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1
Determinisation of w-automata

In this chapter, we discuss automata for w-words, i.e. infinite words of the form

a1a2a3 · · ·

We write Sw for the set of w words over alphabet S. The topic of this chapter is
McNaughton’s Theorem, which shows that automata over w-words can be
determinised. A more in depth account of automata (and logic) for w words
can be found in [56].

1.1 Automata models for w-words

A nondeterministic Büchi automaton is a type of automaton for w-words. Its
syntax is typically defined to be the same as that of a nondeterministic finite
automaton: a set of states, an input alphabet, initial and accepting subsets of
states, and a set of transitions. For our presentation it is more convenient to use
accepting transitions, i.e. the accepting set is a set of transitions, not a set of
states. An infinite word is accepted by the automaton if there exists a run which
begins in one of the initial states, and visits some accepting transition infinitely
often.

Example 1. Consider the set of words over alphabet {a, b} where the letter a
appears finitely often. This language is recognised by a nondeterministic Büchi
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automaton like this (we adopt the convention that accepting transitions are red
edges):

a,b b

b

⇤
This chapter is about determinising Büchi automata. One simple idea would be
to use the standard powerset construction, and accept an input word if
infinitely often one sees a subset (i.e. a state of the powerset automaton) which
contains at least one accepting transition. This idea does not work, as witnessed
by the following picture describing a run of the automaton from Example 1:

a,b
b

b

an accepting transition is seen infinitely often

the
automaton the runs of the automaton over (bba)

b b a b b a b b a b b a

...

ω

In fact, Büchi automata cannot be determinised using any construction.

Fact 1.1. Nondeterministic Büchi automata recognise strictly more languages than
deterministic Büchi automata.

Proof. Take the automaton from Example 1. Suppose that there is a
deterministic Büchi automaton that is equivalent, i.e. recognises the same
language. Let us view the set of all possible inputs as an infinite tree, where the
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vertices are prefixes {a, b}⇤. Since the automaton is deterministic, to each edge
of this tree one can uniquely assign a transition of the automaton. Every vertex
v 2 {a, b}⇤ of this tree has an accepting transition in its subtree, because the
word vbw should have an accepting run. Therefore, we can find an infinite path
in this tree which has a infinitely often and uses accepting transitions infinitely
often. ⌅

The above fact shows that if we want to determinse automata for w-words, we
need something more powerful than the Büchi condition. One solution is called
the Muller condition, and is described below. Later we will see another
(equivalent) solution, which is called the parity condition.

Muller automata. The syntax of a Muller automaton is the same as for a
Büchi automaton, except that the accepting set is different. Suppose that D is
the set of transitions. Instead of being a set F ✓ D of transitions, the accepting
set in a Muller automaton is a family F ✓ P(D) of sets of transitions. A run is
defined to be accepting if the set of transitions visited infinitely often belongs to
the family F.

Example 2. Consider this automaton

a b

b
a

Suppose that we set F to be all subsets which contain only transitions that enter
the blue state, as in the following picture.
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a a

a a{ }, ,
a set of transitions
is visualised as the 

part of the automaton
that only uses transitions

from that set

it is impossible to see
this particular set

of transitions (and no
others) infinitely often

In this case, the automaton will accept words which contain infinitely many a’s
and finitely many b’s. If we set F to be all subsets which contain at least one
transition that enters the blue state, then the automaton will accept words
which contain infinitely many a’s. ⇤
Deterministic Muller automata are clearly closed under complement – it
suffices to replace the accepting family by P(D)� F. This lecture is devoted to
proving the following determinisation result.

Theorem 1.2 (McNaughton’s Theorem). For every nondeterministic Büchi
automaton there exists an equivalent (accepting the same w-words) deterministic
Muller automaton.

The converse of the theorem, namely that deterministic Muller (even
nondeterministic) automata can be transformed into equivalent
nondeterministic Büchi automata is more straightforward, see Exercise 7. It
follows from the above discussion that

• nondeterministic Büchi automata

• nondeterministic Muller automata

• deterministic Muller automata

have the same expressive power, but deterministic Büchi automata are weaker.
Theorem 1.2 was first proved by McNaughton in [37]. The proof here is similar
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to one by Muller and Schupp [40]. An alternative proof method is the Safra
Construction, see e.g. [56].
The proof strategy is as follows. We first define a family of languages, called
universal Büchi languages, and show that the McNaughton’s theorem boils
down to recognising these languages with deterministic Muller automata. Then
we do that.

The universal Büchi language. For n 2 N, define a width n dag to be a
directed acyclic graph where the nodes are pairs {1, . . . , n}⇥ {1, 2, . . .} and
every edge is of the form

(q, i)! (p, i + 1) for some p, q 2 {1, . . . , n} and i 2 {1, 2, . . .}.

Furthermore, every edge is either red or black, with red meaning “accepting”.
We assume that there are no multiple edges (i.e. there is at most one edge
connecting a given source and target). Here is a picture of a width 3 dag:

......

In the pictures, we adopt the convention that the i-th column stands for the set
of vertices {1, . . . , n}⇥ {i}. The top left corner of the picture, namely the vertex
(1, 1) is called the initial vertex.
The essence of McNaughton’s theorem is showing that for every n, there is a
deterministic Muller automaton which inputs a width n dag and says if it
contains a path that begins in the initial vertex and visits infinitely many red
(accepting) edges. In order to write such an automaton, we need to encode as a
width n dag as an w-word over some finite alphabet. This is done using an
alphabet, which we denote by [n], where the letters look like this:
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Formally speaking, [n] is the set of functions

{1, . . . , n}⇥ {1, . . . , n}! {no edge, non-accepting edge, accepting edge}.

Define the universal n state Büchi language to be the set of words w 2 [n]w which,
when treated as a width n dag, contain a path that starts in the initial vertex
and visits accepting edges infinitely often. The key to McNaughton’s theorem is
the following proposition.

Proposition 1.3. For every n 2 N there is a deterministic Muller automaton
recognising the universal n state Büchi language.

Before proving the proposition, let us show how it implies McNaughton’s
theorem. To make this and other proofs more transparent, it will be convenient
to use transducers. Define a sequential transducer to be a deterministic finite
automaton, without accepting states, where each transition is additionally
labelled by a word over some output alphabet. In this section, we only care
about the special case when the output words have exactly one letter; this is
sometimes called a letter-to-letter transducer. The name ”transducer” refers to
an automaton which outputs more than just yes/no; later in this book we will
see other (and more powerful) types of transducers, with names like rational
transducer or regular transducer. If the input alphabet is S and the output
alphabet is G, then a sequential transducer defines a function

f : Sw ! Gw.

Example 3. Here is a picture of a sequential transducer which inputs a word
over {a, b} and replaces letters on even-numbered positions by a.
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a/a
b/b

a/a
b/a

a transition a/b means that
letter a is input, and letter b is output

⇤

Lemma 1.4. Languages recognised by deterministic Muller automata are closed under
inverse images of sequential letter-to-letter transducers, i.e. if A in the diagram below is
a deterministic Muller automaton and f is a sequential transducer, there is a
deterministic Muller automaton B which makes the following diagram commute:

Sw f
//

B $$

Gw

A

✏✏
{yes, no}

Proof. A straightforward product construction. The states of automaton B are
pairs (state of the transducer f , state of the automaton A). If the automaton is
in state (p, q) and reads letter a 2 S, then it does the following. Suppose that
the transition of f when in state p and when reading letter a is

p a/b! p0,

i.e. the output produced is b 2 G and the new state is p0. Suppose that the
transition of A when in state q and when reading letter b is

q b! q0.

Then the automaton B has a transition of the form

(p, q) a! (p0, q0).
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Note how each transition in B corresponds to two transitions, one in f and one
in A. The Muller condition is inherited from the automaton A, i.e. a set of
transitions in B is accepting if the corresponding set of transitions in A is
accepting.

(The assumption that the transducer is letter-to-letter is not necessary, but then
defining the Muller condition for B becomes a bit more complicated, because
each transition of B corresponds to several transitions in A.) ⌅

Let us continue with the proof of McNaughton’s theorem. We claim that every
language recognised by a nondeterministic Büchi automaton reduces to a
universal Büchi language via some transducer. Let A be a nondeterministic
Büchi automaton with input alphabet S. We assume without loss of generality
that the states are numbers {1, . . . , n} and the initial state is 1. By simply
copying the transitions of the automaton, one obtains a sequential transducer

f : Sw ! [n]w

such that a word w 2 Sw is accepted by A if and only if f (w) contains a path
from the initial vertex with infinitely many accepting edges. Here is a picture:

......

a b a c a a

f

b c c b a

The sequential transducer does even need states, i.e. one state is enough:
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a/

b/c/

Using Lemma 1.4, we compose the transducer with the automaton from
Proposition 1.3, getting a deterministic Muller automaton equivalent to A.
It now remains to show the proposition, i.e. that the n state universal Büchi
language can be recognised by a Muller automaton. The proof has two steps.
The first step is stated in Lemma 1.5 and says that a deterministic transducer
can replace an arbitrary width n dag by an equivalent tree. Here we use the
name tree for a width n dag, where every non-isolated node other than (1,1) has
exactly one incoming edge. Here is a picture of such a tree, with the isolated
nodes not drawn:

...

Lemma 1.5. There is a sequential transducer

f : [n]w ! [n]w

which outputs only trees and is invariant with respect to the universal Büchi language,
i.e. if the input contains a path with infinitely many accepting edges, then so does the
output and vice versa.

The second step is showing that a deterministic Muller automaton can test if a
tree contains an accepting path.

Lemma 1.6. There exists a deterministic Muller automaton with input alphabet [n]
such that for every w 2 [n]w that is a tree, the automaton accepts w if and only if w
contains a path from the root with infinitely many accepting edges.
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Combining the two lemmas using Lemma 1.4, we get Proposition 1.3, and thus
finish the proof of McNaughton’s theorem. Lemma 1.5 is proved in Section 1.2
and Lemma 1.6 is proved in Section 1.3.

1.2 Pruning the graph of runs to a tree

We begin by proving Lemma 1.5, which says that a sequential transducer can
convert a width n dag into a tree, while preserving the existence of a path from
the initial vertex with infinitely many accepting edges. The transducer is simply
going to remove edges.

Profiles. For a path p in a width n dag, define its profile to be the word of
same length over the alphabet ”accepting” and ”non-accepting” which is
obtained by replacing each edge with its appropriate type. We order profiles
lexicographically, with ”accepting” smaller than ”non-accepting”.

<
<

A finite path p in a width n dag is called profile optimal if it begins in the initial
vertex, and its profile is lexicographically least among profiles of paths in w
that begin in the initial vertex and have the same target as p.

Lemma 1.7. There is a sequential transducer

f : [n]w ! [n]w

such that if the input is w, then f (w) is a tree with the same reachable (from the initial
vertex) vertices as in w, and such that every finite path in f (w) that begins in the root
is a profile optimal path in w.
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Proof. The key observation is that the prefix of a profile optimal path is also
profile optimal. Therefore, if we want to do find a profile optimal path that
leads to a vertex (q, i), we need to do the following. Consider all paths from the
initial vertex to (q, i), decomposed as p · e where e is the last edge of the path
and p is the remaining part of the path from the initial vertex to column i� 1.
Because profile optimal paths are closed under prefixes, if we want p · e to be
profile optimal, then p should be profile optimal. Since profiles are sorted
lexicographically, then the profile of p should be optimal among profiles of
paths that go from the initial vertex to some neighbour of (q, i) in the previous
column i� 1. If there are several candidates for p · e with the same profile of p,
then we should use those that have a smaller profile for e (i.e. is it “accepting”
is preferred over “non-accepting”). In the end there might be several paths p · e
that meet all of these criteria, and all of them are profile optimal.

Based on the discussion above, we describe a sequential transducer as in the
statement of the lemma. After reading the first i letters, the automaton keeps in
its memory the following information:

1. which vertices of the form (i, q) are targets of profile optimal paths,
i.e. which ones are reachable from the initial vertex;

2. if both (i, q) and (i, p) are targets of profile optimal paths, then how are
these profiles ordered.

The above information can be kept in the finite state space of the sequential
transducer, since it consists of a subset of {1, . . . , n} together with an ordering
on it (a total, transitive, reflexive but not necessarily antisymmetric relation).
The information can be maintained by the automaton (i.e. it is enough to know
the old information and the new letter to get the new information), and it is
also enough to produce the output tree. Here is a picture of the construction:



14 D E T E R M I N I S AT I O N O F w - A U T O M ATA

1

2

3

1 2 3

1 2 3

4

The reachable vertices are

and the least profiles for 
reaching them are ordered as

<=

The state of the tranducer is
this information:

input 

output

⌅

Lemma 1.8. Let f be the sequential transducer from Lemma 1.7. If the input to f
contains a path with infinitely many accepting edges, then so does the output.

Proof. Assume that the input w to f contains a path with infinitely many
accepting edges. Define a sequence p0, p1, . . . of finite paths in f (w) as follows
by induction. In the definition, we preserve the invariant that each path in the
sequence p0, p1, . . . can be extended to an accepting path in the graph w. We
begin with p0 being the edgeless path that begins and ends in the root of the
tree f (w). This path p0 satisfies the invariant, by the assumption that the input
w contains a path with infinitely many accepting edges. Suppose that pn has
been defined. By the invariant, we can extend pn to an infinite accepting path
in the graph w, and therefore we can extend pn to a finite path (call it sn) in w
that contains at least one more accepting edge. Define pn+1 to be the unique
path in the tree f (w) which begins in the root of the tree f (w) and has the same
target as the new path that extends pn with at least one accepting edge.
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...

the path πn

the path πn+1

its extension with more accepting edges

edges in the tree f(w)

edges in w

The path pn+1 satisfies the invariant, because its target is the same as the target
of sn, and sn is a finite prefix of some accepting path. Define Pn to be the
profile of the path pn. By definition, the paths p1, p2, . . ., and therefore also the
corresponding profiles, get longer and longer. Furthermore, if profiles Pn and
Pn+1 have both length at least i, then the first i positions of Pn give a word that
is lexicographically smaller than the first i positions of Pn+1, this is because the
path pn+1 was taken from the tree f (w) which had profile optimal paths. We
claim that the sequence of profiles P0, P1, P2, . . . has a well defined limit

lim
n!•

Pn = P 2 {accepting, non-accepting}w.

More precisely, we claim that for every position i, the i-th letter of the profiles
P1, P2, . . . eventually stabilises. The limit P is defined to be the sequence of these
stable values. The limit exists because for every i, if we look at the prefixes of
P0, P1, . . . of length i, then they get lexicographically smaller and smaller; and
therefore they must eventually stabilise, as in the following picture:
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P0

P1

P2

P3

P4

P5

P6

Claim 1.9. The limit P contains the letter ”accepting” infinitely often.

Proof. Toward a contradiction, suppose that P has the letter ”accepting” finitely
often, i.e. there is some i such that after i, only the letter ”non-accepting”
appears in P. Choose n so that pn, pn+1, . . . have profile consistent with P on
the first i letters. By construction, the profile Pn+1 has an accepting letter on
some position after i, and this property remains true for all subsequent profiles
Pn+2, Pn+3 . . . and therefore is also true in the limit, contradicting our
assumption that P has only ”non-accepting” letters after position i. ⌅

Consider the set of finite paths in the tree f (w) which have profile that is a
prefix of P. This set of paths forms a tree (because it is prefix-closed). This tree
has bounded degree (assuming the parent of a path is obtained by removing
the last edge) and it contain paths of arbitrary finite length (suitable prefixes of
the paths p1, p2, . . .). The König lemma says that every finitely branching tree
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with arbitrarily long paths contains an infinite path. Applying the König
lemma to the paths in f (w) with profile P, we get an infinite path with profile
P. By Claim 1.9 this path has infinitely many accepting edges. ⌅

1.3 Finding an accepting path in a tree graph

We now show Lemma 1.6, which says that a deterministic Muller automaton
can check if a width n tree contains a path with infinitely many accepting edges.
Consider a tree t 2 [n]w, and let d 2 N be some depth. Define an important node
for depth d to be a node which is either: the root, a node at depth d, or a node
which is a closest common ancestor of two nodes at depth d. This definition is
illustrated below (with red lines representing accepting edges, and black lines
representing non-accepting edges):

depth d

important node for depth d

path connecting important
nodes for depth d

Definition of the Muller automaton. We now describe the Muller automaton
for Lemma 1.6. After reading the first d letters of an input tree (i.e. after
reading the input tree up to depth d), the automaton keeps in its state a tree,
where the nodes correspond to nodes of the input tree that are important for
depth d, and the edges correspond to paths in the input tree that connect these
nodes. This tree stored by the automaton is a tree with at most n leaves, and
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therefore it has less than 2n edges. The automaton also keeps track of a
colouring of the edges, with each edge being marked as accepting or not, where
”accepting” means that the corresponding path in the input tree contains at
least one accepting edge. Finally, the automaton remembers for each edge an
identifiers from the set {1, . . . , 2n� 1}, with the identifier policy being
described below. A typical memory state looks like this:

1 2
5

4

3

accepting edge

non-accepting edge

important node

identifier of the edge

The big black dots correspond to important nodes for the current depth, red
edges are accepting, black edges are non-accepting, while the numbers are the
identifiers. All identifiers are distinct, i.e. different edges get different
identifiers. It might be the case (which is not true for the picture above), that the
identifiers used at a given moment have gaps, e.g. identifier 4 is used but not 3.
The initial state of the automaton is a tree which has one node, which is the
root and a leaf at the same time, and no edges. We now explain how the state is
updated. Suppose the automaton reads a new letter, which looks something
like this:

To define the new state, perform the following steps.

1. Append the new letter to the tree in the state of the automaton. In the
example of the tree and letter illustrated above, the result looks like this:



F I N D I N G A N A C C E P T I N G PAT H I N A T R E E G R A P H 19

1 2
5

4

3

2. Eliminate paths that die out before reaching the new maximal depth. In
the above picture, this means eliminating the path with identifier 4:

1 2
5

3

3. Eliminate unary nodes, thus joining several edges into a single edge. This
means that a path which only passes through nodes of degree one gets
collapsed to a single edge, the identifier for such a path is inherited from
the first edge on the path. In the above picture, this means eliminating
the unary nodes that are the targets of edges with identifiers 1 and 5:

1 2
5

4. Finally, if there are edges that do not have identifiers, these edges get
assigned arbitrary identifiers that are not currently used. In the above
picture, there are two such edges, and the final result looks like this:

1 2 3
45

This completes the definition of the state update function. We now define the
acceptance condition.
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The acceptance condition. When executing a transition, the automaton
described above goes from one tree with edges labelled by identifiers to another
tree with edges labelled by identifiers. For each identifier, a transition can have
three possible effects, described below:

1. Delete. An edge can be deleted in step 2 or in step 3 (by being merged
with an edge closer to the root). The identifier of such an edge is said to
be deleted in the transition. Since we reuse identifiers, an identifier can
still be present after a transition that deletes it, because it has been added
again in step 4, e.g. this happens to identifier 4 in the above example.

2. Refresh. In step 3, a whole path e1e2 · · · en can be folded into its first edge
e1. If the part e2 · · · en contains at least one accepting edge, then we say
that the identifier of edge e1 is refreshed. This happens to identifiers 1
and 5 in the above example.

3. Nothing. An identifier might be neither deleted nor refreshed, e.g. this is
the case for identifier 2 in the example.

The following lemma describes the key property of the above data structure.

Lemma 1.10. For every tree in [n]w, the following are equivalent:

(a) the tree contains a path from the root with infinitely many accepting edges;

(b) some identifier is deleted finitely often but refreshed infinitely often.

Before proving the above fact, we show how it completes the proof of
Lemma 1.6. We claim that condition (a) can be expressed as a Muller condition
on transitions. The accepting family of subsets of transitions is

[

i
Fi

where i ranges over possible identifiers, and the family Fi contains a set X of
transitions if

• some transition in X refreshes identifier i; and
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• none of the transitions in X delete identifier i.

