees over alphabet A U {0}, where the symbol
O appears only in leaves. We allow the hole to appear in a root, and also multicontexts
that consist exclusively of holes. Here are some examples.

.

a forest, which is a a context, which is a a multicontext of arity 3
multicontext of arity 0 multicontext of arity 1

In a seminearring, we choose our objects to be all multicontexts. A seminearring has only
one sort; all multicontexts live in the same sort.

What are the operations? We have to design the operations so that for any alphabet A,
starting with contexts aJ, we can build all other multicontexts.

e Two constants: a multicontext 0 with no holes and no nodes; and a multicontext O
with a single hole.

e Concatenating two multicontexts p and g. The result, denoted p + ¢ has an arity
which is sum of arities of p and ¢. This operation is illustrated below.

@*@@

e Composing two multicontexts p and q. The result, denoted p - q or pq, is obtained
from p by substituting each hole by q. The arity of pq is the product of arities of p
and q.

26 M. Bojariczyk

@® ©@[p)
@ @ © @0 H@®0©
l@ @nnm @@
OO0 ©nnm
p q p-q

Any multicontext p over alphabet A can be constructed using concatenation and compo-
sition from the multicontexts 0, O and {aO},c 4. The construction is by induction on the
size of p, and corresponds to a bottom up-pass. This completes the second state of the
design process.

What are the axioms? Consider two expressions that use the operations above, e.g.
(a+(b+c)-d and ((a-d)+(b-d)) + (c-d).

These expressions should be equal, since they describe the same multicontext, namely

241

(As usual, we treat each letter a as describing the multicontext a0d.) We need to design
the axioms so that they imply equality of the two expressions given above, and other
equalities like it. We use the following axioms, which can be stated as identities.

(1) Concatenation + is associative, with neutral element 0.
(2) Composition - is associative, with neutral element 0. 3
(3) For any p,q,r € N we have left-distributivity: (p+¢) -r=p-r+q-r.
(4) In the composition monoid, 0 annihilates to the left: 0 - p = 0.
The axioms above complete the design process. The algebraic object described above
is called a seminearring. It is like a semiring, but some axioms are missing. In Section 6.2,
we will say what properties of trees can be described by those seminearrings which are
semirings.
We will write U, V, W for seminearrings, and u, v, w for their elements.

Free seminearring. If A is an alphabet, we write V4 for the seminearring whose do-
main consists of all multicontexts over alphabet A. This seminearring is free in the
following sense. Let A be an alphabet and V be a seminearring. Any function from
{aO : a € A} to the domain of V extends uniquely to a morphism « : V4 — V.

Recognizing languages. We say that a forest language L is recognized by a semin-
earring morphism « : V4 — V if for every forest ¢, treated as a nullary multicontext,
membership ¢ € L depends only on the image «(t).

3For consistency with the other algebras in this chapter, we use O instead of the more common 1.

Algebra for Trees 27

Syntactic seminearring. A syntactic seminearring can be defined, like for forest alge-
bra, using a Myhill-Nerode equivalence relation on the free seminearring as follows.

P~ q holds for p,q € V4 if ripro0 € L <= riqro0 € Lforall ri,ry € Vy.

Since elements of V4 are multicontexts, and elements of the form 750 are all forests, the
condition for p ~, ¢ can be restated as

rpt € L < rqt for every forest ¢ and multicontext 7.

This is a congruence for all operations of seminearring, and hence it makes sense to define
the syntactic seminearring and the syntactic seminearring morphism using the quotient
under this relation.

6.1 From a seminearring to a forest algebra and back again

Suppose that (H, V') is a forest algebra. There is a natural way to construct a seminearring
out of this forest algebra. Consider the least family V of functions v : H — H which:

o Contains the constant function g — h forevery h € H.

e Contains the function h — vh for everyv € V.

e Is closed under concatenation: if v, w belong V), then so does h — vh + wh.

e Is closed under composition: if v, w belong V, then so does h — w(vh).
When equipped with the seminearring operations in the natural way, this set forms a
seminearring, which we call the seminearring induced by the forest algebra (H, V).

Lemma 6.1. The syntactic seminearring of a forest language is isomorphic to the semin-
earring induced by its syntactic forest algebra.

From the above lemma it follows that two languages have the same syntactic forest
algebra, then they have the same syntactic seminearring. In general, the converse fails.
For the forest sort, there is no problem: use elements of the form v0. However, there
is a problem for the context sort, since there is no way of telling which elements of a
seminearring correspond to multicontexts of arity 1. This is illustrated in the following
example.