Identifier i is deleted finitely often but refreshed infinitely often if and only if
the set of transitions seen infinitely often belongs to Fi, and therefore, thanks to
the fact above, the automaton defined above recognises the language in the
statement of Lemma 1.6.

Proof of Lemma 1.10. The implication from (b) to (a) is straightforward. An
identifier in the state of the automaton corresponds to a finite path in the input
tree. If the identifier is not deleted, then this path stays the same or grows to
the right (i.e. something is appended to the path). When the identifier is
refreshed, the path grows by at least one accepting edge. Therefore, if the
identifier is deleted finitely often and refreshed infinitely often, there is some
path that keeps on growing with more and more accepting states, and its limit
is a path with infinitely many accepting edges.
Let us now focus on the implication from (a) to (b). Suppose that the tree t
contains some infinite path p that begins in the root and has infinitely many
accepting edges. Call an identifier active in step d if the path described by this
identifier in the d-th state of the run corresponds to an infix of the path p. Let I
be the set of identifiers that are active in all but finitely many steps, and which
are deleted finitely often. This set is nonempty, e.g. the first edge of the path p

always has the same identifier. In particular, there is some step d, such that
identifiers from I are not deleted after step n. Let i 2 I be the identifier that is
last on the path p, i.e. all other identifiers in I describe finite paths that are
earlier on p. It is not difficult to see that the identifier i must be refreshed
infinitely often by prefixes of the path p. ⌅

Problem 1. Are the following languages w-regular (i.e. recognised by
nondeterministic Büchi automata)?

1. w-words which have infinitely many prefixes in a fixed regular language
of finite words L ✓ S⇤;

2. w-words with infinitely many infixes of the form abpa, where p is prime;
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3. w-words with infinitely many infixes of the form abna, where n is even.

Problem 2. Call an w-word ultimately periodic if it is of the form uvw for some
finite words u, v. Show that if an w-regular langauge is nonempty, then it
contains an ultimately periodic word.

Problem 3. Let UP be the set of ultimately periodic words. Let K and L be
w-regular languages. Show that if L \UP = K \UP then K = L.

Problem 4. Are the following languages w-regular?

1. w-words with arbitrarily long infixes belonging to a fixed regular
language of finite words L;

2. w-words which have infinitely many prefixes in a fixed language of finite
words L ✓ S⇤ (not necessarily regular).

Problem 5. Show that the language of words ”there exists a letter b” cannot be
accepted by a nondeterministic automaton with the Büchi acceptance condition,
where all the states are accepting (but possibly transitions over some letters in
some states are missing).

Problem 6. Show that the language ”finitely many occurrences of letter a”
cannot be accepted by a deterministic automaton with the Büchi acceptance
condition.

Problem 7. Show that every language accepted by a nondeterministic
automaton with the Muller acceptance condition is also accepted by some
nondeterministic automaton with the Büchi acceptance condition.

Problem 8. Show that nonemptiness is decidable for automata with the Muller
acceptance condition.

Problem 9. Define a metric on w-words by

d(u, v) =
1

2diff(u,v) ,
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where diff(u, v) is the smallest position where u and v have different labels. A
language L is called open (in this metric) if for every w 2 L there exists some
open ball centered in w that is included in L (standard definition). Prove that
the following conditions are equivalent for an w-regular language L:

1. is open;

2. is of the form KSw for some K ✓ S⇤;

3. is of the form KSw for some regular K ✓ S⇤.

Problem 10. Which of the following candidates for a Myhill-Nerode
congruence inded have the property: ⇠L has finite index if and only if L is
w-regular

1. an equivalence relation ⇠L on S⇤ where u ⇠L v is defined by

uw 2 L, vw 2 L for all w 2 Sw

2. an equivalence relation ⇠L on Sw where u ⇠L v is defined by

wu 2 L, wv 2 L for all w 2 S⇤

3. an equivalence relation ⇠L on S⇤ where u ⇠L v is defined by

and

8
<

:
uw 2 L, vw 2 L for all w 2 Sw

s(ut)w 2 L, s(vt)w 2 L for all s, t 2 S⇤





2
Infinite duration games

In this chapter, we prove the Büchi-Landweber Theorem [15, Theorem 1], see
also [56, Theorem 6.5], which shows how to solve games with w-regular
winning conditions. These are games where two players move a token around a
graph, yielding an infinite path, and the winner is decided based on some
property of this path that is recognised by an automaton on w-words. The
Büchi-Landweber Theorem gives an algorithm for deciding the winner in such
games, thus answering a question posed in [18] and sometimes called
“Church’s Problem”.

2.1 Games

In this chapter, we consider games played by two players (called 0 and 1),
which are zero-sum, perfect information, and most importantly, of potentially
infinite duration.

Definition 2.1 (Game). A game consists of

• a directed graph, not necessarily finite, whose vertices are called positions;

• a distinguished initial position;

• a partition of the positions into positions controlled by player 0 and positions
controlled by player 1;
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• a labelling of edges by a finite alphabet S, and a winning condition, which is a
function from Sw to the set of players {0, 1}.

Intuitively speaking, the winning condition inputs a sequence of labels
produced in an infinite play, and says which player wins. The definition is
written in a way which highlights the symmetry between the two players; this
symmetry will play an important role in the analysis. Here is a picture.

initial position

Winning condition for infinite plays:
player 0 wins if label a appears
infinitely often, otherwise 1 wins

dead end

position controlled by player 0

position controlled by player 1
a

a
1

1

0

0

1
0

0

a

aa b

b
b

The game is played as follows. The game begins in the initial position. The
player who controls the initial position chooses an outgoing edge, leading to a
new position. The player who controls the new position chooses an outgoing
edge, leading to a new position, and so on. If the play reaches a position with
no outgoing edges (called a dead end), then the player who controls the dead
end loses immediately. Otherwise, the play continues forever, and yields an
infinite path and the winner is given by applying the winning condition to the
sequence of edge labels seen in the play.
To formalise the notions in the above paragraph, one uses the concept of a
strategy. A strategy for player i 2 {0, 1} is a function which inputs a history of
the play so far (a path, possibly with repetitions, from the initial position to
some position controlled by player i), and outputs the new position (consistent
with the edge relation in the graph). Given strategies for both players, call these
s0 and s1, a unique play (a path in the graph from the initial position) is
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obtained, which is either a finite path ending in a dead end, or an infinite path.
This play is called winning for player i if it is finite and ends in a dead end
controlled by the opposing player; or if it is infinite and winning for player i
according to the winning condition. A strategy for player i is defined to be
winning if for every every strategy of the opponent, the resulting play is
winning for player i.

Example 4. In the game from the picture above, player 0 has a winning strategy,
which is to always select the fat arrows in the following picture.

moves chosen by player 0

a
b

a

a
1

1

00

0

a
a bb

⇤

Determinacy. A game is called determined if one of the players has a winning
strategy. Clearly it cannot be the case that both players have winning strategies.
One could be tempted to think that, because of the perfect information, one of
the players must have a winning strategy. However, because of the infinite
duration, one can use the axiom of choice to come up with strange games
where neither of the players has a winning strategy.
The goal of this chapter is to show a theorem by Büchi and Landweber: if the
winning condition of the game is recognised by an automaton, then the game is
determined, and furthermore the winning player has a finite memory winning
strategy, in the following sense.

Definition 2.2 (Finite memory strategy). Consider a game where the positions are
V. Let i be one of the players. A strategy for player i with memory M is given by:
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• a deterministic automaton with states M and input alphabet V; and

• for every position v 2 V controlled by i, a function fv from M to the neighbours
of v.

The two ingredients above define a strategy for player i in the following way: the next
move chosen by player i in a position v is obtained by applying the function fv to the
state of the automaton after reading the history of the play, including v.

We will apply the above definition to games with possibly infinitely many
positions, but we only care about finite memory sets M. An important special
case is when the set M has only one element, in which case the strategy is
called memoryless. For a memoryless strategy, the new position chosen by the
player only depends on the current position, and not on the history of the game
before that. The strategy in Example 4 is memoryless.

Theorem 2.3 (Büchi-Landweber Theorem). Let S be finite and let

Win : Sw ! {0, 1}

be w-regular, i.e. the inverse image of 0 (and therefore also of 1) is recognised by a
deterministic Muller automaton. Then there exists a finite set M such that for every
game with winning condition Win, one of the players has a winning strategy that uses
memory M.

The proof of the above theorem has two parts. The first part is to identify a
special case of games with w-regular winning conditions, called parity
conditions, which map a sequence of numbers to the parity 2 {0, 1} of the
smallest number seen infinitely often.

Definition 2.4 (Parity condition). A parity condition is any function of the form

w 2 Iw 7!

8
<

:
0 if the smallest number appearing infinitely often in w is even

1 otherwise

for some finite set I ✓ N. A parity game is a game where the winning condition is a
parity condition.
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Parity games are important because not only can they be won using finite
memory strategies, but even memoryless strategies are enough.

Theorem 2.5 (Memoryless determinacy of parity games). For every parity game,
one of the players has a memoryless winning strategy.

In fact, for edge labelled games (which is our choice) the parity condition is the
only condition that admits memoryless winning strategies regardless of the
graph structure of the game, among conditions that are prefix independent,
see [20, Theorem 4].
The above theorem is proved in Section 2.2. The second step of the
Büchi-Landweber theorem is a reduction to parity games. This essentially boils
down to transforming deterministic Muller automata into deterministic parity
automata, which are defined as follows: a parity automaton has a ranking
function from states to numbers, and a run is considered accepting if the
smallest rank appearing infinitely often is even. This is a special case of the
Muller condition, but it turns out to be expressively complete in the following
sense:

Lemma 2.6. For every deterministic Muller automaton, there is an equivalent
deterministic parity automaton.

Proof. The lemma can be proved in two ways. One way is to show that, by
taking more care in the determinisation construction in McNaughton’s
Theorem, we can actually produce a parity automaton. Another way is to use a
data structure called the later appearance record [31]. The construction is
presented in the following claim.

Claim 2.7. For every finite alphabet S, there exists a deterministic automaton with
input alphabet S, a totally ordered state space Q, and a function

g : Q! P(S)

with the following property. For every input word, the set of letters appearing infinitely
often in the input is obtained by applying g to the smallest state that appears infinitely
often in the run.
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Proof. The state space Q consists of data structures that look like this:

a c d b

More precisely, a state is a (possibly empty) sequence of distinct letters from S,
with distinguished blue suffix. The initial state is the empty sequence. After
reading the first letter a, the state of the automaton is

a

When that automaton reads an input letter, it moves the input letter to the end
of the sequence (if it was not previously in the sequence, then it is added), and
marks as blue all those positions in the sequence which were changed, as in the
following picture:

a c

c

d bprevious state

a d b cnew state

input letter

Consider a run of this automaton over some infinite input w 2 Sw. Take some
blue suffix of maximal size that appears infinitely often in the run. Then the
letters in this suffix are exactly those that appear in w infinitely often.
Therefore, to get the statement of the claim, we order Q first by the number of
white (not blue) positions, and in case of the same number of white positions,
we use some arbitrary total ordering. The function g returns the set of blue
positions. This completes the proof of the claim. ⌅

The conversion of Muller to parity is a straightforward corollary of the above
lemma: one applies the above lemma to the state space of the Muller
automaton, and defines the ranks according to the Muller condition. ⌅
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Let us now finish the proof of the Büchi-Landweber theorem. Consider a game
with an w-regular winning condition. By Lemma 2.6, there is a deterministic
parity automaton which accepts exactly those sequences of edge labels where
player 0 wins. Consider a new game, call it the product game, where the
positions are pairs (position of the original game, state of the deterministic
parity automaton). Edges in the product game are of the form

(v, q) b! (w, p)

such that v a! w is an edge of the original game (the label of the edge is on top
of the arrow), the deterministic parity automaton goes from state q to state p
when reading label a, and b is the number assigned to state q by the parity
condition. It is not difficult to see that the following conditions are equivalent
for every position v of the original game and every player i 2 {0, 1}:

1. player i wins from position v in the original game;

2. player i wins from position (v, q) in the product game, where q is the
initial state of the deterministic parity automaton recognising L.

The implication from 1 to 2 crucially uses determinism of the automaton and
would fail if a nondeterministic automaton were used (under an appropriate
definition of a product game). Since the product game is a parity game,
Theorem 2.5 says that for every position v, condition 2 must hold for one of the
players; furthermore, a positional strategy in the product game corresponds to
a finite memory strategy in the original game, where the memory is the states
of the deterministic parity automaton.
This completes the proof of the Büchi-Landweber Theorem. It remains to show
memoryless determinacy of parity games, which is done below.

2.2 Memoryless determinacy of parity games

In this section, we prove Theorem 2.5 on memoryless determinacy of parity
games. The proof we use is based in [61] and [56]. Recall that in a parity game,
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the positions are assigned numbers (called ranks from now on) from a finite set
of natural numbers, and the goal of player i is to ensure that for infinite plays,
the minimal number appearing infinitely often has parity i. Our goal is to show
that one of the players has a winning strategy, and furthermore this strategy is
memoryless. The proof of the theorem is by induction on the number ranks
used in the game. We choose the induction base to be the case when there are
no ranks at all, and hence the theorem is vacuously true. For the induction step,
we use the notion of attractors, which is defined below.

Attractors. Consider a set of edges X in a parity game (actually the winning
condition and labelling of edges are irrelevant for the definition). For a player
i 2 {0, 1}, we define below the i-attractor of X, which intuitively represents
positions where player i can force a visit to an edge from X. The attractor is
approximated using ordinal numbers. (For a reader unfamiliar with ordinal
numbers, just think of natural numbers, which are enough to treat the case of
games with finitely many positions.) Define X0 to be empty. For an ordinal
number a > 0, define Xa to be all positions which satisfy one of the conditions
(A), (B) or (C) depicted below:

(B) is owned by player i and 
      some outgoing edge is in X
      or goes to a position satisfying (A)

(C) is owned by opponent of player i and 
      every outgoing edge is in X 
      or goes to a position
      satisfying (A)

(A) belongs to        
 for some 

opponent
of player i

player i

X
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The set Xa grows as the ordinal number a grows, and therefore at some point it
stabilises. If the game has finitely many positions – or, more generally, finite
outdegree – then it stabilises after a finite number of steps and ordinals are not
needed. This stable set is called the i-attractor of X. Over positions in the
i-attractor, player i has a memoryless strategy which guarantees that after a
finite number of steps, the game will use an edge from X, or end up in a dead
end owned by the opponent of player i. This strategy, called the attractor
strategy, is to choose the neighbour that belongs to Xa with the smallest
possible index a.

Induction step. Consider a parity game. By symmetry, we assume that the
minimal rank used in the game is an even number. By shifting the ranks, we
assume that the minimal rank is 0. For i 2 {0, 1} define Wi to be the set of
positions v such that if the initial position is replaced by v, then player i has a
memoryless winning strategy. Define U to be the vertices that are in neither W0

nor in W1. Our goal is to prove that U is empty. Here is the picture:

player 0
wins with 
a memoryless
strategy

player 1
wins with 
a memoryless
strategy

W W0 1

By definition, for every position in w 2Wi, player i has a memoryless winning
strategy that wins when starting in position w. In principle, the memoryless
strategy might depend on the choice of w, but the following lemma shows that
this is not the case.
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Lemma 2.8. Let i 2 {0, 1} be one of the players. There is a memoryless strategy si for
player i, such that if the game starts in Wi, then player i wins by playing si.

Proof. By definition, for every position w 2Wi there is a memoryless winning
strategy, which we call the strategy of w. We want to consolidate these strategies
into a single one that does not depend on w. Choose some well-ordering of the
vertices from Wi, i.e. a total ordering which is well-founded. Such a
well-ordering exists by the axiom of choice. For a position w 2Wi, define its
companion to be the least position v such that the strategy of v wins when
starting in w. The companion is well defined because we take the least element,
under a well-founded ordering, of some set that is nonempty (because it
contains w). Define a consolidated strategy as follows: when in position w, play
according to the strategy of the companion of w. The key observation is that for
every play using this consolidated strategy, the sequence of companions is
non-increasing in the well-ordering, and therefore it must stabilise at some
companion v; and therefore the play must be winning for player i, since from
some point on it is consistent with the strategy of v. ⌅

Define the game restricted to U to be the same as the original game, except that
we only keep positions from U. In general restricting a game to a subset of
positions might create new dead ends. However, in this particular case, no new
dead ends will be created: if a position controlled by player i has all of its
outgoing edges to W0 [W1, then a short analysis shows that the position is
already in either W0 [W1. Define A to be the 0-attractor, inside the game
limited to U, of the rank 0 edges in U (i.e. both endpoints are in U). Here is a
picture of the game restricted to U:
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A
rank 0 rank 0 rank 0 rank 0

player 0 can attract toward rank 0

Consider a position in A that is controlled by player 1. In the original game, all
outgoing edges from the position go to A [W0; because if there would be an
edge to W1 then the position would also be in W1. It follows that:

(1) In the original game, if the play begins in a position from A and player 0
plays the attractor strategy on the set A, then the play is bound to either
use an edge inside U that has minimal rank 0, or in the set W0.

Consider the following game H: we restrict the original game to positions from
U � A, and remove all edges which have minimal rank 0 (these edges
necessarily originate in positions controlled by player 1, since otherwise they
would be in A). Since this game does not use rank 0, the induction assumption
can be applied to get a partition of U � A into two sets of positions U0 and U1,
such that on each Ui player i has a memoryless winning strategy in the game H:

U U0 1
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Here is how the sets U0, U1 can be interpreted in terms of the bigger original
game.

(2) In the original game, for every i 2 {0, 1}, if the play begins in a position
from Ui and player i uses the memoryless winning strategy
corresponding to Ui, then either (a) the play eventually visits a position
from A [W0 [W1 or an edge with rank 0; or (b) player i wins.

Here is a picture of the original game with all sets:

U U0 1

player 0
wins with 
a memoryless
strategy

player 1
wins with 
a memoryless
strategy

W W0 1

player 0 can attract toward rank 0

A
rank 0 rank 0 rank 0 rank 0

Lemma 2.9. U1 is empty.

Proof. Consider this memoryless strategy for player 1 in the original game:

• in U1 use the winning memoryless strategy inherited from the game
restricted to U � A;

• in W1 use the winning memoryless strategy from Lemma 2.8;

• in other positions do whatever.

We claim that the above memoryless strategy is winning for all positions from
U1, and therefore U1 must be empty by assumption on W1 being all positions
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where player 1 can win in a memoryless way. Suppose player 1 plays the above
strategy, and the play begins in U1. If the play uses only edges that are in the
game H, then player 1 wins by assumption on the strategy. The play cannot use
an edge of rank 0 that has both endpoints in U, because these were removed in
the game H. The play cannot enter the sets W0 or A, because this would have to
be a choice of player 0, and positions with such a choice already belong to W0

or A. Therefore, if the play leaves U � A, then it enters W1, where player 1 wins
as well. ⌅

In the original game, consider the following memoryless strategy for player 0:

• in U0 use the winning memoryless strategy from the game H;

• in W0 use the winning memoryless strategy from Lemma 2.8;

• in A use the attractor strategy to reach a rank 0 edge inside U;

• on other positions, i.e. on W1, do whatever.

We claim that the above strategy wins on all positions except for W1, and
therefore the theorem is proved. We first observe that the play can never enter
W1, because this would have to be a choice of player 1, and such choices are
only possible in W1. If the play enters W0, then player 0 wins by assumption on
W0. Other plays will reach positions of rank 0 infinitely often, or will stay in U0

from some point on. In the first case, player 0 will win by the assumption on 0
being the minimal rank. In the second case, player 0 will win by the
assumption on U0 being winning for the game restricted to U � A.
This completes the proof of memoryless determinacy for parity games, and also
of the Büchi-Landweber Theorem.