Example 6.1. We present two languages, which have the same syntactic seminearring,
but different syntactic forest algebras.
e The alphabet is {a, b}. The language is “there is an a”. The syntactic seminearring
has three elements 0, O, co. The syntactic morphism is described below.
0 is the image of multicontexts of arity O without an a;
O is the image of multicontexts of arity at least 1 without an a;
oo is the image of multicontexts with an a.
The operations in the seminearring are defined by the axioms and by

0+ Vv=v+00=00-V=0:00=00.

The syntactic forest algebra of this language has two elements in the context sort,
these elements correspond to O and co. There is no element corresponding to 0,
since every context must have a hole.

28 M. Bojariczyk

e The alphabet is {a, b, c}. The language is “some node has label a, but no ancestor
with label b”. The syntactic seminearring is isomorphic to the one above, only the

syntactic morphism is different, as described below.
0 is the image of multicontexts that have no a without b ancestors, and where

every hole (if it exists) has a b ancestor.
O is the image of multicontexts that have no a without b ancestors, but where
some hole has no b ancestors.

oo is the image of multicontexts that have an a without b ancestors.
The syntactic forest algebra of this language has three elements in the context sort,

these elements correspond to 0, O and co.

Note that the first language in the example can be defined in the logic EF. The second
example cannot be defined in EF, since violates identity (5.2), e.g. the forests ba and
ba + a have different images under the syntactic forest algebra morphism. This shows
that there is no way of telling if a forest language can be defined in EF just by looking at
its syntactic seminearring.

This is a general theme in the algebraic theory of tree languages. When we use an
algebra that represents a richer set of objects, we lose information in the syntactic object.
The classic example is that when we look at the syntactic monoid instead of the syntactic
semigroup, we do not know if the identity element in the syntactic monoid represents
some nonempty words in addition to the empty word. Of course a solution is to recover the
lost information by taking into account the syntactic morphism. This solution is illustrated
by the following theorem, which characterizes EF in terms of the syntactic seminearring
morphism.

Theorem 6.2. A forest language can be defined by a forest formula of EF if and only if
its syntactic seminearring morphism o, : V4 — Vy, satisfies the identity

v+w=w+v (6.1)

Sfor any elements v, w € V4 and the identity
v=ov+4+0 (6.2)
for any element v € V 4 that is the image under «f, of a multicontext of arity at least one.

One way to prove the theorem above is to use Theorem 5.2. One shows that the con-
ditions (6.1) and (6.2) on the syntactic seminearring morphism above are equivalent to the
conditions (5.1) and (5.2) on the syntactic forest algebra. Next, one applies Theorem 5.2.

Is there another way? What if one tries to prove Theorem 6.2 directly, using seminear-
rings? If, like in the forest algebra version, one tries to take the quotient under an ideal,
the exposition becomes cumbersome, since one must take care to distinguish elements
that are images of multicontexts of arity at least one.

The problems indicated above suggest the following heuristic: when studying a class
of languages, use the algebraic structure which has the richest possible set of objects, and
still allows to describe the class without referring to the syntactic morphism.

Example 6.2. Consider first-order logic with descendant and sibling orders. This exam-
ple shows that seminearrings might not be the right formalism, since just by looking at
the syntactic seminearring one cannot tell if a language can be defined in the logic.

Algebra for Trees 29

e The alphabet is A = {a}. The language, call it L, contains trees where each leaf is
at even depth; and each node has either zero or two children. As we have shown in
the introduction, this language can be defined in first-order logic.

e The alphabet is B = {a, b}. The language, call it K, contains trees where each leaf
is at even depth; each node with label a has zero or two children; each node with
label b has zero or one child. This language cannot be defined in first-order logic,
since it requires distinguishing between b™ and b"*! for arbitrarily large n.

We claim the two languages have the same syntactic seminearring. Consider the two
seminearring morphisms

a:Vas— Vg B:Ve — Va

which preserve multicontexts over alphabet {a}, and such that §(b0) = a0 + aO. One
can show that

L=aYK) K=p%L).

Consequently, L is recognized by the syntactic seminearring of K, and K is recognized
by the syntactic seminearring of L. It follows that these seminearrings are isomorphic.
On the other hand, one can show that the syntactic forest algebra of a language uniquely
determines if the language can be defined in first-order logic (although we still do not
know an algorithm which does this).