Problem 11. We say that a game is finite if it has no infinite plays, i.e. every play
eventually reaches a dead end. Prove that every finite game is determined,
i.e. exactly one of the players has a winning strategy.

Problem 12. Show that reachability games played on finite game graphs can be
solved in time proportional to the number of edges.
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Problem 13. Show one player parity games can be solved in PTIME.

Problem 14. Show that solving parity games is in NP\ coNP.

Problem 15. Consider the following game on a finite game graph V together
with function rank : V ! N. At every moment of the play, the owner of the
current vertex chooses a next vertex among current vertex successors. This
continues until some vertex repeats on the play, i.e. till the first loop is closed.
Then depending on the parity of the smallest rank on the loop the winning
player is determined. Prove that player i in the described game wins iff player i
wins in the parity game on the same arena.

Problem 16. Are Muller games positionally determined?

Problem 17. Show that Büchi games are positionally determined without direct
use of the same result for parity games.

Problem 18. Show that the winning condition Muller games is a Borel set, and
therefore Muller games are determined by Martin’s theorem. (Most of this
problem is looking up what Borel sets and Martin’s theorem are.)

Problem 19. Show that Muller games on finite arenas are not positionally
determined.

Problem 20. Construct an infinite game played on a finite game graph, in
which player 0 has a winning strategy, but not a winning finite memory
strategy. Remark: Notice that by Büchi-Landweber theorem the winning
condition in that game cannot be w-regular.

Problem 21. Consider the following riddle. There are infinitely many dwarfs
(countably many). Every dwarf is given a hat, which is either red or green.
Every dwarf sees the color of every hat beside his own one. Every dwarf is
supposed to tell what is the color of his hat, such that only finitely many
dwarfs make a mistake. They can fix a strategy in advance, before getting their
hats, but they cannot communicate after getting their hats. Find a winning
strategy for dwarfs. Remark: Problems 21, 22 and 23 serve as a preparation for
the Problem 24.
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Problem 22. Show that there is a function inf-xor : {0, 1}w ! {0, 1}, such that
changing one bit of an argument always changes the result. (The solution uses
the axiom of choice.)

Problem 23. Consider the following two player game, called Chomp. There is a
rectangular chocolate in a shape of n⇥ k grid. The right upper corner piece is
rotten. Players move in an alternating manner, the first one moves first. Any
player in his move picks square of the chocolate that is not yet eaten, and eats
all pieces that are to the left and to the bottom from the picked piece. The
player who eats the rotten piece loses. Determine who has a winning strategy.

Problem 24. Show a game that is not determined.

Problem 25. Consider the following bisimilarity game played on a finite game
graph with vertices V equipped with a function rank : V ! N. Two players,
Spoiler and Duplicator start from a position (u, v) 2 V ⇥V. The play proceeds in
rounds. If at the beginning of a round rank(u) 6= rank(v) or u and v belong to
different players then Spoiler immediately wins. Otherwise Spoiler makes a
move to (u0, v) or (u, v0) such that u �! u0 or v �! v0, respectively. Then
Duplicator makes a move to (u0, v0) such that v �! v0 or u �! u0, respectively.
Next round starts from (u0, v0). If play continues infinitely long then Duplicator
wins. Show that if Duplicator has a winning strategy from position (u, v) then
the same player has a winning strategy in the parity game starting from u and
in the parity game starting in v.





3
Parity games in quasipolynomial time

In this chapter, we show the following result.

Theorem 3.1. Parity games with n positions and d ranks can be solved in time
nO(log d).

The time in the above theorem is a special case of quasipolynomial time
mentioned in the title of the chapter. Whether or not parity games can be
solved in time which is polynomial in both n and d is an important open
problem. The presentation here is based on the original paper [16], with some
new terminology (notably, the use of separation).
Define a reachability game to be a game where the objective of player 0 is to visit
an edge from a designated subset. (We assume that the designated subset
contains all edges pointing to dead ends of player 1, so that winning by
reaching a dead end is subsumed by reaching designated edges.) Reachability
games can be solved in time linear in the number of edges, as is shown in
Exercise 11. Our proof strategy for Theorem 3.1 is to reduce parity games to
reachability games of appropriate size.

3.1 Reduction to reachability games

The syntax of a reachability automaton is exactly the same as the syntax of an
nfa. The semantics, however, is different: the automaton inputs an infinite
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word, and accepts if a final state can be reached (in other words, there is a
prefix which is accepted by the automaton when viewed as an nfa). For
example, the following reachability automaton

a,b

a a

accepts all w-words over alphabet {a, b} which contain two consecutive a’s. A
reachability automaton is called deterministic if its transition relation is a
function.
Consider an infinite word over an alphabet {1, . . . , n}⇥ {1, . . . , d}. We view this
word as an infinite path in a game, where the positions are {1, . . . , n} and each
edge is labelled by a rank from {1, . . . , d}. Each letter describes a position and
the rank of an outgoing edge. An infix of such a path is called an even loop if it
begins and ends in the same vertex from {1, . . . , n} and the maximal rank in the
infix is even. Likewise we define odd loops. Here is a picture:

1 2 1 42 2

odd loop, max is 5 even loop, max is 4

1 62 2 1 55 2 1
3

a letter
{1,...,n}

{1,...,d}

2 2 45 3 1 41 4 4 52 5 1

The following lemma shows that to quickly solve parity games, it suffices to
find a small deterministic reachability automaton which separates the
properties “all loops are even” and “all loops are odd”.
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Lemma 3.2. Let n, d 2 {1, 2, . . .}. Assume that one can compute a deterministic
reachability automaton D with input alphabet {1, . . . , n}⇥ {1, . . . , d} that accepts
every w-word where all loops are even, and rejects every w-word where all loops are
odd, as in the following picture:

({1,...,n} × {1,...,d})
ω

all loops
are even

all loops
are odd

words accepted by the 
reachability automaton

Then a parity game G with n positions and d ranks can be solved in time

O((number of edges in G)⇥ (number of states in D)) + time to compute D

Proof. Let G be a parity game with vertices {1, . . . , n} and edges labelled by
parity ranks {1, . . . , d}. Let D be an automaton as in the assumption of the
lemma. Consider a product game G⇥D, as defined on page 31, i.e. the
positions are pairs (position of v, state of A) and the structure of the game is
inherited from G with only the states being updated according to the parity
ranks on edges. Player 0 wins the product game G⇥D if a dead end of player 1
is reached, or if the play is infinite and accepted by D (in the latter case, by the
assumption that D is a reachability automaton, this is done by reaching an
accepting state of D at some point during the play).

Claim 3.3. If player i 2 {0, 1} wins G, then player i also wins G⇥D.
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Proof. By symmetry, take i = 0. Let s0 be a winning strategy for player i in the
game G. By memoryless determinacy of parity games, we assume that s0 is
memoryless. Let G0 be the graph obtained from the graph underlying the game
G by fixing the memoryless strategy s0, i.e. by removing every edge that
originates in a position owned by player 0 and is not used by the strategy s0.
Paths in the graph G0 correspond to plays in the game G that are consistent
with strategy s0. Because s0 was winning in the game G, all infinite paths in G
satisfy the parity condition. In particular, every loop in G0 that is accessible
from the initial vertex has even maximum. This means that every infinite path
in G0 is accepted by the automaton D. Therefore, the same strategy s0 also wins
in the game G⇥D. ⌅

Because D is a reachability automaton, the product game G⇥D can be solved
in time proportional to the number of its edges, which is consistent with the
bound in the lemma. ⌅

3.2 A small reachability automaton for loop parity

By Lemma 3.2, to prove Theorem 3.1, it suffices to find a deterministic
automaton which separates “all loops even” from “all loops odd”, and which
has a quasipolynomial state space (and time to compute the automaton). As a
warm-up, we present a simpler construction which has nd/2 states.

Fact 3.4. Let n, d 2 {1, 2, . . .}. There is a deterministic reachability automaton with
nd/2 states which satisfies the properties in Lemma 3.2.

Proof. Consider a finite word over the alphabet {1, . . . , n}⇥ {1, . . . , d}. For a
rank a 2 {1, . . . , d}, a position in the word is called a-visible if its letter has rank
exactly a, and all later positions have ranks  a, as in the following picture
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ranks ≤4

rank 4

{1 42 2 1 62 2 1 5

4-visible position

5 2 1 3
2 45 3 1 41 4 4 22 3 1 3

1 2
3

a letter
{1,...,n}

{1,...,d}

2

After reading a word, for each even rank a, the automaton stores the number of
a-visible positions up to threshold n� 1, i.e. the state space is a function

even numbers in {1, . . . , d} ! {0, 1, . . . , n}.

Whenever the threshold is exceeded, i.e. the number of a-visible positions
exceeds n for some a, the automaton accepts. If this happens, then the
pigeonhole principle says that the input word contains two a-visible positions
with the same label in {1, . . . , n}, and therefore the infix connecting these
positions forms an even loop with maximum exactly a. Therefore, if the
automaton accepts, then there is an even loop. Contrapositively: if there are
only odd loops, then the automaton rejects. On the other hand, if the input
word satisfies the parity condition, i.e. the maximal rank seen infinitely often is
an even number a, then at some point there will be at least n positions that are
a-visible. Therefore if the input satisfies the parity condition (in particular, if the
input has all loops even), then the automaton must accept. ⌅

Note that in the above construction, the automaton satisfies a stronger property
than required by Lemma 3.2, namely it accepts all words satisfying the parity
condition (instead of only those where all loops are even).

Lemma 3.5. Let n, d 2 {1, 2, . . .}. There is deterministic reachability automaton with
nO(log d) states which satisfies the assumptions of Lemma 3.2.

The rest of Section 3.2 is devoted to proving the above lemma. Like in the
construction with nd/2 states, the automaton will reject all words which violate
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the parity condition, and not just those where all loops are odd. This stronger
property, however, is not used in the proof of Theorem 3.1.
We begin with a nondeterministic reachability automaton A which satisfies the
properties in the lemma in the following sense: if all loops are even, then at
least one run reaches an accepting state, and if all loops are odd, then all runs
avoid accepting states.
Choose the smallest k so that n < 2k. The nondeterministic automaton uses k
registers with names {0, . . . , k� 1}. Each register stores a number from
{1, . . . , d}, or it is undefined. A state of the automaton is a valuation of these
registers or an accepting sink state, i.e. the number of states is at most
(1 + d)k + 1. By choice of k, we have

(d + 1)k 

(d + 1)log(n+1) =

2log(n+1)·log(d+1) =

(n + 1)log(d+1)

and therefore the number of states in A is at most nO(log d). Our final
automaton D will be obtained by keeping the same states as A and removing
transitions so as to make the automaton deterministic, and hence the size of D
will be as required to make Theorem 3.1 true.
Here is a picture of a state of the automaton A:

more significant registers

empty register,
i.e. its value is 

undefined

register 4 register 3 register 2 register 1 register 0

4 356

We design the transition relation to respect following invariant.
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(*) Suppose that the automaton has read a finite word, and has not accepted
yet. Then the register valuation is nondecreasing on nonempty registers.
Furthermore, one can associate to each register r a word wr so that:

1. if r is empty then wr is empty; and

2. the word wk�1wk�2 · · ·w1w0 is a suffix of the input read so far; and

3. if a register r is nonempty and stores i 2 {1, . . . , d}, then:

(a) all words associated to nonempty registers < r use ranks  i;
(b) the word wr associated to r is a concatenation of two words:

• tail: 2r � 1 words with even maximal rank;
• head: a word with maximal rank exactly i.

Here is a picture of the invariant. In the picture, we only draw the ranks of the
input letters, and not their labels in {1, . . . , n}. One reason is that the
automaton completely ignores the labels in its transition relation.

{ {

value of the register

word associated to register 3

smallest value of more
significant nonempty registers

a prefix of the input 
that is not in any head

or tail
(we only write ranks of 

input letters)

23-1

max 5

head

7 words
with even max

that is ≤ 6

tail

register 4 register 3 register 2 register 1 register 0

4 356

1 4 262 421 44 62 21 21 25 2214 1 152 14 1 1 24 1 2 131 1 242 521 38 42 21 61 44 22161 321 5 1 222 14 2 1 142 16 2 1 6 15

In the initial state, all registers are empty; this state clearly satisfies the
invariant. Before giving the state update function, we explain two properties of
the invariant.

Lemma 3.6. Assume that the invariant is satisfied, all registers are nonempty and store
even ranks, and the input letter has even rank. Then the input contains an even loop.
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Proof. If register r stores an even rank, then the associated word wr is a
concatenation of 2r words with even maximal rank: one for the head, and 2r � 1
for the tail. Therefore, if all registers are nonempty and store even ranks, and a
letter of even rank appears in the input, then a suffix of the input – including
the new input letter – can be factorised as a concatenation of

2k�1 + 2k�2 + · · · 20
| {z }

the registers

+ 1|{z}
the input letter

= 2k > n

words with even maximal rank. For each of these words, choose the position
which achieves the maximal rank. The pigeonhole principle says that two
positions achieving the maximal rank must have the same label. The infix
connecting these two positions is an even loop. ⌅

The above lemma justifies the following acceptance criterion of the automaton:
if all of its registers are nonempty and store even ranks, and it reads an even
rank, then it accepts.

Lemma 3.7. Emptying any subset of the registers preserves the invariant.

Proof. It is enough to show that emptying any single register r preserves the
invariant. If r is the most significant nonempty register, then the word
associated to r is put into the prefix of the input that is not assigned to any
register. Otherwise, the word associated to r is appended to the head of the
closest more significant register. ⌅

Transitions of the automaton. We now describe the transitions of the
automaton and justify that they preserve the invariant. Suppose that the
automaton reads a letter with rank a 2 {1, . . . , d}. Then the automaton allows
three types of transitions A, B and C, as described below.

A. Assume that in the current state, all registers store values � a, which
includes the special case when all registers are empty. Under this
assumption, the automaton is allowed to do nothing, i.e. not change the
state when reading a.
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Why the invariant is preserved. If all registers are empty, then the new input
letter a becomes part of the input that is not associated to any register.
Otherwise, a is appended to the head of the least significant nonempty
register.

B. Let r be any register which satisfies conditions written in grey below:

5 3 2

nonempty registers >r 
store ranks ≥ a

6

{ no assumption on registers <r

register r  is nonempty and stores  rank <a{
Then the automaton can do the following update (the picture uses a = 4):

45

registers >r 
are not changed

6

{ registers <r are emptied

 the input letter is placed in register  r{

Why the invariant is preserved. We view this transition as a two-step
process. First, all registers < r are made empty, which preserves the
invariant by Lemma 3.7. Next, the input letter a is appended to the head
of the register r (which is now the least significant nonempty register),
and therefore becomes the new maximum in this head.

C. Let r be any register which satisfies the conditions written in grey below:
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6 2

nonempty registers >r 
store ranks ≥ a

67

{ registers <r are nonempty
and store even numbers

 register r is empty or stores an odd rank{
Under these conditions, and assuming that a is even, the automaton can
do the same update as in transitions of type B., i.e. it put a into register r
and empty all registers < r. Apart from the assumption that a is even,
there is no assumption that a is bigger than the contents of registers < r,
e.g. in the above picture a could be 2 or 4.

Why the invariant is preserved. We also view this transition as a two-step
process. First, we empty register r (but not the smaller ones), which
preserves the invariant by Lemma 3.7. Next, all of the words associated
to registers < r are concatenated and put into the tail of register r. As
explained in the proof of Lemma 3.6, after the update the tail of register r
consists of

2r�1 + 2r�2 + · · · 20 = 2r � 1

words with even maximum, as required by the invariant. Finally, the
head of register r is set to the one letter word consisting of the new input
letter a. Here is a picture:
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when reading an
input letter with rank

4 246

6 2

2

2

1 4 262 421 44 62 21 21 24 2214 1 152 14 1 1 24 1 2 111 1 242 521 38 42 21 61 44 22161 321 5 1 222 14 2 1 142 16 2 1 6 15

1 4 262 421 44 62 21 21 25 2214 1 152 14 1 1 24 1 2 131 1 242 521 38 42 21 61 44 22161 321 5 1 222 14 2 1 142 16 2 1 6 15

4
words

7
words

1
word

2
words

}}
}

}

Since every transition of A preserves the invariant, we can use Lemma 3.6 to
conclude that if the invariant is preserved and the automaton accepts (which
happens when all registers store even ranks and a new even rank is read), then
the input contains at least one even loop. This gives the following inclusion:

all loops
are oddwords accepted by the 

nondeterministic 
reachability automaton

Define D to be the deterministic reachability automaton which is obtained from
A as follows: if there are several applicable transitions, then choose any
transition that maximises the most significant register that is modified. The
automaton D has fewer accepting runs than A, and therefore it still rejects all
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words that have only odd loops. Therefore, the proof of Lemma 3.5 is
completed by the following lemma.

Lemma 3.8. If the input has only even loops, then D accepts.

Proof. For i 2 {1, 2, . . .}, define Di to be a variant of the automaton D where the
number of registers is i instead of k. In particular, D = Dk. By induction on i,
we prove the following generalisation (*) of the lemma. The generalisation is
twofold: we allow any number of registers, and we weaken the assumption
from “only even loops” to “satisfies the parity condition”.

(*) Suppose that Di is initialised in an arbitrary state (not necessarily the
initial state with all registers empty). If the input satisfies the parity
condition, then Di accepts, i.e. it reaches a configuration where all
registers store even ranks and the input letter has even rank.

Suppose that we have already proved (*) for i� 1, or i = 1 and there is nothing
to prove. We now prove (*) for i. Consider a run of Di on an input which
satisfies the parity condition, i.e. the maximal rank that appears infinitely often
is some even a 2 {1, . . . , d}. By the induction assumption, the most significant
register i must eventually become nonempty, because transitions that do not
affect the most significant register are transitions of the automaton Di�1. Once
the most significant register becomes nonempty, then it stays nonempty. Wait
until the most significant rank a is seen again; either the automaton accepts
before this time, or otherwise it puts a into the most significant register. Once
the most significant register stores a, and the input contains only values with
rank  a, then the most significant register will keep on containing a. Again by
induction assumption, the automaton will eventually fill all registers < i with
even ranks and read an even letter, thus accepting. ⌅

Problem 26. Consider the following variant of the automaton from Lemma 3.5.
Only odd numbers are kept in the registers, and the update function is the
same as in Lemma 3.5 when reading an odd number. When reading an even
number a, the automaton erases all registers, which store values < a. Show that
this automaton does not satisfy the properties required in Lemma 3.5.
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Problem 27. Show that there is no safety automaton which:

• accepts all ultimately periodic words that satisfy the parity condition;

• rejects all ultimately periodic words that violate the parity condition.

Problem 28. Show that there is no safety automaton with < bn/2c states which
satisfies the properties required in Lemma 3.5.

Problem 29. A probabilistic reachability automaton is defined like a finite
automaton, except that each transition is assigned a probability – a number in
the unit interval – such that for every state, the sum of probabilities for
outgoing transitions is 1. The value assigned by such an automaton to an
w-word is the probability that an accepting state is seen at least once. Show that
there is a probabilistic reachability automaton over the alphabet {1, . . . , n}w,
with state space polynomial in n, that:

• assigns value 1 to words that have only even loops;

• assigns value 0 to words that have only odd loops.





4
Distance automata

The syntax of a distance automaton is the same as for a nondeterministic finite
automaton, except that it has a distinguished subset of transitions, called the
costly transitions. The cost of a run is defined to be the number of costly
transitions that it uses.

Example 5. Here is a cost automaton, with the costly transitions (one
transition, in this particular example) depicted in red.

b b

a,b a a,b

The nondeterminism of the automaton consists of: choosing the initial state
(first or second), and in case the first state was chosen as initial, then choosing
the moment when the second horizontal transition is used. This
nondeterminism corresponds to selecting a block of a letters, and the cost of a
run is the length of such a block, as in the following picture:
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a a b a a ba a a a b aa a

b
b

a,b
a

a,b

{block of a letters

⇤
In this chapter, we prove the following theorem, originally proved by
Hashiguchi in [32]. The theorem was part of Hashiguchi’s solution [33] to the
star height problem, i.e. the problem of determining what is the least number of
nested Kleene stars that is needed to define a given regular language.

Theorem 4.1. The following problem is decidable:

• Input. A distance automaton.

• Question. Is the automaton bounded in the following sense: there is some
m 2 N such that every input word admits an accepting run of cost < m.

The problem in the above theorem was called limitedness in [32]. The algorithm
we use, based on [10], uses the Büchi-Landweber Theorem [15] discussed in
Chapter 2. The algorithm leads to an ExpTime upper bound on the limitedness
problem; the optimal complexity is PSpace, which follows as a special case
of [35, Theorem 2.2].

The limitedness game. Fix a distance automaton. For a number
m 2 {1, 2, . . . , w}, consider the following game, call it the limitedness game with
bound m. The game is played in infinitely many rounds 1, 2, 3, . . ., by two
players called Input and Automaton. In each round:

• player Input chooses a letter of the input alphabet;
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• player Automaton responds with a set of transitions over this letter.

A move of player Automaton in a given round, which is a set of transitions, can
be visualised as a bipartite graph, which says how the letter can take a state to a
new state, with costly transitions being red and non-costly transitions being
black, like below:

p
q
r

p
q
r

For the definition of the game, it is important that player Automaton does not
need to choose all possible transitions over the letter played by player Input,
only a subset. Actually, as we will later see, in order to win, player Automaton
need only use tree-shaped sets like this:

every vertex in the right column
has at most one incoming edge

p
q
r

p
q
r

After all rounds have been played, the situation looks like this:

a a a b a b c bletters played by Input

sets of transitions
played by Automaton

...

The winning condition for player Automaton is the following:

1. In every column, at least one accepting state must be reachable from
some initial state in the first column; and

2. Every path contains < m costly edges. In case of m = w, this means that
every path contains finitely many costly edges.
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If either of the conditions above is violated, then player Input wins. The
following lemma implies the decidability of the limitedness problem.

Lemma 4.2. For a distance automaton, the following conditions are equivalent, and
furthermore one can decide if they hold:

1. the automaton is limited;

2. there is some m 2 {1, 2, . . .} such that player Automaton wins the limitedness
game with bound m;

3. player Automaton wins the limitedness game with bound m = w

Proof. The implications from 2 to 1 and from 2 to 3 are immediate. For the other
implications and the decidability part, the key is the observation that for every
choice of m 2 {1, 2, . . . , w}, the limitedness game is a special case of a game
with a finite arena and an w-regular condition. In particular, one can apply the
Büchi-Landweber theorem, yielding that a) the winner can be decided; b) the
winner needs finite memory. Condition a) shows that item 3 in the lemma is
decidable, while condition b) will be used in the implication from 3 to 2.

Implication from 1 to 2. We want to prove that if the automaton is limited,
then player Automaton has a winning strategy for some finite m, which will
turn out to be the same m as in the definition of limitedness. Define a run r of
the distance automaton over an input word w to be optimal if it has minimal
cost among runs that have the same input word, same source state and same
target state. The strategy of player Automaton is as follows. Suppose that
player Input has played a sequence of letters. Then the sets of transitions
chosen by Automaton are so that the transitions form a forest, consisting only
of optimal runs, where all reachable configurations (i.e. reachable by some run
from an initial state) are covered, as in the following picture:

optimal cost 4 

optimal cost 6

optimal cost 5

a a b a aaa
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When player Input gives a new letter, player Automaton responds with a set of
transitions which connect the new configurations to the previous ones in a
cost-minimising way.

Implication from 3 to 2. Suppose that player Automaton wins the limitedness
game with bound w. We will prove that player Automaton can also win the
limitedness game with a finite bound.

By the Büchi-Landweber theorem, if player Automaton can win the game with
bound w, then he can also win the game with a finite memory strategy. We will
show that this finite memory strategy is actually winning for a finite bound.

Suppose that the input alphabet of the original distance automaton is S. A finite
memory strategy of player Automaton in the limitedness game is a function

s : S⇤ ! sets of transitions

which is recognised by a finite automaton, i.e. there is a deterministic finite
automaton such that s(w) depends only on the state of the automaton after
reading w. We claim that this same winning strategy produces runs where the
cost is at most (number of states in the distance automaton) times (number of
states in the automaton recognising the strategy), thus proving the implication
from 3 to 2 in the lemma. To prove the claim, suppose that the strategy s loses
in the game with the above described finite bound. Using a pumping argument
we find a loop that can be exploited by player Input to force player Automaton
into a path that has infinitely many costly edges, contradicting the assumption
that s wins in the game with bound w, as in the following picture:
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a a a b a b a b

p q r p q p r p q

letters played by Input

states of the automaton
recognising the strategy

- has at least one costly edge
- begins and ends in the same state for the distance automataon

if player Input keeps iterating
this word, then he wins

in the game with bound ω{
sets of transitions

played by Automaton
...

...

...

⌅

Problem 30. Show that limitedness remains decidable when distance automata
are equipped with a reset operation. (The cost of a run is the biggest number of
costly transitions between some two consecutive resets.)

Problem 31. Let A be a distance automaton with input alphabet S. The
problem of limitedness of A on regular language L ✓ S⇤ asks whether there exists
n 2 N such that for every word w 2 L the cost of w with respect to A is not
bigger than n. Show that this problem is decidable.

Problem 32. We say that a regular language L has the finite power property if
there exists n 2 N such that L⇤ = L0 [ L1 [ . . . [ Ln. Show that one can decide
if a regular language has the finite power property. is decidable.

Problem 33. We say that languages K ✓ S⇤ and L ✓ S⇤ are separated by
language S ✓ S⇤ if K ✓ S and L \ S = ∆. For u, v 2 S⇤ we say that u = a1 · · · ak
is a subsequence of v, denoted u � v, if v 2 S⇤a1S⇤ . . . S⇤akS⇤. A language L is
called upward closed if for every u 2 L and u � v also v 2 L. Show that deciding
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whether two given regular languages K and L are separated by some upward
closed language is decidable.

Problem 34. Let F be the class of finite unions of languages of the form
S⇤w1S⇤ . . . S⇤wkS⇤, where all wi are words from S⇤. Show that for given
regular languages K and L it is decidable whether they are separated by a set
from F.
Remark: Note that F contains all upward closed languages defined in the
Problem 33. To see this recall that Higman’s Lemma implies that there is no
infinite antichain in the � order. Therefore every upward closed language has
finitely many minimal elements. Thus every upward closed language is a finite
union of languages of the form S⇤a1S⇤ . . . S⇤akS⇤, where all ai 2 S.

Problem 35. Show that it is decidable if a regular language is of star height
one, i.e. it can be defined by a regular expression that uses Kleene star, maybe
multiple times, but does not nest it.





5
Monadic second-order logic

In this section we discuss the connection between monadic second-order logic
(mso) and automata, specifically tree automata. The presentation here is largely
based on [56]. One of the crowning achievements of logic in computer science
is Rabin’s Theorem [45], which says that mso on infinite trees is decidable, and
has the same expressive power as automata. We prove Rabin’s Theorem in this
chapter.
Actually, we already have the tools to prove Rabin’s Theorem1, namely
McNaughton’s Theorem on determinisation of w-automata from Chapter 1,
and memoryless determinacy of parity games from Chapter 2. It remains only
to deploy the appropriate definitions and put the tools to work.

5.1 Monadic second-order logic

Monadic second-order logic (mso) is a logic with two types of quantifiers:
quantifiers with lowercase variables 9x quantify over elements, and quantifiers
with uppercase variables 9X quantify over sets of elements. The term
”monadic” means that one cannot quantify over sets of pairs, or over sets

1Büchi says this in [14, page 2]: ”Given the statement of this lemma [the complementation lemma
for automata on infinite trees], and given McNaughton’s handling of sup-conditions by order vectors,
and given time, everybody can prove Rabin’s theorem.”
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triples, etc. The syntax and semantics of the mso are explained in the following
example.

Example 6. Suppose that we view an directed graph as relational structure (i.e.
a model as in logic), where the universe is the vertices and there is one binary
relation E(x, y) for the edges; this relation is not necessarily symmetric because
the graph is directed. The formula

8x8y E(x, y)

says that the graph is a directed clique. The formula only quantifies over
vertices, i.e. it uses only first-order quantification. Now consider a formula
which uses also set quantification, which says that the input graph is not
strongly connected:

9X|{z}
exists a set

(8x8y x 2 X ^ E(x, y)) y 2 X)
| {z }

X is closed under outgoing edges

^ (9x x 2 X) ^ (9x x 62 X)| {z }
X is neither empty nor full

The above formula illustrates all syntactic constructs in mso: one can quantify
over elements, over sets of elements, one can test membership of elements in
sets, and one can use the relations available in the input model (in the case of
directed graphs, only one binary relation).
Here is another example for graphs. The following mso formula says that the
input graph is three colourable (in the formula, the direction of the edges plays
no role):

9X19X29X3 8x
_

i
x 2 Xi

| {z }
every vertex is coloured

^ 8x8y E(x, y))
^

i
x 62 Xi _ y 62 Xi

| {z }
no edge has both endpoints with the same colour

⇤
We say that a property of relational structures over some vocabulary
(e.g. graphs as in the above example) is mso definable if there is a formula of
mso which is true exactly in those structures which have the property. In this
chapter, we use mso to describe properties of trees (finite and infinite). In the
next chapter, we talk about finite graphs.
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5.2 Finite trees

Define a ranked alphabet to be a finite set S where every element a 2 S has an
associated arity in {0, 1, . . .}. Here is a picture of a ranked alphabet:

letters of arity 0 arity 1 arity 2

A tree over a ranked alphabet S is defined as in the following picture:

if a node has a label of arity n,
then it has exactly n children

every node gets a label from the alphabet

children are ordered, so one can
speak of the first child, second child, etc.

In this section, Section 5.2, we will be interested only in finite trees. Trees as
defined above are sometimes called ranked and ordered. One can consider other
variants, where the label does not determine the number of children (unranked)
or where the siblings are not ordered (unordered). The goal of this section is to
show that, over finite trees, automata have the same expressive power as mso.

Tree automata. We begin by defining automata for finite trees.

Definition 5.1. A nondeterministic tree automaton consists of:

• an input alphabet S, which is a ranked alphabet;

• a finite set of states Q with a distinguished subset of root states R ✓ Q
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• for every letter a 2 S of rank n, a transition relation da ✓ Qn ⇥Q.

A tree automaton is called bottom-up deterministic if every transition relation is a
function Qn ! Q. An automaton is called top-down deterministic if it has one root
state and the transition relation is a partial function Qn  Q. A tree is accepted by the
automaton if there exists an accepting run, as explained in the following picture:

every node is 
labelled by a state

the state in the root
is in the designated 
set of root states

if a node has state q,
and children with 
states q ,.,.,q  , then
(q ,...,q  , q) belongs
to the transition
relation corresponding
to the label of the node there is no need for

initial states, because
leaves have transition
relations of arity 0r q

q

qp

p

r s1 n

1 n

Lemma 5.2. Languages recognised by nondeterministic tree automata are closed under
union, intersection and complementation.

Proof. For union, take the disjoint union of two nondeterministic tree automata.
Intersection can be done using a cartesian product, or by using union and
complementation. For complementation, we use determinisation: the same
proof as for automata on words – the subset construction – shows that for every
nondeterministic tree automata there is an equivalent one that is bottom-up
deterministic (top-down deterministic automata are strictly weaker, see
Exercise ??.). Since bottom-up deterministic automata can be complemented by
complementing the root states, we get the lemma. ⌅

mso on finite trees. We now define how mso can be used to define a tree
language, and show that tree languages defined this way are exactly those that
are recognised by tree automata.
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A tree (finite or infinite) over an alphabet S is viewed as a relational structure
in the following way:

for every label       there is a unary 
predicate     (x) which selects 
node with that label.        

the universe is the nodes of the tree

for every i (up to the maximal arity
in the alphabet) there is a binary 
relation for i-th child

1-st child

2-nd child
We say that an mso formula is true in a tree if it is true in the relational
structure described above. This only makes sense for formulas that have no free
variables (sentences), and which use the vocabulary (relation names) described
above, i.e. unary relations for labels and binary relations for child numbers.
We say that a set of finite trees L over a ranked alphabet S is mso definable if
there is an mso formula j such that

j is true in t iff t 2 L for every finite tree t over S

The formula does not need to check if its input is a finite tree. However, the set
of finite trees is mso definable, as a subset of all relational structures over the
appropriate set of relation names, and therefore the definition of mso definable
languages of finite trees would not be affected by requiring the formula to
check that inputs are finite trees.

Example 7. Suppose that the ranked alphabet is
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The set of trees with an odd number of nodes is mso definable, namely the
formula is “true”. This is because all trees over the above ranked alphabet have
an odd number of nodes. More effort is required for “odd number of leaves”.
Here the formula says that there exists a set X of nodes, which contains the
root, and such that every node belongs to X if and only if it has an even
number of children in X. ⇤

The following theorem shows that for finite trees, tree automata have the same
expressive power as monadic second-order logic. The connection of between
automata and mso was originally discovered simultaneously by three authors:
Büchi [13], Elgot [26] and Trakthenbrot [57], in their quest to answer a question
by Tarski: “is the mso theory of the natural numbers with successor decidable”?
We present below the version of the result for finite trees, which has essentially
the same proof as for finite words (a word can be viewed as a tree over a ranked
alphabet where all letters have arity zero or one), and was first observed in [55].

Theorem 5.3. The following conditions are equivalent for every set of finite trees over
a finite ranked alphabet:

1. definable in mso;

2. recognised by a nondeterministic (equivalently, bottom-up deterministic) tree
automaton.

Proof.

1( 2 Let A be a nondeterministic tree automaton. We show that mso can
formalise the statement “there exists an accepting run of A”. Without loss
of generality, assume that the states of A are numbers {1, . . . , n}. Here is
the sentence that defines the language of A:
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for every node, a transition of the automaton is used

every node has exactly one state

the root has a root state

there exists a 
labelling of 

nodes with states {
Formally speaking, root(x) is a shortcut for a formula which says that x
is not a child of any node, and childi(x) 2 Xqi is a shortcut for a formula
which says that there exists a node that is the i-th child of x (because we
have children as relations and not functions) and belongs to qi.

1) 2 By induction on formula size, we show that every mso formula can be
converted into an automaton. The main issue is that when we go to
subformulas, free variables appear, and we need to say how an
automaton deals with free variables. Consider a formula j of mso whose
set of free variables is X (some of these variables are first-order, some are
second-order). To encode a tree together with a valuation of free variables
X, we use a tree over an extended alphabet like this:
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every node is labelled by:
- a label from the original alphabet 
- a subset of the variables 

the arity is inherited
from  the original
alphabet

each first-order variable
appears exactly once

{y,X}

{x}

∅

∅

∅∅

{X}

{Y}

A tree as above is said to satisfy j if j is true under the valuation which
maps each first-order variable to the unique node that has it in the label,
and maps each second-order label to the set of nodes that have it in their
label. Define the language of j to be the trees (over the extended alphabet
with sets of variables) that satisfy j. By induction on the size of an mso
formula, we show that its language, as defined above, is recognised by a
tree automaton. For Boolean operations we use Lemma 5.2, for existential
quantification we use nondeterminism.

⌅

[?]

5.3 Infinite trees

We now move to infinite trees and Rabin’s Theorem. For simplicity of notation,
we use ranked alphabets where all letters have rank 2. For such alphabets, the
set of nodes is always the same, and can be identified with
{left child, right child}⇤. For arbitrary alphabets, infinite trees can have various
shapes, e.g. an infinite tree is allowed to have subtrees that are finite. To
recognise properties of infinite trees, we use parity automata.

Definition 5.4. The syntax of a nondeterministic parity tree automaton consists of
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• an input alphabet S, which is a finite ranked set where all letters have rank 2;

• a finite set of states Q with a distinguished root state;

• a parity ranking function Q! N;

• for every letter a 2 S, a set of transitions da ✓ Q2 ⇥Q.

The automaton accepts an infinite tree over S if there exists an accepting run as
explained in the following picture:

the states are consistent
with the transition
relation as for finite trees

the state in the root
is the designated 
root state

on every infinite branch,
the maximal parity rank
appearing infinitely often 
is even

r q

q

qp

p

r s

We now state Rabin’s Theorem. Rabin’s original proof did not use the parity
acceptance condition, but what is now called the Rabin condition, see [56].

Theorem 5.5 (Rabin’s Theorem). The following conditions are equivalent for every
set of (necessarily) infinite trees over a finite ranked alphabet where all letters have
arity 2:

1. definable in mso;

2. recognised by a nondeterministic parity tree automaton.

The proof has the same structure as in the case of finite trees. The only
difference is that for infinite trees, closure under complementation, as stated in
the following lemma, is far from obvious.
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Lemma 5.6 (Complementation Lemma). Languages recognised by nondeterministic
parity automata are closed under complement.

The difficulty in the Complementation Lemma is that we use only
nondeterministic automata; in fact no deterministic model for infinite trees is
known that would be equivalent to mso. Rabin’s Theorem will follow
immediately once the Complementation Lemma is proved, so the rest of this
chapter is devoted to proving the Complementation Lemma.
A corollary of the statement of Rabin’s Theorem as in Theorem 5.5, and of
decidability of emptiness for nondeterministic parity tree automata (see
Exercise ??) is that the following logical structure has decidable mso theory: the
universe is the nodes of the complete binary tree, and there are two binary
relations for left child and right child. This corollary is the original statement of
Rabin’s Theorem, see [45, Theorem 1.1.].

Alternating parity tree automata. To show complementation of
nondeterministic tree automata, we pass through a more powerful model. The
syntax of an alternating parity tree automaton is defined the same as in
Definition 5.4 for nondeterministic automata, with the following differences: (1)
to each state we assign an owner, which is either “player 0” or “player 1”; and
(2) for each letter a, the transition relation has form

da ✓ Q⇥ {e, 0, 1}⇥Q.

To define whether or not an automaton A accepts an input tree t over S, we
consider a parity game GA(t) defined as follows. The positions of the game are
pairs (state of the automaton, node of the input tree). The initial position is
(root state, root of the tree). Suppose that the current position is (q, v), and
assume that state q is owned by player i 2 {0, 1}. In such a position, player i
chooses some pair (x, p) such that (q, x, p) belongs to the transition relation
corresponding to the label of v. If there is no such pair, then player i loses
immediately. Otherwise, the new position is set to (p, v · x), and the play
continues. If the play continues forever, then the winner is declared using the
parity condition, i.e. player 0 wins if and only if the maximal rank of a state
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appearing infinitely often is even. This completes the definition of the game
GA(t). A tree t is accepted if player 0 has a winning strategy in the game.

Theorem 5.7 (Dealternation Theorem).

1. For every nondeterministic parity tree automaton, one can compute an
alternating one that recognises the same language.

2. Languages recognised by alternating parity tree automata are closed under
complement.

3. For every alternating parity tree automaton, one can compute a nondeterministic
one that recognises the same language.

Before proving the above result, we show how it completes the proof of the
Rabin’s Theorem. Recall that the only missing ingredient was the
Complementation Lemma. Using the Dealternation Theorem, we can easily
complement nondeterministic parity tree automata: (1) make the automaton
alternating, (2) complement it, (3) make it nondeterministic again.

Proof of Theorem 5.7. For item 1, let A be a nondeterministic parity tree
automaton with states Q. The simulating alternating automaton has states
Q + Q2. The initial state is the root state of A, and the transitions are explained
in the following picture:

player 0 choses a
pair (p, r) such that

the automaton 
has a transition

q

q

p r
p, r

player 1 choses
left or right

and the 
automaton moves

to one of the children
in the appropriate 

state

p
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The parity condition for states from Q is inherited from the original
nondeterministic automaton, and all states from Q2 are assigned the least
important rank.
For item 2, let A be an alternating parity tree automaton. Define A to be the
alternating parity tree automaton obtained from A by swapping the roles of
players 0 and 1, and incrementing the ranking function so that even ranks
become odd and vice versa, but the precedence order on ranks is maintained.
To prove that A is the complement of A, we show below that the following
conditions are equivalent for every input tree t:

1. A accepts t;

2. player 0 has a winning strategy in the game GA(t);

3. player 1 has a winning strategy in the game G
A
(t).