6.2 Which languages are recognized by semirings?

The axioms of a seminearring look very similar to those of a semiring, but some semiring
axioms are missing. First, a semiring requires addition to be commutative.

w+v=0v+w. (6.3)

This is the least important difference, since in many examples addition will actually be
commutative. The second difference with semirings is that we do not require + to dis-
tribute over - to the right, i.e. we do not require

u-(vtw)=u-v+u-w. (6.4)

As we will see below, adding the above axiom corresponds to restricting all regular tree
languages to a natural subclass, called the path testable languages. Often, one requires a
semiring to satisfy also the following axiom:

v-0=0. (6.5)

Unlike right distributivity (6.4), adding the above axiom does not seem to make any sense
for multicontext algebra. We use the term semiring for a seminearring that satisfies the
axioms (6.3) and (6.4). We do not require 0 to annihilate on the right in composition,
i.e. we do not require (6.5).

Which forest languages are recognized by semirings? It turns out that these are lan-
guages which are determined by the set words labeling paths in a forest. These are de-
scribed in more detail below.

30 M. Bojariczyk

Path testable languages. Let x be a node in a forest over an alphabet A. The path
leading to z is the set of ancestors of x, including x. The labeling of a path is defined to
be the word in A* obtained by reading the labels of the nodes in the path, beginning in
the unique root in the path, and ending in z. For any word language L. C A*, we define
a forest language EL as follows. A forest belongs to EL if the labelings of some path
(possibly a path that does not end in a leaf) belongs to L. A path testable language is
a boolean combination of languages of the form EL (there can be different languages L
involved in the boolean combination).

Theorem 6.3. A regular forest language is path testable if and only if its syntactic sem-
inearring is a semiring where addition (i.e. concatenation) is idempotent.

Proof. The only if implication is straightforward, because the syntactic seminearring of a
path testable language satisfies the two identities. Note that when w = 0, right distribu-
tivity says

u-(v+0)=u-v+u-0.

which explains why the paths in path testable languages need not end in a leaf. For
instance, the language “some leaf has label a” is not path testable.

Consider now the converse implication. We will prove that if V is a semiring with
idempotent addition, then any forest language recognized by a seminearring morphism
a : V4 — Vis path testable. Consider a forest s. For a path 7 in s, we write treeg () for
the tree which consists exclusively of the nodes from s that appear in 7 (all nodes in this
tree, except the last one, have one child).

The key observation is that any forest is equivalent to the concatenation of its paths:

a(s) = Z a(trees(m)). (6.6)

mapathins

Note that the Y symbol can be used without indicating an order on paths, since con-
catenation is commutative. The statement above is proved by induction on the size of s,
using right distributivity. For any v € V, let L,, be the set of forests s where some path 7
satisfies a(trees(m)) = v. This language is clearly path testable. Consequently, for any
W C V, the language Ly, defined as

N Lw = UL
weW wgW
is also path testable; this is the set of forests where paths are mapped exactly to the
elements of W. By (6.6) and idempotency of addition, a forest s is mapped by « to an
element w € V if and only if there is some set W C V such that s € Ly and > W = w.
Therefore, the forests that are mapped by o to w form a path testable language, as a finite
union of path testable languages Ly . Likewise for the language L itself. O

References. To the author’s best knowledge, this chapter is the first time that seminear-
rings are explicitly used to recognize forest languages. The results on path testable lan-
guages in Section 6.2 are adapted from the forest algebra characterization of path testable
languages in [10].

Algebra for Trees 31

7 Nesting algebras

In this section we define an operation on algebras that simulates nesting of formulas. This
type of operation can be defined for all the algebraic structures described in this chapter.
We show it for seminearrings.

Wreath product of seminearrings. Consider two seminearrings ¢/,). We distinguish
the operations of these seminearrings by subscripts, e.g. +;, is the concatenation in / and
0y is the additive neutral element in V. Below we define a new seminearring I/ o), which
is called the wreath product. In the definition, we use the set Vo = {v -y 0y : v € V},
whose elements we denote by letters f, g, h. The carrier of the wreath product consists of
pairs (7, v), where the first coordinate is a function 7 : Vy — U and the second coordinate
is an element v € V. The carrier can be viewed as a cartesian product of V) copies of I/
and a single copy of V. The cartesian product interpretation explains the constants 0, O
and concatenation operation in the wreath product, which are defined coordinate-wise.
The composition operation is not defined coordinate-wise, it is defined by

(ry,u) - (oy,0) = (f—=1(0y f)-o(f),u-yv) forr,0: Vo — U and u,v € V.
Lemma 7.1. The wreath product of two seminearrings is also a seminearring.

Proof. The additive structure is a monoid, as a cartesian product of monoids. It is not
difficult to see that O is an identity for composition, and that 0 from the additive monoid
is a left zero for composition. For associativity of the composition operation, one notices
that wreath product of seminearrings is a special case of wreath product of transformation
semigroups, and the latter preserves associativity. It remains to show left distributivity:

?
(71, 01) + (72, 02))(7,0) = (11, 01) - (7,0)) + (72, 02) - (T, 0)) (7.1)
Let us inspect the first coordinate of the left side of the equation:

f=ovf)ut(f) where ¢ is the function f — 71 (f) +u 72(f)

Therefore, the above becomes

f — (- f)+tumn-vf)ut(f)

By right distributivity of ¢/, the above is the same as

f = (v) ut(f)) +u (2(v-y f)ut(f))).

which is the first coordinate of the right side of (7.1). The second coordinates agree by
assumption on V. O

Nesting forest languages. To explain the connection between wreath product and nest-
ing of logical formulas, we provide a general notion of temporal logic, where the operators
are given by regular forest languages.

Fix an alphabet A, and let Ly, ..., Ly be forest languages that partition all forests
over A. We can treat this partition as an alphabet B, with one letter per block L; of the
partition. The partition and alphabet are used to define a relabeling, which maps a forest

32 M. Bojariczyk

t over alphabet A to a forest t[Lq,..., L] over alphabet A x B. The set of nodes in
t[L1,..., L] is the same as in ¢, except that each node x gets a label (a, L;), where the
first coordinate a is the old label of z in ¢, while the second coordinate L; is the unique
language L; that contains the subforest of x in ¢. If L is a forest language over alphabet
A x B, we define L{L, ..., Ly} to be the set of all forests ¢ over alphabet A for which
t[L1,..., L] € L.

The operation of language composition is similar to formula composition. The defi-
nition below uses this intuition, in order to define a “temporal logic” based on operators
given as forest languages. First however, we comment on a technical detail concerning al-
phabets. In the discussion below, a forest language is given by two pieces of information:
the forests it contains, and the input alphabet. For instance, we distinguish between the set
L, of all forests over alphabet {a}, and the set Lo of all forests over the alphabet {a, b}
where b does not appear. The idea is that sometimes it is relevant to consider a language
class .Z that contains L, but does not contain Lo (although such classes will not appear
in this particular paper). This distinction will be captured by our notion of language class:
a language class is actually a mapping .#’, which associates to each finite alphabet a class
of languages over this alphabet.

Let .Z be a class of forest languages, which will be called the language base. The
temporal logic with language base £ is defined to be the smallest class TL[.Z] of for-
est languages that contains %, is closed under boolean operations and under language
composition, i.e.

Ly,...,Ly,LeTLLY] = L[Ly,...,Ly] € TLLZ).

Below we give examples of how the above definition can be used to describe some

common temporal logics. The proofs in the examples are straightforward inductions.

e Consider the class Zf of languages “forests over alphabet A that contain some a”,
for every alphabet A and letter a € A. Then TL[-Z&¢] is exactly the class of forest
languages that can be defined by a forest formula of EF, as defined in Section 5.1.

e Consider the class Zpr of path testable languages, as defined in Section 6.2. Then
TL[Zpr] is exactly the class of forest languages that can be defined by a formula
of the temporal logic PDL.

e Consider the subclass .Z;, 1y, of path testable languages, where the word languages
EL in the definition of path testable languages are restricted LTL definable word
languages. Then TL[.Z. 7] is exactly the class of forest languages that can be
defined by a formula of the temporal logic CTL*.

Wreath product and nesting temporal formulas. We can now state the connection
between wreath product of seminearrings and nesting of languages.

Theorem 7.2. Let % be a class of seminearrings, and £ the forest languages recognized
by seminearrings in % . Then TL[L] is exactly the class of languages recognized by
iterated wreath products of % , i.e. by seminearrings in {Uyo---oldy, : Uy, ..., U, € U }.

Corollary 7.3. A forest language is definable in PDL if and only if it is recognized by an
iterated wreath product of additively idempotent semirings. Likewise for CTL*, with the
additional requirement that the semirings are multiplicatively aperiodic.

Algebra for Trees 33

The good thing about Corollary 7.3 is that it connects three concepts from different
areas: temporal logic, wreath products, and semirings. The bad thing is that it does not
really give any insight into the structure of the synfactic seminearrings of languages from
PDL and CTL*. All we know is that these syntactic seminearrings are quotients of iterated
wreath products; but the whole structure of wreath product gets lost in a quotient.