4. player 1 does not have a winning strategy in the game G
A
(t).

5. A rejects t.

The equivalences 1, 2 and 4, 5 are by definition of the language recognised
by an alternating automaton. The equivalence 2, 3 is by construction of A.
The equivalence 3, 4 is because G

A
(t) is a parity game, and it is therefore

determined, i.e. one of the players has a winning strategy. The reason why this
proof works is that: (a) the parity condition is self-dual, which allows one to
define A; and (b) games with the parity condition are determined.
It remains to show the last item of the theorem, namely that alternating parity
tree automata can be made nondeterministic. Suppose that A is an alternating
parity tree automaton, with states Q and input alphabet S. By memoryless
determinacy of parity games, it follows that a tree t is accepted if and only if
player 0 has a memoryless winning strategy s0 in the game GA(t). We will find
a nondeterministic parity automaton on trees which checks this. Define G to be
an alphabet which consists of functions from states controlled by player 0 to
pairs in Q⇥ {e, 0, 1}. Here is a picture of a such a letter:
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states owned by 0
states owned by 1

A memoryless strategy s0 for player 0 can be represented as a tree over this
alphabet as follows: the label of node v is the function which maps state q to
the pair (p, x) such that strategy s0 goes from (q, v) to (p, v · x).
We will show that the language

{ (t, s0)| {z }
tree over S⇥ G

representing t and s0

: s0 is a memoryless strategy for player 0 in GA(t)}

(5.1)

is recognised by a (even deterministic top-down) parity automaton on trees.
This will complete the proof of the Dealternation Theorem, because a
nondeterministic parity automaton can guess the part of the labelling that
describes s0. The key observation is the following claim. (A branch is defined
to be an inclusion-wise maximal set of nodes that are totally ordered by the
descendant relation.)

Claim 5.8. There is a nondeterministic parity automaton B over w-words over the
alphabet S⇥ G⇥ {0, 1} such that the following conditions are equivalent for every tree
t, branch p and memoryless strategy s0 for player 0:

1. There exists a strategy of player s1 such that if the players use strategies (s0, s1)

in the game GA(t), then the resulting play stays on the branch p and violates
the parity condition.

2. The automaton B accepts the w-word (t, s0)|p defined as follows: the i-th letter
is of the label of the i-th node in p as well as the turn that p takes after that
node. Here is a picture:
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a branch πa branch π

Proof. The automaton B uses nondeterminism to choose the moves of the
strategy s1. ⌅

Apply the above claim, yielding a nondeterministic parity automaton. By
McNaughton’s Theorem, see Chapter 1, there exists an equivalent deterministic
parity automaton, call it D. It is not difficult to see that a memoryless strategy
s0 wins in the game GA(t) if and only if every branch in the tree (t, s0) is
rejected by the automaton D. This can be checked by a (deterministic
top-down) parity automaton on trees, which runs the automaton D on every
branch (and has the acceptance condition complemented). ⌅

Problem 36. The translation from mso to automata in Theorem 5.3 does an
exponential blowup whenever it determinises the automaton, and therefore an
upper bound on the running time is n-fold iteration of exponential, where n is
the size of the formula. Here is a matching lower bound. Consider mso on
words, i.e. there is a successor relation and unary predicates for the labels.
Show that for every n, there is a formula of mso (in fact, first-order logic is
enough) which has size polynomial in n and is true in a unique word which
has length

22222···
2222

| {z }
n times
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Problem 37. Show that the set N⇤ equipped with the prefix relation has
decidable mso theory.

Problem 38. Show that emptiness is polynomial time and universality is
ExpTime-complete for nondeterministic tree automata on finite trees.

Problem 39. Show that emptiness for nondeterministic parity tree automata
reduces in polynomial time to solving parity games.

Problem 40. Determine whether the following tree languages are regular:

1. trees with an even number of nodes;

2. trees with an even number of a-labelled nodes;

3. trees over leaf alphabet 0, 1 and internal alphabet _,^ which evaluate to
true when treated as boolean expressions;

4. balanced trees (every leaf is at the same depth).

Problem 41. Determine which of the following four variants of tree automata:
deterministic / nondeterministic, top-down / bottom-up tree automata are
equivalent.

Problem 42. Define the yield of a tree to be the word composed from labels of
its leaves written in infix order. Show that for every L ✓ S⇤ the following are
equivalent

1. L is context-free;

2. L is the set of yields of some regular tree language.

Problem 43. Show that deterministic top-down tree automata cannot recognize
the language ”some node has label a”.

Problem 44. Show that the language of words of even length is definable in
mso.
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Problem 45. Show that the following languages of infinite trees are regular
(accepted by some nondeterministic automaton):

1. on every path, the sequence of labels belongs to a given w-regular
language L;

2. some node has label a;

3. in every subtree some node has label a.

Problem 46. In Existential Second Order Logic (9SO) one can write 9R1,...,Rn f,
where Ri are any relations (possibly of arity greater than 1) and f is a first
order sentence (which of course may use Ri). Show that the language of words
of composite (non-prime) length is expressible in 9SO.

Problem 47. Consider the following game. There are two players Insider and
Outsider. They choose in an alternating manner bits: 0 or 1 and create in that
way an w-word w. If w belongs to a given regular language W ✓ {0, 1}w then
Insider wins a play, otherwise Outsider wins. Show that it is decidable to check
which player has a winning strategy in that game. Remark: use MSO logic.
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Treewidth

In this chapter, by graphs, we mean finite undirected graphs. We treat a graph
as a logical structure, where the universe is the vertices and there is a binary
edge relation, which is necessarily symmetric (for a different representation, see
the exercises). We present Courcelle’s Theorem, which says that every formula
of mso on graphs can be evaluated in linear time on graphs that have bounded
treewidth. Treewidth is a graph parameter, i.e. every graph has a some
treewidth, which is a natural number. The treewidth of a graph describes the
smallest width of a tree decomposition that can produce the graph. The general
idea is that small width tree decompositions can be obtained for graphs that are
similar to trees. Treewidth is not the only way of quantifying similarity to a
tree, alternatives include cliquewidth, see [23, Section 2.5] or treedepth [42,
Chapter 6].

6.1 Treewidth and how to compute it

Consider a graph G. Define a tree decomposition of G to be a tree, where each
node of the tree is labelled by a set of vertices in the graph, called the bag of the
node, subject to conditions (1) and (2) depicted in the following picture:
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A node of the
tree decomposition
with its bag

1

2

2

3

2
3

45

1

2

4

6

5

6
7

1

2

7

1

45

a graph one of its tree decompositions

(2) For every vertex v of the graph, 
the set of nodes of the tree
decomposition which have v in
their bag is connected by the child
relation in the tree decomposition (1) Every vertex of the graph 

is in at least one bag. Also,
every edge of the graph
is in at least one bag, i.e.
both of its endpoints are
in at least one bag

Example: 
nodes that have       in their bag

In the tree decomposition, we allow nodes to have unbounded arity, i.e. there is
no requirement that each node has at most two children. The tree in the tree
decomposition is unordered (i.e. there is no ordering on the siblings), but it is
rooted, i.e. it makes sense to talk about descendants and children. Define the
width of a tree decomposition to be the maximal size of a bag minus one. In the
picture above, the width is 2, because the maximal bag size is 3. The reason for
the minus one is so that trees have treewidth one. Another reason is that the
width of a tree decomposition is the intersection between neighbouring bags
(assuming the tree decomposition does not use the same bag twice, which can
be assumed without loss of generality). The treewidth of a graph is the minimal
width of a tree decomposition of it. Treewidth is a fundamental concept in
graph theory, which plays a prominent role in the graph minor project of
Robertson and Seymour.

An alternative way of drawing tree decompositions is in the following picture:
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black vertices are in the bag 
of a node or its descendants

bag of the node

gray vertices
are the rest

Fact 6.1. If a graph has treewidth k, then the number of edges in the graph is at most
k · (k + 1)/2 times the number of vertices.

Proof. A tree decomposition can always be modified so that the bag of a node
contains at least one vertex that is not present in the bags of its descendants.
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Therefore, the number of nodes in the tree decomposition is at most the
number of vertices in the underlying graph. Each edge must be present in some
node, and each node can have at most k · (k + 1)/2 edges, which proves the fact.
The bound in the fact is optimal, as witnessed by a clique over k + 1 vertices. ⌅

Computing a tree decomposition. We present an algorithm that computes
tree decompositions of approximately optimal width (at most four times worse,
see below for the exact statement) and which runs in quadratic time when the
treewidth is fixed. The algorithm is from Robertson and Seymour, see also [24,
Theorem 7.18].

Theorem 6.2. There is a function f : N ! N and an algorithm which runs in time
f (k) · n2 that approximates tree decompositions in the following sense:

• Input. k and a graph with n vertices;

• Output. A tree decomposition of the graph which has width < 4k, or a
certificate that the graph has treewidth � k.

The algorithm from the theorem is not optimal. The optimal algorithm, by
Bodlaender [9], runs in linear time instead of quadratic time, and computes tree
decompositions of optimal width (i.e. < k instead of < 4k). The function f (k) is
exponential, and there is little hope for improvement, because the following
problem is np-complete [5]: given k and a graph, decide if the graph has
treewidth at most k. The theorem gives a (prototypical) example of a an
algorithm that is fixed parameter tractable, i.e. the input has two parameters k, n
and the running time is of the form:

some computable function a polynomial with 
degree independent of k

The algorithm uses the following lemma on computing separators. Recall that a
separator of vertex sets X and Y in a graph G is a set of vertices S disjoint from
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X [Y such that G� S does not contain any path connecting X with Y, as in the
following picture:

X

X

Y
Y

Y

separator
of X and Y

connected component
after removing the 
separator

Lemma 6.3. Given a graph G and disjoint sets of vertices X, Y, one can compute a
separator of minimal size in time

O((number of edges + number of vertices) · (size of the separator)).

We do not prove the above lemma, it can be shown using the Ford-Fulkerson
algorithm for computing maximum flow, see the discussion in [24, p. 198].
When the treewidth is fixed, the number of edges is linear in the number of
vertices, and the size of the separator is bounded by a function of k (see the
proof of Lemma 6.4), and therefore the running time of the algorithm is linear.
The main step in proving Theorem 6.2 is the following lemma.

Lemma 6.4. Let k 2 N. There is a linear time algorithm which does this:

• Input. k and a graph G with  3k distinguished vertices;

• Output. A certificate that the graph has treewidth � k, or a set S of  k vertices
so that G� S has at least two connected components, and each connected
component has  2k distinguished vertices.
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Proof. We begin with the algorithm, and then justify why it succeeds on graphs
of treewidth < k. We enumerate all possible partitions of the distinguished
vertices into three parts as follows

distinguished vertices

X S Y
size ≤ 2k size ≤ 2ksize ≤ k

1

The idea is that S1 is the intersection of the separator with the distinguished
vertices. The number of such partitions is exponential in k, but is a constant if k
is assumed to be fixed. For each such partition, compute a minimal size
separator S2 of X and Y in the graph G� S1, as depicted in the following
picture

X Y

S2

S1

Separator of 

in the graph 

and

Report success if the size of S1 [ S2 is at most k, and return S1 [ S2 as the
separator. This completes the algorithm. The running time is linear, because the
size of the separator is fixed, and the number of edges is linear in the number
of vertices by Fact 6.1.
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We now justify that if G has treewidth < k then the algorithm succeeds. If the
graph has treewidth < k, then there is a tree decomposition where all bags have
size  k. Let t be this tree decomposition. Choose a node x of the tree
decomposition so that half or more of the distinguished vertices of G appear in
bags of x and its descendants, but this is no longer true for any of the children
of x. Here is a picture:

the blue subtree has at least half
of the distinguished vertices

each red subtree has less than half
of the distinguished vertices

the complement of the blue subtree 
has less than half of the distinguished vertices

x

Define S to be the bag of x. The size of S is  k. By choice of x we know that
every connected component of G� S has at most half of the distinguished
vertices. In particular, there must be at least two connected components,
because

3k|{z}
distinguished

vertices

> k|{z}
distinguished
vertices in S

+ 3k/2|{z}
distinguished

vertices in each
connected component

For each connected component of G� S, we count the number of distinguished
nodes in that component; this is a number that is at most half of 3k. The
following claim, when applied to the numbers of distinguished vertices in the
connected components of G� S, shows that the connected components can be
grouped into two groups, so that each group has at most 2k distinguished
vertices, thus proving the lemma.
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Claim 6.5. Let n1 � n2 � · · · � np be numbers in {1, . . . , 2k} with sum  3k. Then

 2kz }| {
n1 + · · ·+ ni

 2kz }| {
ni+1 + · · ·+ np for some i

Proof. Take the first i such that the sum of the first i elements is � k. ⌅

⌅

Proof of Theorem 6.2. We use a more detailed statement of the algorithm, as
described below.

• Input k and a graph with  3k distinguished vertices;

• Output. A certificate that the graph has treewidth � k, or a tree
decomposition of the graph which has width < 4k and where the root
bag consists exactly of the distinguished vertices.

Suppose that G is the graph. If there are < 3k distinguished vertices, we add
some arbitrary vertices to make the set have size exactly 3k. Apply Lemma 6.4,
computing S, X and Y. If the input graph has treewidth < k then the algorithm
from the lemma must succeed. Find all connected components of the graph
G� S, of which there are at least two. Each connected component has  2k
distinguished vertices. Here is a picture:

separator S

distinguished vertices
not distinguished vertices

connected component
of G – S



T R E E W I D T H A N D H O W T O C O M P U T E I T 87

For each connected component U of the graph G� S, define GU to be the graph
induced by U [ S. This graph is smaller than G, because G� S has at least two
connected components. Here are are the graphs GU for our picture above:

For each of the graphs GU , recursively call the algorithm, with the
distinguished vertices being S plus the original distinguished vertices from U.
We are allowed to do the recursive call, since U has  2k distinguished vertices
and S has at  k vertices. Combine the tree decompositions yielded by the
recursive calls into a single tree as follows:
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root bags of tree 
decompositions
from recursive call

distinguished vertices
plus separator S
(size ≤4k)

distinguished vertices
only

It is not difficult to check that this is a tree decomposition of G. The size of bags
is  4k, and therefore the width of the decomposition is < 4k (recall that the
width was size of bags plus one). The algorithm does a linear computation,
followed by recursive calls to smaller instances; and therefore its running time
is quadratic. ⌅

6.2 Courcelle’s Theorem

In this section we prove Courcelle’s Theorem, which says that mso can be
evaluated efficiently on graphs of bounded treewidth. The key ingredient is the
following lemma, which is proved the same way as Courcelle’s original result
that mso definable graph properties are recognisable, see [22, Theorem 4.4].

Lemma 6.6. For every k 2 N and every formula of mso j on graphs, there is a linear
time algorithm which does the following:

• Input. A graph together with a tree decomposition of width  k;
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• Question. Does the graph satisfy j?

The proof of the lemma is essentially this: we view the tree decomposition as a
tree over a finite alphabet, convert the formula j into a tree automaton, and
then run the tree automaton over the tree in linear time. If we combine the
lemma with an algorithm that computes tree decompositions, we do not need
to get the tree decomposition on input. This yields the following formulation of
Courcelle’s Theorem (the algorithm for computing tree decompositions in these
notes gives only a quadratic running time, for the linear time bound one needs
the algorithm of Bodlaender from [9]):

Theorem 6.7 (Courcelle’s Theorem). For every k 2 N and every formula of mso j

on graphs, there is a linear time algorithm evaluates j on graphs of treewidth  k.

The rest of this chapter is devoted to proving Lemma 6.6. To this end, we
present a more algebraic way of defining treewidth, so that tree decompositions
can be viewed as trees over a finite ranked alphabet.

The algebra of tree decompositions. Define a sourced graph to be a graph
with some but not necessarily all vertices being assigned natural numbers. The
vertices with numbers are called the sources and the numbers are called the
source names. Each source name can be used for at most one source. A width k
sourced graph is one where the source names are from {0, . . . , k}, note that
k + 1 source names are allowed; this corresponds to bags having size k + 1 in a
width k tree decomposition. A sourced graph with no sources is the same as a
graph. Here is a picture of a width 4 sourced graph, which does not use source
names 0 and 3:

1
2

4
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The purpose of sourced graphs is to combine them using the following fusion
operation. The fusion operation inputs two sourced graphs, and outputs their
disjoint union with each pair of sources that have the same name being merged
together into a single vertex, as in the following picture

3

1

2

2
3

4

4

1

2

4

two sourced graphs their fusion

Besides fusion, we also use an operation that forgets some source names,
illustrated below:

1

2

4

2

a sourced graph after forgetting 1, 4.

For k 2 N, define the algebra of width k sourced graphs to be the algebra where the
universe is width k sourced graphs, and which is equipped with a binary
fusion operation and a family of unary forget operations (one for every subset
of source names). Here is a term in the algebra of width k sourced graphs that
generates a cycle of length 6:
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1

1

1

1 1

2

2 2

2 2

0

0

0 0

0

0

fuse
forget 2

fuse
forget 0

fuse
forget 2

fuse
forget 0, 1, 2

Fact 6.8. A graph has treewidth k if and only if (when viewed as a sourced graph
without any sources) it can be generated by a term in the algebra of width k sourced
graphs, starting with constants that have at most k + 1 vertices.

Proof. We only do the top-down implication. Consider a tree decomposition (in
the standard, non-algebraic way) of width k. Using at top-down greedy
algorithm, one can colour the vertices of the graph with colours {0, . . . , k} so
that for each bag of the tree decomposition, all vertices in the bag have different
colours. For a node x of the tree decomposition, define a sourced graph as
follows:

• the graph is the subgraph induced by the union of bags of x and its
descendants (this is sometimes known as the cone of node x);
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• the sources are the bag of x, with source names taken from the colouring.

By induction on the number of descendants of x, we show that the sourced
graph corresponding to x in the above sense can be generated by a term in the
algebra of sourced graphs as in the statement of the fact. In the induction step,
we do the following. For every child y of x, we combine the sourced graph
generated by the subtree of y with the bag of x as follows:

sourced graph of y

forget source name 0, because
it is not in the bag of x

fuse

bag of x

0

0

1 1

2 2

Then we fuse all of the resulting graphs, with y ranging over children of x. ⌅

A term as in Fact 6.8 can be viewed as a tree over a ranked alphabet Sk where:

• leaves are width k sourced graph with at most k + 1 vertices;

• unary nodes are forget operations for subsets I ✓ {0, . . . , k};

• binary nodes all have the same label “fuse”.

A width k tree decomposition can be converted into a corresponding tree over
the above alphabet in linear time. Since the fusion operation as used in Sk has
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arity two, the conversion produces tree decompositions with binary branching
(which can break properties, like no bag being used twice). By Theorem 5.3, for
finite trees over alphabet Sk, mso is equivalent to tree automata. Since tree
automata can be evaluated in time linear in the size of the input tree (it is easier
to use the bottom-up deterministic variant), it follows that mso formulas on
trees can also be evaluated in linear time. Therefore, Lemma 6.6 will follow
once we prove the following lemma.

Lemma 6.9. Let k 2 N and let j be an mso formula over graphs. There is a mso
formula ĵ on trees over alphabet Sk such that

t satisfies ĵ iff the graph of t satisfies j

holds for every width k tree decomposition, viewed as a tree over Sk.