References. In this section, we talked about wreath products of seminearrings. Similar
operations have been studied for all the other algebraic structures. For A-algebras, one
can consider cascade product, as studied in [12, 2]. For preclones, the more powerful
block product was studied in [14], one can also use cascade/wreath product [12]. For
forest algebras, the natural product seems to be wreath product, as studied in [8]. In all
cases, there is a strong connection with nesting of temporal formulas (an exception is the
block product, which is better suited to simulating quantifiers in first-order logic).

The definition of language nesting is based on notions introduced by Esik in [11], and
identical to the definition in [8].

References

[1] M. Benedikt and L. Segoufin. Regular tree languages definable in FO. In STACS, pages
327-339, 2005.

[2] M. Bojariczyk. Decidable Properties of Tree Languages. PhD thesis, Warsaw University,
2004.

[3] M. Bojanczyk. Two-way unary temporal logic over trees. In LICS, pages 121-130, 2007.

[4] M. Bojanczyk and T. Colcombet. Tree-walking automata cannot be determinized. Theor.
Comput. Sci., 350(2-3):164-173, 2006.

[5S] M. Bojanczyk and T. Idziaszek. Algebra for infinite forests with an application to the temporal
logic EF. In CONCUR, pages 131-145, 2009.

[6] M. Bojanczyk and L. Segoufin. Tree languages defined in first-order logic with one quantifier
alternation. In ICALP (2), pages 233-245, 2008.

[7]1 M. Bojanczyk, L. Segoufin, and H. Straubing. Piecewise testable tree languages. In LICS,
pages 442-451, 2008.

[8] M. Bojanczyk, H. Straubing, and I. Walukiewicz. Wreath products of forest algebras, with
applications to tree logics. In LICS, pages 255-263, 2009.

[9] M. Bojanczyk and I. Walukiewicz. Characterizing EF and EX tree logics. Theor. Comput.
Sci., 358(2-3):255-272, 2006.

[10] M. Bojanczyk and I. Walukiewicz. Forest algebras. In Automata and Logic: History and
Perspectives, pages 107-132. Amsterdam University Press, 2007.

[11] Z. Esik. Characterizing CTL-like logics on finite trees. Theor. Comput. Sci., 356(1-2):136—
152, 2006.

[12] Z.Esik and S. Ivan. Products of tree automata with an application to temporal logic. Fundam.
Inform., 82(1-2):61-78, 2008.

34

(13]

(14]

(15]
(16]
(17]

(18]

(19]

(20]
(21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

M. Bojanczyk

7. Esik and S. Ivan. Some varieties of finite tree automata related to restricted temporal logics.
Fundam. Inform., 82(1-2):79-103, 2008.

7. Esik and P. Weil. Algebraic recognizability of regular tree languages. Theor. Comput. Sci.,
340(1):291-321, 2005.

U. Heuter. Definite tree languages. Bulletin of the EATCS, 35:137-142, 1988.
U. Heuter. Zur Klassifizierung regulaerer Baumsprachen. PhD thesis, RWTH Aachen, 1989.

U. Heuter. First-order properties of trees, star-free expressions, and aperiodicity. I7TA, 25:125—
146, 1991.

J. A. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Univ. of California,
Los Angeles, 1968.

R. McNaughton and S. A. Papert. Counter-Free Automata (M.I.T. research monograph no.
65). The MIT Press, 1971.

J.-E. Pin and H. Straubing. Some results on C-varieties. ITA, 39(1):239-262, 2005.
T. Place. Characterization of logics over ranked tree languages. In CSL, pages 401-415, 2008.

T. Place and L. Segoufin. A decidable characterization of locally testable tree languages. In
ICALP (2), pages 285-296, 2009.

A. Potthoff. Logische Klassifizierung reguldrer Baumsprachen. PhD thesis, Institut fiir Infor-
matik und Praktische Mathematik, Universitit Kiel, 1994. Bericht Nr.9410.

A. Potthoff. Modulo-counting quantifiers over finite trees. Theor. Comput. Sci., 126(1):97—
112, 1994.

A. Potthoff and W. Thomas. Regular tree languages without unary symbols are star-free. In
FCT, pages 396-405, 1993.

M. Steinby. A theory of tree language varieties. In Tree Automata and Languages, pages
57-82.1992.

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a
decision problem of second-order logic. Mathematical Systems Theory, 2(1):57-81, 1968.

W. Thomas. Logical aspects in the study of tree languages. In CAAP, pages 31-50, 1984.

T. Wilke. An algebraic characterization of frontier testable tree languages. Theor. Comput.
Sci., 154(1):85-106, 1996.