Proof. Consider a tree t as in the statement of the lemma. To a node x in the
tree and a source name i 2 {0, . . . , k}, there corresponds a vertex [x, i] of the
graph generated by t in the natural way, as depicted in the following picture:

1

1 2

2 2

0

0

0

[x, 0] and [y, 0] are
the same vertex, 
namely this one

fuse
forget 2

fuse
forget 0, 1, 2

x

y

The encoding (x, i) 7! [x, i] is partial, because it is undefined if the source name
i is not present in the sourced graph that is generated by the subtree of x. It is
not hard to see that for every source names i, j 2 {0, . . . , k} the following binary
relations on nodes x, y of t are definable in mso:
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• [x, i], [y, i] are both defined and equal;

• the graph has an edge from [x, i] to [y, j].

Using the above relations, one can simulate an mso formula j over the graph
generated by t using an mso formula over t itself. When j quantifies over a set
of vertices U, then ĵ quantifies over k + 1 sets of nodes, namely:

{x : [x, 0] 2 U}, . . . , {x : [x, k] 2 U}.

The professional terminology for the construction described above is “the
graph generated by t can be produced from t using an mso transduction”,
see [23, Section 1.7]. ⌅

Problem 48. Show that a graph has treewidth 1 iff it is a forest.

Problem 49. Compute the treewidth of the clique of n vertices.

Problem 50. Consider the following game on a graph G between k cops and
one robber. The robber has a fast motorbike, cops have helicopters. In between
moves everybody occupies one vertex. A round of the game is played as
follows:

• some subset of the cops starts flying their helicopters and declares where
they are going to land (different cops might land in different places) at
the end of the round; the remaining cops stay on the ground,

• the robber moves along a path; he cannot pass through vertices that are
occupied by cops who are on the ground,

• the cops in helicopters land on the declared vertices.

The cops win if they manage to land on the vertex with the robber. Show that if
a graph has treewidth k then k + 1 cops have a winning strategy in this game.
Remark: if a graph has treewidth k then the robber has a winning strategy
against k cops, but this is harder to show.
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Problem 51. Let Gk be a grid k⇥ k (with k2 vertices). Show that Gk has
treewidth which is either k or k� 1. The actual answer is k, but showing this is
a bit technical.

square grid of dimension 5

Problem 52. Determine the treewidth of the full bipartite graph with n vertices
on the left and n vertices on the right.

Problem 53. Show that the vertex cover problem can be solved on a graph G in
time 2O(tw(G)) · nO(1).

Problem 54. A graph G is called a minor of graph H, denoted G E H, if G can
be obtained from H by a sequence of operations of one of the following three
types: 1) deleting a vertex, 2) deleting an edge, 3) contracting an edge, i.e.
unifying two endpoints of this edge. Show that G E H implies tw(G)  tw(H).

Problem 55. Show that there exists a function f such that if a graph G is
connected then it has a walk (a path which is allowed to visit vertices multiple
times) that visits all vertices and visits every edge at most f (tw(G)) times.
Show that this is no longer true if we want to limit the number of visits to every
vertex.

Problem 56. Show that the following problem is decidable: given an mso
formula j and k 2 {1, 2, . . .}, decide if j is true in some graph of treewidth at
most k.

Problem 57. Consider two representations of graphs as logical structures:

• Edge representation. The universe is the vertices and there is a binary
relation for neighbourhood.
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• Incidence representation. The universe is the vertices and the edges, and
there is a binary relation for incidence of a vertex with an edge.

With edge representation, mso can quantify over sets of vertices, while with
incidence representation, mso can quantify over sets of vertices and edges.
When proving Lemma 6.6, we used edge representation. Show that the lemma
and also Problem 56 remain true with the incidence representation.

Problem 58. Show that the language of connected graphs is definable in mso
on graphs (assume edge representation, as described in the Problem 57).

Problem 59. Show that the language of all forests is definable in mso on graphs
(assume edge representation, as described in the Problem 57).

Problem 60. Show that the language of grids is definable in mso on graphs and
find an appropriate formula (assume edge representation, as described in the
Problem 57).

Problem 61. Recall the edge and incidence representations from Problem 57.
Show a property of graphs that is definable using incidence representation but
not using edge representation.

Problem 62. Recall the edge and incidence representations from Problem 57.
Find a class of graphs C such that the following problem is decidable for the
edge representation but not for incidence representation: given a formula of
mso, decide if it is true in some graph from C.

Problem 63. Show that “has an Euler cycle” is a graph property that is not
definable in mso, even if one uses the incidence representation from Problem 57.

Problem 64. Consider the extension of mso, called counting mso, where one
can write a formula “the size of set X is divisible by n” for every n. Show that
having an Euler cycle is definable in counting mso.

Problem 65. Show that Lemma 6.6 remains true when we use counting mso
(see Problem 64) and incidence representation.
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Problem 66. The grid theorem [46, 17] says that if a class of graphs has
unbounded treewidth, then it has square grids of arbitrarily large dimensions
as minors. Using the grid theorem, show that if a class C of finite graphs has
unbounded treewidth, then the following problem is undecidable: given an
mso formula j, decide if it is true in some graph from C.

Problem 67. Show that for every k 2 N there exists t 2 N such that if a graph
has treewidth � t then it has k vertex disjoint cycles. Hint: use the grid theorem.

Problem 68. Show that for a planar graph one can check in time
2O(
p

k log(k)) · nO(1) whether it contains a simple path with at least k vertices.
Hint: use the grid theorem for planar graphs in the following form: if a planar
graph has treewidth � 5k then it has the k⇥ k grid as a minor.

Problem 69. Recall 9SO from Problem 46. Let us model a graph as relational
structure using the edge representation discussed in Problem 57 (for the
incidence representation, the same result would be true). Show that a property
of graphs is definable in 9SO if and only if it is in the class NP (this is Fagin’s
theorem).

Problem 70. Show that the following problem is undecidable: the input is a
formula of 9SO that uses only equality (and the quantified relations); the
question is if this formula is true in some finite structure (i.e. a finite universe
equipped with equality only).

Problem 71. Show that there is a polynomial time algorithm deciding whether
a given graph is planar. Hint: assume that there exists a polynomial algorithm
deciding whether a given graph G is a minor of an input graph H.

Problem 72. Show that there exists a polynomial time algorithm deciding
whether a given graph can be drawn on torus without crossing edges.





7
Tree-walking automata

In this chapter we discuss a less standard automaton model for finite trees – as
opposed to tree automata discussed in Chapter 5 – namely tree-walking
automata. We show that tree-walking automata cannot be not determinised.
The point of a tree-walking automaton is to have a run that is sequential, i.e. it
is a sequence – and not a tree – of configurations. The idea is that at any
moment of its run, the automaton is in a single node of the input tree. Based on
the local view, which is this information

the label of the current node
the child number, which

may be undefined if
the node is the root

2-nd child

and the current state, the automaton chooses the new state and a neighbour
(possibly the parent) to move to, or to accept or reject. The information on the
child number is useful for operations like depth-first search, and the model
becomes powerless if the child number is not included in the local view, see the
exercises.

Definition 7.1 (Tree-walking automaton). The syntax of a (nondeterministic)
tree-walking automaton consists of: a finite ranked set S called the input alphabet,
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a finite set of states Q with designated initial and accepting subsets, and a transition
relation of the form

local views over Σ {parent, stay, child 1, ..., child n}.

maximal arity in Σ current local view

source state target state where to move

δ Q Q

We assume that for every transition, the local view (i.e. the second coordinate) is
consistent with the direction of the move (i.e. the last coordinate) in the sense that if the
direction is “parent” then local view says that there is a parent, and if the direction is
“child i” then local view says that there is an i-th child. The automaton is called
deterministic if it has one initial state and the transition relation is a function from the
first two arguments to the last two arguments.

Consider an input tree over the input alphabet. A configuration of the automaton
is a pair (state, node of the input tree). A run of the automaton is a sequence of
configurations, such that every two consecutive configurations are connected by
the transition relation in the natural way, illustrated in the following picture:

q p“child 2”transition used:

target configuration

source configuration

q

p

The automaton accepts a tree if there is a run which begins in an initial state at
the root of the tree, and which ends in a configuration that uses an accepting
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state. For a deterministic tree-walking automaton, there are two ways of
rejecting an input tree: (a) reaching a configuration that has no applicable
transition; (b) entering an infinite loop. Using a construction from [53, Theorem
1], one can show that every deterministic tree-walking automaton can be
modified so that rejection is done only via (a), see [41, Proposition 1].

Example 8. Consider the following ranked alphabet

white binary white leaf

arity zero

black leaf

{
The tree language “at least one black leaf” can be recognised by a
nondeterministic tree-walking automaton, which uses nondeterminism to find
the black leaf. If we want to avoid nondeterminism, or we want to recognise the
language “all leaves are white”, then we can use an automaton that does a
depth-first search through the tree. This automaton has three states:

which stand, respectively, for the first, second and third visit to a node. The
transition relation is defined so that the run looks like in the following picture:

first configuration

⇤
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7.1 Tree-walking automata cannot be determinised

The goal of this chapter is to prove that tree-waking automata cannot be
determinised.

Theorem 7.2. [11, Theorem 5] There is a tree language that is recognised by a
nondeterministic tree-walking automaton, but not by any deterministic tree-walking
automaton.

In the exercises, we show that nondeterministic tree-walking automata can be
converted into tree automata as defined in Chapter 5. The converse does not
hold, i.e. there is a language recognised by a tree automaton that is not
recognised by any (nondeterministic) tree-walking automaton [12, Theorem 2].
The rest of this chapter is devoted to proving Theorem 7.2. We begin by
defining the language which separates deterministic and nondeterministic
tree-walking automata, and we show that the language can be recognised by a
nondeterministic tree-walking automaton. In the next section we show the
lower bound – the separating language cannot be recognised by a deterministic
automaton.

The separating language. The input alphabet for the separating language is
the same as in Example 8, i.e. there is a binary white letter and two leaf letters
in the colours white and black. The language consists of trees with exactly three
black leaves, such that the black leaves are distributed

like this and not like this.
closest common ancestor
of second and third
black nodes

closest common ancestor
of first and second
black nodes

Lemma 7.3. The separating language is recognised by a nondeterministic tree-walking
automaton.
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Proof. The automaton first does a depth-first search, as explained in Example 8,
to check if the tree contains exactly three black nodes. If not, it rejects.
Otherwise, it uses a depth-first search to return to the first black node, and then
it uses nondeterminism to go to some ancestor v of the first black node. The
idea is that v will be chosen as in the following picture:

(*)
the left child of the
closest common ancestor
of the second and third
black nodes

Next, the automaton continues a depth-first search, as if it has just visited v for
the third time:

first move of the
depth-first search

The automaton accepts if during the remainder of this depth-first search, it sees
exactly one black node. If the input tree belongs to the language, then by
choosing v as in (*), the automaton will accept. If the input tree is outside the
language, i.e. the shape is like this:

then no matter how v is chosen, the automaton will see either zero or two black
leaves in its depth-first search after visiting v. Therefore the automaton accepts
all trees in the separating language, and no other trees. ⌅
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The lower bound. We now turn to the heart of Theorem 7.2, i.e. showing that
a deterministic tree-walking automaton cannot recognise the separating
language. We will show that for specially crafted inputs, a deterministic
tree-walking automaton can only do a depth-first search, and this is not enough
to recognise the separating language. Fix for the rest of this section a
deterministic tree-walking automaton. We will prove that this automaton does
not recognise the separating language. From now on, when talking about local
views, we talk about local views for the alphabet in the separating example.

Patterns. A pattern is defined similarly to a tree (over our fixed input
alphabet), with the exception that a subset of nodes – called ports – is labelled
by local views instead of letters from the input alphabet, subject to constraints
(A), (B), (C) in the picture below (the ports are the nodes that are not on a blue
background):

pattern without
root port and
with two leaf ports

pattern where
the root port
is a leaf port

pattern with 
root port and
two leaf ports

(A) ports are only in the 
root or in the leaves

(B) if the root is a port, then
its view says “left child”
or “right child”

(C) if a leaf is a port,
then its label is 
“binary white”

A pattern without any ports is the same as a tree. Define the arity of a pattern
to be the number of leaf ports.
Patterns are composed as follows. Let t be an n-ary pattern and let t1, . . . , tn be
patterns such that for every i 2 {1, . . . , n}, the root of pattern ti is a port which
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has the same local view as the i-th leaf port in t. Then their composition is
defined by fusing the corresponding ports – the i-th leaf port of t with the root
port of ti – as in the following picture:

t
t[t₁, t₂]

t₁

t₂

the composition

has three leaf ports

Equivalence. To show that our fixed deterministic tree-walking automaton
cannot recognise the separating language, we will find two patterns that are
equivalent with respect to the automaton, but which are not equivalent with
respect to the language. Define a port-to-port run inside a pattern to be a
sequence of configurations as depicted in the following picture
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the automaton begins in one 
of the ports

the run is cut off as soon
as it visits a port 

(this might never happen, because
the run might accept, reject
or loop before visiting another port).

the behaviour in the ports is
well-defined, because a pattern
includes the local view of each port

p

p

r

r

q

rq

q

q

The type of a port-to-port run is defined to be the following information: (a)
what is the state and port in the source configuration (b) what is the state and
port in the target configuration (or accept / reject / loop if the run does not
reach any port). In the type, we do not store the actual port node, only its
number (i.e. is it the root port, leaf port 1, leaf port 2, etc.). In particular, the
number of types of runs is finite once the arity of a pattern is fixed. Two
patterns are called equivalent if: they have the same local view in the root (or the
root is not a port in both patterns), they have the same number of leaf ports
with the same respective local views, and they have the same types of
port-to-port runs. Pattern equivalence is a congruence, i.e. composing
equivalent patterns gives equivalent results.
We now move to the first main ingredient in the proof. If T is a set of patterns,
then we write T+ for the least set of patterns that contains T and is closed
under pattern composition.

Lemma 7.4. [Homogeneous Pattern Lemma] There exist patterns t0, t1, t2 with the
following properties:

1. For every i 2 {0, 1, 2}, ti does not have black nodes, has a root port and i leaf
ports, and has the local view in all ports.

2. For every i 2 {0, 1, 2}, all i-ary patterns in {t0, t1, t2}+ are equivalent.

We draw the patterns from the lemma like this:
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t₁t₀ t₂

with the white circles standing for ports. The point of all ports having the same
local view is that the patterns can be freely composed. We use the name
homogeneous pattern for patterns in {t0, t1, t2}+. In this terminology, item 2 of
the lemma says that all homogeneous patterns of fixed arity i 2 {0, 1, 2} are
equivalent. For example, all of the following homogeneous binary patterns are
equivalent, because they have arity 2 (we adopt the convention that ports are
drawn as white, and ports connecting patterns are drawn in colours like yellow
or red, although they represent nodes with local view ):

When proving the Homogeneous Pattern Lemma, we use the following result
about finite semigroups. Recall that a semigroup is a set with an associative
product operation.

Lemma 7.5 (Semigroup Lemma). Let S be a finite semigroup with elements a, b.
There exist elements x 2 aS and y 2 bS which satisfy

x = xx = xy.

Proof. The key result is the following well-known observation on finite
semigroups: there is an idempotent power, i.e. a number w 2 {1, 2, . . .} such that
every element satisfies sw = swsw. More specifically, we take w to be the
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factorial of the size of the semigroup. We now show that

sw = swsw for every s 2 S.

Let then s 2 S. By considering the first repetition in the sequence s1, s2, . . . we
see that there exist numbers i, j, which are at most the size of the semigroup,
and such that si = si+1. Because i  w and j divides w, we get

sw = sw+j = sw+2j = · · · = sw+w = swsw,

thus proving that w is an idempotent power. To prove the lemma, define

y def
= bw x def

= (ay)w

In particular, both x and y are idempotents, because each is obtained by taking
some element to the idempotent power. This establishes x = xx. Furthermore,
since x ends with the idempotent y, we get x = xy. ⌅

Proof of the Homogeneous Patterns Lemma. For n 2 {1, 2, . . .}, define sn to be the
pattern depicted in the following picture:

the root is the only
port and it has 
local view

all leaves are white
and have depth n

Because equivalence on patterns has finitely many equivalence classes, there
must be some numbers n < N such that sn and sN are equivalent. Define t0, the
first of the homogeneous patterns from the statement of the lemma, to be sn.
Choose distinct nodes in the pattern sN which are right children and have
subtrees of depth n. Define s to be the binary pattern obtained from sN by
putting a leaf port in each of these chosen nodes, here is a picture of s for n = 2
and N = 4:
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chosen nodes

For the rest of the proof, we will draw the patterns t0 and s like this:

t₀ s

By definition, s[t0, t0] = sN , which is equivalent to sn = t0. By induction, this
generalises to the fact that all rank 0 patterns in {s, t0}+ are equivalent.
In the following claim, we use multiplicative notation for composition of unary
patterns.

Claim 7.6. There are unary patterns A, B 2 {s, t0}+ such that x = xx = xy holds for

ABt₀ t₀

s s

x y

Proof. Apply the Semigroup Lemma to the semigroup of unary patterns
(modulo pattern equivalence) generated by the following patterns:

a b

t₀ t₀

s s

⌅
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Let A, B and x, y be as in the above claim. Define t1 to be x and define

t₁ t₁

A B
=

def

t₁

s
t₂

This completes the definition of the patterns t0, t1, t2. From the claim, we get the
following equivalence:

t₀

t₀

t₀

is equivalent to is equivalent to

}
}

=
def

t₂

t₁ t₁

A B

t₁

s

t₁

B

t₁

s
t₁

x

x

}x

A symmetric proof also gives the following equivalence:

t₀

t₂
is equivalent to t₁

Directly from the claim, t1 is idempotent in the following sense

is equivalent to 
t₁

t₁
t₁
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Since t2 has t1 attached to each of its ports, idempotence of t1 implies that:

t₁

are equivalent to t₂

t₁

t₂ t₂t₂

t₁

Because t1 is from {s, t0}+, we get that

t₀
is equivalent to 

t₁
t₀

Using the above equivalences, and induction on the size of a pattern, one shows
that every homogeneous patterns of arity i 2 {0, 1, 2} is equivalent to ti. ⌅

The Homogeneous Pattern Lemma would also work for nondeterministic
tree-walking automata, and even tree automata as in Chapter 5 ones under a
suitable notion of equivalence. In contrast, the following lemma crucially
depends on determinism (actually, a stronger result is true, namely every two
homogeneous patterns of same arity are equivalent, see Exercise 79).

Lemma 7.7 (Rotation Lemma). The following two patterns are equivalent:

The lemma immediately implies the lower bound from Theorem 7.2, i.e. that a
deterministic tree-walking automaton cannot recognise the separating
language, thus finishing the proof of Theorem 7.2. Indeed, take the two
patterns in the Rotation Lemma, and put them into the following environment:
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pattern without root port
and without black leaves

pattern with exactly 
one black leaf

The tree on the left should be accepted and the tree on the right should be
rejected, but the automaton will behave the same way on both trees by the
Rotation Lemma. It remains to prove the Rotation Lemma.

7.2 Proof of the rotation lemma

In this section, we prove the Rotation Lemma. The proof uses a detailed
analysis of what a deterministic tree-walking automaton can do in a
homogeneous pattern. The bottom line is that the most interesting behaviour
that it can do is a depth-first search.

Closure of a state. For a state q, consider the run of the automaton which
begins in state q in the yellow node below:

and which is cut off at the first visit to a port node (white in the picture). Define
the closure of q, denoted by q, to be the following information:

• if the run reaches a port: the state of the last visit in the yellow node;
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• if the run does not reach a port: does it accept / reject / loop.

We might have q = q if the run goes directly to from the yellow node to some
port, without every seeing the yellow node again. The definition of closure is
based on the behaviour of the automaton on the interface between two copies
of t1. The following lemma shows that the same behaviour will be witnessed on
the interface between any two homogeneous patterns of nonzero arity.

Lemma 7.8. Let s, t be homogeneous patterns of nonzero arity, and let i be one of the
leaf ports in s. If the automaton begins in state q in the yellow node here:

leaf port i of s

s

t

then: (a) if q is one of accept / reject / loop then the automaton will do the same without
reaching any ports; and (b) if q is a state then the automaton will visit the yellow node
for the last time in state q and then go to some port.

Proof. Case (a) is illustrated in the following picture
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s

t

{
equivalent to s

}
}

equivalent to t

the run will stay
here until it 
accepts/ loops /
rejects

run begins here
in state q

For case (b), suppose that q is a state. Consider the following run

s

t

run begins here
in state q

equivalent to t₁

(1) the yellow node
is visited in state q,
and then one of
the red nodes is
visited.

(2) the yellow node
is last visited in state q,
and then one of the
ports       is visited

}
equivalent to t₁}
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Item (1) above is by the definition of q applied to the part of the pattern
between the red nodes. Item (2) above is by the definition of q applied to the
entire pattern. Consider now the port-to-port run which starts in the yellow
node of the pattern from case (a). By item (1), the yellow node will be visited in
state q before any of the ports are visited. By item (2), the last visit in the yellow
node will be in port q, and then one of the ports will be visited. ⌅

Lemma 7.9. For every states p, q we have the following implications (and their
symmetric versions with leaf port 2 used instead of leaf port 1):

p

q

q

q

q

p

q

q

Proof. We only prove the first implication, the other ones are proved the same
way. Consider the following port-to-port run:

the run begins here
in state p

(1) first visit in yellow node
is in state q

(2) last visit in yellow node
is in state q

(3) the run ends here
in state q

q

q

p

q

Item (1) in the picture is the assumption of the implication. Item (2) is by
definition of q and Lemma 7.8. Item (3) is again the assumption of the
implication applied to the entire pattern. The run from (2) to (3) witnesses the
conclusion of the implication. ⌅
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Search behaviour. We now turn to the crucial definition in the proof of the
Rotation Lemma.

Definition 7.10. We say that a state q is a left-to-right search if there exists some state
p such that the automaton admits the following port-to-port runs:

p

p pq

q

q

The following straightforward lemma shows that a left-to-right search will visit
leaf ports in left-to-right order.

Lemma 7.11. Assume that a state q is a left-to-right search. Then:

(*) if the automaton enters a homogeneous n-ary pattern in state q at leaf port i < n,
then it will exit through the next leaf port i + 1.

Proof. Here is the run that witnesses (*).

first visited in state q
last visisted in state q

first visited in state p
last visisted in state p

q

q

q

q

q

p

p

p

p

p
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In the picture above, we use Lemma 7.8 to prove that if a node is first visited in
state q, then it is last visited in state q, likewise for p. ⌅

We now state the most technical part of the proof, which says that the
conclusion (*) above is also true for any state r which goes from leaf port 1 to
leaf port 2 in the pattern t2.

Lemma 7.12. Suppose r, p are states which admit the following port-to-port run:

r p

Then the conclusion (*) of Lemma 7.11 is true with r used instead of q.

Proof. We claim that there is a state q which is a left-to-right search and satisfies

(   )

r

q

Before proving the claim, we use it to prove the lemma. Let t be an n-ary
homogeneous pattern and let i < n be one of the root ports. The following
picture shows the run that witnesses (*) in the conclusion of the lemma.
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leaf port i

the run begins here in state r

(1) the first visit is in state q, 
      the last visit in q

(2) after the last visit in the yellow
      node, port i+1 is visited

r

t

r

q

q

Item (1) is by (") and Lemma 7.8, and item (2) is from Lemma 7.11.

The rest of the proof is devoted to proving the claim, i.e. finding a state q which
satisfies (") and is a left-to-right search. Consider the following port-to-port
run, which exists by the assumption of the lemma:

(    )

starts here in state r 
r

p
ends here in state p

The red node must be visited by the above run, since it is on the way from leaf
port 1 to leaf port 2. We first claim that in the run above, the yellow node
cannot be visited. Otherwise, part of the run would look like this
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(1) x is defined to be
the state of the last
visit to the yellow
node

(2) y is defined to be
the state of the first
visit to the red node 
after (1)

(3) the last visit in the
red node is in state y

(4) the root port is visited in state y

rx

y

y

y

Items (3) and (4) are by Lemma 7.9 applied to the part of the run between (1)
and (2). Item (4) contradicts the assumption that the first port visited by the run
in (|) is leaf port 2.

Therefore, the run from (|) never visits the yellow node. Define q to be the state
of the first visit in the red node. Because the red node is visited first, we have

and therefore also which is equivalent to

r r

q
q

r

q

The conclusion above is (") from the claim at the beginning of the proof. It
remains to prove that q is a left-to-right search. Applying Lemma 7.9 to the
leftmost picture above, we get
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(*)

q

q

The last time the red node is visited in the run from (|) is in state q. After this
visit, the run goes to leaf port 2 in state p, thus proving

(**)

pq

To complete the proof that q is a left-to-right search, it remains to show:

(***)

p

p

Consider the port-to-port run described in the following picture:
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the run begins here
in state q

(3) the run ends here in state p

(1) the first visit in the
      yellow node is in state p

(2) the last visit in the 
      yellow node is in state p

(    )
pq
p

p

Claim 7.13. The red node is not visited between configurations (2) and (3).

The claim establishes (***), which was the last ingredient required to show that
state q is a left-to-right search. It remains to show the claim (actually, a finer
analysis would show that the red node is not visited at all during the run.)

Proof. Toward a contradiction, suppose that the red node is visited between
configurations (2) and (3). Let x be the state of the last visit to the red node.
Then the automaton would have a run like this:

(1) the run begins 
here in state q

(iii) the run ends here
       in state p (i) after (2), the red node

is visited is in state x

(2) the yellow node is 
visited in state p

(ii) the first visit here
after (i) is in state p

p

x

p
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The run from (2) to (i) is taken from the assumption on x. The run from (i) to
(ii) is because the run in (|) goes from the red node to leaf port 2 in state p. In
particular, the run from (i) to (ii) implies that

p x

which in turn yields the run from (ii) to (iii). The run from (1) to (iii) shows

pq

and therefore also
p

pq

which contradicts (**). ⌅

⌅

Proof of the Rotation Lemma. To prove the Rotation Lemma, let r, r0 be
port-to-port runs in the two patterns

from the statement of the Rotation Lemma, respectively, which have equivalent
source configurations. To prove equivalence, we need to show that target
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configurations are equivalent. Let q be the state in the source configuration of
the two runs. We consider two cases depending on the source port.

1. The runs begin in a leaf port. The cases of leaf port 1 and 3 are symmetric,
see we ignore the case of leaf port 3. Suppose that the automaton starts in
leaf port 1 or 2. Let us see what happens in the pattern t2 if we start in
leaf port 1 in state q. There are three cases to consider:

goes to the
root port

goes to
leaf port 2

returns to
the root port
or visits no
more ports

q q q

In the first case, we use Lemma 7.9 to show that both r and r0 end in the
root port (and in the same state). In the second case, we use Lemma 7.11
to show that both r and r0 end in leaf port i + 1 (and in the same state).
In the third case, we conclude that for every homogeneous pattern, if the
automaton begins in state q in a leaf port, then it will return to the same
port (in some fixed state) or never visit any other ports (and have the
same behaviour among accept / reject / loop). Here is the picture:
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q

2. The runs begin in the root port. Consider three cases for what happens if
the automaton starts in the roof of t2 in state q:

returns to
the root port
or visits no
more ports

goes to
leaf port 1

goes to
leaf port 2

qq q

For the first case, we use Lemma 7.9 to prove that both r and r0 will end
in leaf port 1. A symmetric reasoning is applied in the second case, with
the target being leaf port 3. The third case is dealt with the same way as
in the previous item.

⌅

Problem 73. Consider trees over an alphabet S containing two letters 0, 1 of
arity zero, one letter ¬ of arity one and two letters _,^ of arity two. Let T be
the trees over the above alphabet which evaluate to value 1 under the standard
semantics of boolean expressions. Show a tree-walking automaton that
recognizes T.
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Problem 74. Show that every language recognized by a two-way automaton on
finite words is regular.

Problem 75. Show that every language recognized by a tree-walking
automaton on finite trees is regular, i.e. recognised by a deterministic
(branching) bottom-up tree automaton.

Problem 76. Show that every language recognized by a deterministic
tree-walking automaton is also recognized by some deterministic tree-walking
automaton that never loops.

Problem 77. Following [34]. Consider a model of tree-walking automata where
the automaton sees only the label and whether or not the node is a root or leaf,
but it does not see the child number. Show that this model, even in the
nondeterministic variant, cannot recognise the language “every leaf has label
a”.

Problem 78. (Answer unknown) Prove or disprove: for every deterministic
top-down branching tree automaton, there is a deterministic tree-walking
automaton that recognises the same language.

Problem 79. Show the following generalisation of the Rotation Lemma: every
two homogeneous patterns of same arity are equivalent.

Problem 80. Consider a variant of tree-walking automata that can use 1 pebble.
The pebble operations are: place the pebble on the current node (assuming it is
not already placed anywhere else), pick it up from the current node. The local
view includes the information about whether or not the pebble is on the current
node. Show that this extension of tree-walking automata can still be simulated
by branching tree automata.

Problem 81. Consider an extension of the pebble automaton from the previous
exercise, where 2 pebbles are allowed. Show that (a) this extension of
tree-walking automata can still be simulated by branching tree automata if we
keep a stack discipline (i.e. if pebble 2 is present in the tree, then any actions on
pebble 1 are disallowed); (b) if stack discipline is lifted, then the model cannot
be simulated by tree automata and in fact has undecidable emptiness.





8
Weighted automata over a field

This chapter is about automata which input words and output rational
numbers. The original definition comes from Schützenberger [49]. We show
that these automata can be minimised (even in polynomial time) and can be
tested for equivalence (again, in polynomial time), but the following version of
the emptiness problem is undecidable:

is the output 0 for at least one input?

Note that the dual problem,

is the output 0 for all inputs?

is a special case of the equivalence problem, and is therefore decidable in
polynomial time. We use the field of rational numbers, but most results would
work for other fields. The automata can be viewed in two ways: as a
nondeterministic device with states from a finite set (we call these weighted
automata) and as a deterministic device with states from a vector space (we call
these vector space automata). Both views are useful, so we present both of
them.

Weighted automata. In the nondeterministic view, the automaton has a state
space which is a finite set, and many possible runs. Each run has an associated
weight, and the weight of an input word is the sum of weights of all the runs.
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Definition 8.1 (Weighted automaton). A weighted automaton consists of:

1. a finite set S, called the input alphabet;

2. a finite set P of states;

3. for each state, an initial weight and final weight, which are rational numbers;

4. a transition function from P⇥ S⇥ P to rational numbers.

Define the weight of a run of the automaton to be the product of: the initial weight of
the first state, the weights of all transitions used, and the final weight of the last state,
as in the following picture:

weights of transitions connecting consecutive states

weight of the run 1·2·3·2·4·2·3·2·3 = 1728

final weight of last stateinitial weight of first state

a
p q r

1 2 2 33 2 2 34
q p r p q

b a a b ab

Define the weight of a word to be the sum of the weights of all runs. The function
recognised by the automaton is the function that maps a word to its weight.

The above definition makes sense for an arbitrary semiring, i.e. a set equipped
with product and sum operations, such that sum is commutative and there is
an appropriate distributivity law. If we take the semiring

( {0, 1, 2, . . . , •}| {z }
universe of the semiring

, min|{z}
sum of the semiring

, +|{z}
product of the semiring

)
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then we recover distance automata as discussed in Chapter 4. For this chapter,
however, it will be important that we use the rational numbers, or more
generally a field, so that we can use linear algebra.

Example 9. Consider the following weighted automaton with three states.

transition of weight 1 (transitions not drawn have weight 0)

initial weight final weight

a : 1

1

a : 2

a : 1

11

The weight of a run that stays in is 1, and the weight of a run that goes from
to is 2n, where n is the number of times the run loops around . Other runs

have cost zero. If the input word has length n, then the weight of the word is

2n�1 + 2n�1 + · · ·+ 21
| {z }

runs from to

+ 1|{z}
loop in

= 2n

To recognise the same function an 7! 2n we could also use this automaton

1

a : 2

1

As we will see later in this chapter, weighted automata can be minimised. The
second automaton is in fact the minimal automaton – how could it be smaller?
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– and there exists an automaton homomorphism (see later in the chapter for the
definition) from the first automaton to the second one, namely the function

x · + y · 7! (x + y) · .

⇤

Example 10. [Running example] We describe two weighted automata which
will be used as the running example in this chapter. We can view a
nondeterministic automaton as a special case of a weighted automaton, by
assuming that every arrow (including dangling arrows that indicate initial and
final states) has weight 1. In this view, the semantics of weighted automata will
map an input word to the number of accepting runs. Consider the following
two nondeterministic automata over input alphabet {a}

a 

a 

a

a

which both recognise the language “nonempty words”. Both automata are
unambiguous, i.e. on each accepted word they have exactly one run. Therefore,
if we treat the automata as weighted automata, then the recognised function
will be the characteristic function of the set of nonempty words. Note that the
semantics of weighted automata is finer, i.e. leads to more non-equivalent
automata, than the standard nondeterministic semantics. For example, the
automaton

1

aa

a 

1
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also recognises – as a nondeterministic automaton – the set of nonempty words,
but it has n runs on inputs of length n, and therefore it is not equivalent to the
unambiguous automata when seen as a weighted automaton. We will return to
the unambiguous automata later in the chapter, and show that they are
isomorphic as weighted automata. ⇤

Vector space automata. We now present a deterministic view on weighted
automata. In this view, the automaton has a state space that is a vector space,
and each letter deterministically updates the state using a linear function. This
definition is almost the same as the original definition of Schützenberger [49,
Definition 1], except that the original definition also allowed control states from
a finite set. We do not use control states, because they do not contribute to
expressive power of the model (although they make constructions easier), see
the proof of Lemma 8.12.

Definition 8.2 (Vector space automaton). A vector space automaton1 consists of:

1. an input alphabet, which is a finite set S;

2. a set Q of states, which is a vector space of finite dimension over Q;

3. an initial state q0 2 Q;

4. for each letter a 2 S, a linear map from Q to itself, denoted by q 7! qa;

5. a linear map from Q to the rational numbers, called the output function.

The automaton begins in the initial state, and when reading a letter a 2 S, it updates
its state using the transition function from item 4. After reading all the letters of the
input word, the output function is applied to the last state, yielding the output of the
automaton.

1This definition is designed so that it can be generalised to categories other than the category of
vector spaces, see e.g. [21]
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The state space of a vector space automaton is isomorphic to Qn for some
n 2 N, since these are the vector spaces of finite dimension. Therefore, when
representing a vector space automaton for the use of algorithms, we simply
indicate the dimension n, and use matrices to represent the transitions from
item 4 and the output function from item 5.

Example 11. Without increasing the expressive power of the model, we could
allow affine functions in the transitions of a vector space automaton. The
construction is illustrated on the following example.
Consider the length function over a one letter alphabet {a}. The most natural
approach to recognise this function would be to have the one dimensional
vector space Q as the state space and use the affine function q 7! q + 1 as the
transition function. However, Definition 8.2 requires linear transition functions,
so we use a workaround. The state space is Q2 and the initial state is (1, 0).
When reading a letter a, the automaton applies the function

(x, y) 7! (x, x + y)

and the output function is (x, y) 7! y. As an alternative to the above vector
space automaton, we can use the following weighted automaton

1

a : 1a : 1

a : 1

1

If we ignore the weights, the above picture shows a nondeterministic
automaton, which has exactly n accepting runs on a word of the form an, and
thus using the weighted semantics, we get the length function. (This is the
weighted automaton at the end of Example 10.) ⇤

Equivalence of the models. A closer inspection of the vector space
automaton and the weighted automaton used in Example 11 shows that these
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are actually the same automaton, only drawn using different pictures. This
sameness is formalised in the following lemma.

Lemma 8.3. Weighted automata and vector space automata recognise the same
functions.

Proof. Actually, the proof shows something more, namely that the two
definitions of automata are just different syntaxes for the same object. To
transform between syntaxes, we use the transformation

A 2 weighted automata 7! vecA 2 vector space automata,

described below, which preserves the recognised function. The transformation
is easily seen to be reversible, thus proving the lemma.
The vector space automaton vecA is defined as follows.

• The state space of vecA is QP, where P is the states of A.

• The initial state of vecA assigns to each state its initial weight.

• The output function of vecA multiplies each coordinate by its final weight.

• For each input letter a 2 S, the state update q 7! qa of vecA maps a vector
q to a vector which stores the following number on coordinate p 2 P:

Â
r2P

(coordinate r of q) · (weight of transition r a! p in A).

An alternative view is that the linear map above is described by the
matrix which is obtained by looking at the weights of transitions that
read letter a in the automaton A.

⌅

Example 12. [Running example] Recall the two weighted automata:
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a 

a 

a

a

We now show the corresponding vector space automata. The state spaces of the
automata are 2-dimensional vector spaces with bases { , } and { , },
respectively. The initial vectors are and , respectively, while the transition
functions are

(x · + y · ) · a = (x + y) · (x · + y · ) · a = x · + x · .

The output function in the first automaton is projection to coordinate and the
output function in the second automaton is projection to coordinate . ⇤

8.1 Minimisation of weighted automata

In this section, we prove a Myhill-Nerode style theorem on the existence of a
minimal automaton, which is unique up to isomorphism (although the notion
of isomorphism is a bit more involved than usual).

Homomorphisms of weighted automata. Let A and B be vector space
automata over the same input alphabet S. A homomorphism from A to B is
defined to be a linear map from the states of A to the states of B which is
consistent with the structure of the automata, in the following sense:

(h(q))·a h(q·a)= output(h(q)) output(q)= h(initial state)initial state = 

If there is such a homomorphism, then the functions computed by the two
automata are clearly the same. An isomorphism is a homomorphism which has
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an inverse that is also a homomorphism. If a homomorphism is surjective, as a
function on state spaces, and the dimensions of the state spaces are the same,
then it is an isomorphism. This is because on vector spaces of finite dimension,
a surjective dimension preserving linear map has a linear inverse.

Example 13. [Running example] Recall these weighted automata

a 

a 

a

a

and their corresponding representations as vector space automata. We present a
homomorphism, in fact an isomorphism, from the first automaton to the
second automaton (as vector space automata). This is the function h defined by

x · + y · 7! (x + y) · + y · .

Note that h is an isomorphism between the two state spaces. Clearly h maps the
initial state of the first automaton to the initial state of the second
automaton. The following diagram shows that h is consistent with the
transition functions:

x · + y ·

h
✏✏

q 7!qa in left automaton
// (x + y) ·

h
✏✏

(x + y) · + y ·
q 7!qa in right automaton

// (x + y) · + (x + y) ·

The following diagram shows that h is consistent with the output functions:

x · + y ·

h
✏✏

output in left automaton

,,(x + y) · + y ·
output in right automaton

// y
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We have thus shown that h is a homomorphism. Since it was an isomorphism
of vector spaces, its inverse is also a homomorphism of automata (the diagrams
are easily seen to invert), and therefore the two automata are isomorphic as
vector space automata. ⇤
We now state the minimisation theorem. Call a vector space automaton reachable
if every state in its state space is a finite linear combination of reachable states,
i.e. states that can be reached from the initial state by reading some input word.

Theorem 8.4. Let f : S⇤ ! Q be a function recognised by a vector space automaton.
There exists a vector space automaton, called the minimal automaton of f , which
recognises f and such that every reachable vector space automaton recognising f admits
a homomorphism into the minimal automaton.

Proof. The proof is essentially the same as for the classical Myhill-Nerode
theorem. Actually, the theorem remains true for vector space automata that can
use infinite dimensional vector spaces as states.
The set of functions S⇤ ! Q can be viewed as an infinite dimensional vector
space, with functions seen as vectors indexed by input words. There is a
natural right action of words w 2 S⇤ on this vector space, defined by

q : S⇤ ! Q 7! qw : S⇤ ! Q where qw is defined by v 7! q(wv).

For every word w, the map q 7! qw is linear, because it simply rearranges the
coordinates of q when seen as a vector.
Let f be a function as in the statement of the theorem. Define the minimal
automaton of f as follows. The state space, which is a subspace of the infinite
dimensional space S⇤ ! Q, is all finite linear combinations of functions of the
form f w for w 2 S⇤. The initial state is f . The transition function is defined
using the right action q 7! qa defined above. The output function takes a state q
to its value on the empty word. The automaton clearly recognises the function
f . We will justify below why the state space has finite dimension, and therefore
the automaton is indeed a vector space automaton as per Definition 8.2.
We now show that every reachable vector space automaton recognising f
admits a surjective homomorphism onto the minimal automaton defined above.
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Let A be be a vector space automaton recognising f . For a state q of A, define
[q] : S⇤ ! Q to be the function recognised by the vector space automaton
obtained from A by changing its initial state to q.

Claim 8.5. The function [ ] is a surjective homomorphism from A onto the minimal
automaton.

Proof. The function [ ] is a linear map from states of A to the vector space
S⇤ ! Q, because the state update and output functions in A are linear
functions. Note that the state space of the minimal automaton is not all of
S⇤ ! Q, but only a subspace, so we still need to show that [ ] has its state space
contained in that subspace. The function [ ] is compatible with transitions, i.e.

[qa]
|{z}

transition in A

= [q]a.
|{z}

transition in the minimal automaton

Indeed, the left side describes the function: “what A will do if it starts in state
qa and reads a word w”, while the right side describes the function “what A
will do if it starts in state q and reads a word aw”. The initial state of A, call it
q0, is mapped by [ ] to the function f recognised by the automaton A. It follows
that

[q0w] = f w for every w 2 S⇤.

By the above and the assumption on A being reachable, it follows that the
image of [ ] consists of linear combinations of functions of the form f w, and
therefore the image of [ ] is contained in – in fact, equal to – the state space of
the minimal automaton. Finally, the function [ ] is compatible with the output
functions of the automata, because the value of the output function of A on
state q is the same as [q](e). ⌅

A surjective linear map cannot increase the dimension of a vector space, and
therefore the above claim also implies that the minimal automaton has a finite
dimensional state space, assuming that f was recognised by a vector space
automaton with a finite dimensional state space ⌅
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Example 14. [Running example] The function recognised by the automata in
the running example is the characteristic function of the set of nonempty
words. This function is not recognised by any vector space automaton with a
one dimensional state space (equivalently, by any weighted automaton with
one state) because if the state space has one dimension, then the recognised
function is of the form

an 7! l0 · ln, for some l0, l 2 Q

which is not the case for the characteristic function of nonempty words.
Therefore, dimension � 2 is necessary to recognise the function from the
running example, and thus each of the two automata in the running example is
a minimal automaton. ⇤
So far, we have only proved that a minimal automaton exists. In the next
section, we show that it can also be efficiently computed.

8.2 Algorithms for equivalence and minimisation

In this section we give polynomial time algorithms for equivalence and
minimisation of vector space automata. We use the following lemma to
implement operations of vector spaces.

Lemma 8.6. Assume that rational numbers are represented in binary notation, linear
subspaces of Qd are represented using a basis, and linear maps are represented using
matrices. The following operations on linear subspaces can be done in polynomial time:
(a) test for inclusion, (b) compute the subspace spanned by a union of two subspaces, (c)
compute the image under a linear map.

Equivalence. We begin with a simple algorithm for finite vector space
automata: computing linear combinations of reachable states. Computing the
actual reachable states, and not their linear combinations, is a different story
and leads to undecidability, as we will see in Section 8.3. To compute linear
combinations of reachable states we use a simple saturation procedure. We
begin with Q0 ✓ Q being the vector space spanned by the singleton of the
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initial state, i.e. this is the one dimensional vector space whose basis is the
initial state. Then, assuming that a vector space Qi ✓ Q has already been
defined, we define Qi+1 to be the vector space spanned by

Qi [
[

a2S
Qi · a.

A representation of Qi+1 can be computed in polynomial time from a
representation of Qi, using the toolkit from Lemma 8.6. We also use the
following observation: the coefficients in the basis for Qi · a can only grow, as
compared with the coefficients for Qi, by a constant amount depending on the
linear map q 7! qa. This way we get a growing chain of linear subspaces

Q1 ✓ Q2 ✓ · · · ✓ Q.

Since the dimension cannot grow indefinitely, this sequence must stabilise after
a number of iterations that is at most the dimension of Q, and this point is the
set of reachable states.
Here is a corollary of the reachability algorithm described above.

Theorem 8.7. The following problem is in polynomial time:

• Input. Two vector space automata A,B.

• Question. Do they compute the same function S⇤ ! Q?

Proof. Using a product construction, compute a vector space automaton which
computes the function A�B. In the resulting product automaton, compute the
linear combinations of reachable states. The automata A,B are equivalent if
and only if, the function A�B is constant zero. The latter can be tested by
computing the linear combinations of reachable states in the product
automaton, taking the image under the output function, and testing if the result
is equal to the zero-dimensional space {0}. ⌅

Computing the minimal automaton. We show that the minimal automaton
from Theorem 8.4 can be computed in polynomial time from any vector space
automaton recognising the function f .
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Theorem 8.8. The following problem is in polynomial time:

• Input. A vector space automaton A.

• Output. The minimal automaton of the function recognised by A.

Proof. Consider a vector space automaton A with state space Q. For
n 2 {0, 1, . . .}, define states q, p 2 Q to be n-equivalent if for every input word
w of length  n, the states qw and pw have the same values under the output
function. This equivalence relation can be seen as a subset of

En ✓ Q⇥Q.

By linearity of the automaton, the subset is linear. We can also compute the
equivalence relations as follows. The set E0 is the inverse image of {0} under
the linear map

(p, q) 7! F(p)� F(q)

while the set En+1 is the intersection

En+1 =
\

a2S
( fa)

�1(En) where fa is the linear map (p, q) 7! (pa, qa).

We have a sequence of linear subspaces

Q⇥Q ◆ E0 ◆ E1 ◆ E2 ◆ · · ·

By the same arguments as in the equivalence algorithm, the sequence above
must stabilise at some equivalence relation, call it E⇤, which can be computed
in polynomial time. This stable equivalence relation E⇤ is the Myhill-Nerode
equivalence relation, which identifies states if they produce the same outputs
on all inputs. In the terminology of the proof of Theorem 8.4, two states are
equivalent under E⇤ if and only if they have the same image under the function
[ ]. The quotient of Q under E⇤ is therefore the minimal automaton; and this
quotient can be computed in polynomial time, see Exercise 87. ⌅
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Example 15. [Running Example] To finish the running example, we run the
minimisation algorithm on the vector space automaton that corresponds to

a 

a 

The equivalence E0 identifies two states if they agree on the coordinate . The
equivalence E1 identifies two states

x · + y · and x0 · + y0 ·

if they are equivalent with respect to E0, i.e. y = y0, and furthermore applying a
to both states gives equivalent results with respect to E0, i.e.

(x + y) · and (x0 + y0) ·

agree on coordinate , which means that they are equal, and therefore also
x = x0. Summing up, E1 is the identity equivalence relation, and therefore the
automaton is already minimal. ⇤

8.3 Undecidable emptiness

In Theorem 8.7, we showed that equivalence of vector space automata (and
therefore also of weighted automata) is decidable in polynomial time. A
corollary is that one can decide if a weighted automaton maps all inputs to
zero. We now show that a dual problem, namely mapping some word to zero,
is undecidable. For the undecidability proof, it will be more convenient to use
the syntax of weighted automata and not that of vector space automata.

Theorem 8.9. The following problem is undecidable:

• Input. A weighted automaton.
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• Question. Is some word mapped to 0?

Changing 0 to any other number would not make the problem decidable,
because if f is recognised by a weighted automaton, then so is x 7! f (x)� c for
every constant c 2 Q. There are two basic ingredients in the proof: hashing
words as numbers, and composing weighted automata with nfa’s with output.
These ingredients are described below.

Hashing. A weighted automaton can map a string of digits to its
interpretation as a fraction stored in binary (or ternary, etc) notation. This
construction is described in the following lemma.

Lemma 8.10. For every alphabet S there is a weighted automaton which computes an
injective function from S⇤ to the strictly positive rational numbers.

Proof. We only show the construction when S has two letters {0, 1}. The idea is
that the weighted automaton maps a word w to the number represented in
binary by the word 1w. We use the leading 1 so that the representation of w
takes into account leading zeroes. Here is the automaton.

if a position in the input word has bit 1
and is followed by i bits,  then the position

contributes 2  to the output i

if the input word has length n,
then the loop around this 

state will contribute 2 

leading 1binary representation

{ {

n

1 11

0,1 : 2 0,1 : 20,1 : 1

1 : 1

1
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⌅

Composition with nfa’s. To give a high-level description of the
undecidability proof, it will be convenient to compose weighted automata with
a certain kind of word-to-word functions.

Definition 8.11. An nfa with output consists of:

1. An nfa A, called the underlying automaton;

2. An output alphabet G;

3. For each transition of A, an associated output word in G⇤;

4. For each final state of A, an associated end of input word in G⇤.

The output of a run, which is a word over the output alphabet, is defined by
concatenating the output words for all transitions in the order that they are
used, followed by the end of input word for the last state in the run. Given a
word w over the input alphabet, the output of the automaton A(w) consists of
the outputs of all of its accepting runs. We view A(w) as a multiset, so that if n
different runs produce the same output word, then this output word is counted
n times.

Example 16. Consider the following nfa with output where the input alphabet
is {a} and the output alphabet is {a,a}.

output of the transition

end of input
word

a : aaa : a

a : aa

a : a

On an input word an, the automaton has 2n possible runs – and therefore also
2n output words including repetitions – because after reading each letter, the
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automaton can be in either the red or white state. The function recognised by
the automaton is

an 7! Â
X✓{1,...,n}

an+|X| a

where sum denotes multiset addition. For example, in the multiset A(a10), the
word a12 appears (10

2 ) times. ⇤
Weighted automata can be composed with nfa’s with output.

Lemma 8.12. If A is an nfa with output, which has input alphabet S and output
alphabet G, and B is a weighted automaton with input alphabet G, then the function
B ·A defined by

w 2 S⇤ 7! Â
v2A(w)

B(v)

is also recognised by a weighted automaton. In the sum above, outputs are counted with
repetitions, i.e. an output word produced n times contributes n times to the sum.

Proof. For a run of the weighted automaton B, define its transition weight to be
the product of the weights of the transitions used in the run, without taking into
account the initial weight of the first state or the final weight of the last state.
A natural product construction does the job. Define a product automaton as
follows. States of the product automaton are pairs (state of B, state of A). The
initial weight of a pair (p, q) is defined to be 0 if q is not an initial state in A, and
otherwise it is defined to be the initial weight of p. The weight of a transition

(p, q) a! (p0, q0)

in the product automaton is defined to be the 0 if A does not admit a transition
q a! q0, otherwise it is defined to be the sum

Â
r

transition weight of r

where r ranges over runs of the weighted automaton B that begin in p, read the
output word labelling the transition q a! q0, and end in p0. The final weight of a
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pair (p, q) is defined to be 0 if q is not a final state in A, and otherwise it is
defined to be

Â
r

(transition weight of r) · (final weight of last state in r)

where r ranges over runs of the weighted automaton B which begin in state p
and read the end of input word for state q in the automaton A. ⌅

The multiset semantics of nfa’s with output were chosen so that the proof
above works. In our undecidability proof below, we use the above lemma in the
special case when A has at most one run over every input word, and so the
multiset semantics do not play a role. Equipped with Lemmas 8.10 and 8.12, we
prove the undecidability result from Theorem 8.9.

Proof of Theorem 8.9. We first introduce some notation and closure properties for
weighted automata. If A,A0 are weighted automata, then we write A+A0 for
the disjoint union of the automata; on the level of recognised functions this
corresponds to addition of outputs. We write �A for the weighted automaton
obtained from A by multiplying all initial weights by �1, on the level of
recognised functions this corresponds to multiplying the output values by �1.
We also write A�A0 instead of A+ (�A0). Finally, if L is a regular language,
then there is a weighted automaton, call it char(L) which recognises the
characteristic function of L, i.e. maps words from L to 1 and other words to 0.
The proof of the theorem is by reduction from the halting problem for Turing
machines. For a Turing Machine M, we define a weighted automaton which
outputs 0 on at least one input word if and only if M has at least one halting
computation. Suppose that S is the work alphabet of the machine M, which
includes the blank symbol. We encode a configuration of the machine as a word
over the alphabet

D def
= S + S⇥Q

in the natural way, here is a picture:
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a b b _

qcontro
l st

ate

blank symbol

cell w
ith

 symbol b

To ensure that each configuration has exactly one encoding, we assume that the
first letter and the last letter are not just blank symbols, i.e. each one contains
either the head, or a non-blank tape symbol, or both.
Define a pre-computation to be a word which is a sequence of encodings, in the
sense above, of at least two configurations, separated by a fresh separator
symbol #, such that the first configuration is initial and the last configuration is
final. Here is a picture:

#b

q

b#a b

p

b a b

p

b # _ a b

q

b

first configuration
is initial

last configuration
is finalseparator symbol

consecutive configurations
need not be connected

by the successor relation
of the Turing machine

A halting computation of the Turing machine is a pre-computation where
consecutive configurations are connected by the successor relation on
configurations of the Turing machine.
The set of pre-computations is a regular language. It is not hard to write nfa’s
with output A1,A2 such that if the input is not a pre-computation then the
output for both A1 and A2 is the empty multiset, and if the input is a
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pre-computation, as witnessed by a (unique) decomposition

w1#w2# · · · #wn w1, . . . , wn 2 D⇤

then A1,A2 have exactly one accepting run each, with respective outputs

w2#w3# · · · #wn w01#w02# · · · #w0n�1

where w0i denotes the successor configuration of wi. The Turing machine has a
halting computation if and only if there is some pre-computation where A1 and
A2 produce the same output. This is equivalent to the following weighted
automaton producing 0 on at least one output:

char(words that are not pre-computations) +H ·A1 �H ·A2,

where H is the hashing automaton from Lemma 8.10 and the product operation
· is as in Lemma 8.12. ⌅

Problem 82. Construct weighted automata over unary alphabet, which for a
word of length n output

1. n2;

2. n2 + 2n;

3. n3;

4. nk for constant k 2 N;

5. p(n) for any polynomial p 2 Q[x], i.e. a univariate polynomial with
rational coefficients.

Problem 83. Show that for weighted automata with 2 states over a unary
alphabet, it is decidable whether the automaton assigns value 0 to some word.
Remark: for weighted automata over a unary alphabet with an arbitrary number
of states, this is an important open problem, called the Skolem Problem in [43].
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Problem 84. A probabilistic automaton is a vector space automaton where the
initial state q 2 Qd is a probability distribution on {1, . . . , d}, the linear updates
are such that they preserve probability distributions, and the output function
sums the coordinates corresponding to some accepting subset F ✓ {1, . . . , d}.
Show that the following questions are undecidable for probabilistic automata:

1. is there some input word which produces output exactly 1/2?

2. for fixed p 2 (0, 1), is there some input word which produces output
exactly p?

3. is there some input word which produces output at least 1/2?

Problem 85. Show that the following question is decidable for probabilistic
automata: is there some input word which produces output equal exactly 0?

Problem 86. Show that for every weighted automaton there is an isomorphic
(using the notion of isomorphism inherited from vector space automata) one
which has one initial and one final state.

Problem 87. Let E ✓ Qn ⇥Qn be a linear subspace which is an equivalence
relation. Let f1, . . . , fk : Qn ! Qn be linear maps which respect the equivalence
relation, i.e. if inputs are equivalent, then also outputs are also equivalent.
Show that one can compute in polynomial time linear maps

h : Qn ! Qm f 01, . . . , f 0k : Qm ! Qm

so that E is the kernel of h, and the diagram

Qn fi //

h
✏✏

Qn

h
✏✏

Qm
f 0i
// Qm

commutes for every i 2 {1, . . . , k}.
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Problem 88. Consider a more symmetric model of nfa with output, as in
Definition 8.11, where there is also a start of input word associated to each initial
state, and the output of a run begins with the start of input word for its first
state. Show that this model has the same expressive power as in Definition 8.11.

Problem 89. Call an nfa unambiguous if for every input there is at most one
accepting run. Show that equivalence – i.e. are the same input words accepted –
for unambiguous automata can be decided in polynomial time.

Problem 90. Construct an nfa with n states such that shortest rejected word
rejected has length exponential wrt. n.

Problem 91. Show that if an nfa with n states is unambiguous and rejects at
least one word, then it rejects some word of length at most n� 1.

Problem 92. Show a polynomial time algorithm that decides if an nfa is
unambiguous.

Problem 93. Give a more direct proof of Theorem 8.9 which uses the Post
Correspondence Problem. Recall that the Post Correspondence Problem is the
question: given two homomorphisms f , g : S⇤ ! G⇤, decide if there is some
nonempty word w such that f (w) = g(w). This problem is undecidable.





9
Vector addition systems

This chapter is about vector addition systems. The definition of this device
could hardly be simpler:

Definition 9.1 (Vector Addition System). The syntax of a vector addition system
consists of a dimension d 2 {1, 2, . . .} and a finite set d ✓ Zd. A run of the system is a
finite sequence of vectors in Nd (called configurations) such that every consecutive
configurations in the run form a transition as explained in the following picture for
dimension d = 2:

run

transition, i.e. a pair 

of configurations satisfying

configuration

The most famous problem for vector addition systems is reachability, i.e. given
two configurations, decide if they can be connected by a run. Reachability is
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decidable, which was first shown by Mayr in [36], although the computational
complexity of the problem remains unknown, see [47]. The reachability
algorithm is complicated and beyond the scope of this book. It is crucial that
configurations are vectors of natural numbers; for configurations that are
integer vectors the reachability problem and related problems become much
simpler, see Exercise 103.
In this chapter, we present a simple algorithm for a different problem, called
coverability.

Theorem 9.2. The following problem, called coverability, is decidable:

• Input. A vector addition system with distinguished configurations x, y.

• Question. Is there a run from x to some configuration � y?

In the above theorem, � refers to the coordinate-wise ordering on vectors of
natural numbers. Not only is the algorithm for the coverability problem
conceptually simple, but it represents a technique that can be used to solve
many other problems. The technique is known as well-structured transition
systems, and well quasi-orders play a prominent role. See the exercises for more
examples, and [48] for more on the topic.
Fix an input to the coverability problem, i.e. a vector addition system with
distinguished configurations x and y. Let d be the dimension. Define a
semi-algorithm for a decision problem to be an algorithm that terminates with
success for “yes” instances, and which does not terminate for “no” instances. A
decision problem is decidable if and only if both the problem and its
complement have semi-algorithms. Clearly the coverability problem has a
semi-algorithm – enumerate all runs that begin in x and terminate with success
after finding a run that reaches a configuration � y. The following lemma
completes the proof of Theorem 9.2, by giving a semi-algorithm for the
complement of the coverability problem.

Lemma 9.3. There is a semi-algorithm deciding non-coverability, i.e. an algorithm that
inputs a vector addition system with configurations x, y and terminates with success if
and only if there is no run from x to any configuration � y.
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Proof. Define a separator for configurations x and y to be a set of configurations
that satisfies properties (1) - (4) depicted below

(1) does not contain x 

(2) contains y 

the separator

(4) is backward closed under transitions:
      if it contains the target of a transition,
      then it also contains the source.

(3) is upward closed 
   for the coordinate-wise
   ordering on tuples of
   natural numbers

We claim that the following conditions are equivalent:

1. there is no run from x to a configuration � y;

2. there is a separator for x and y.

For the top-down implication, one takes the separator to be the set of those
configurations which can reach at least one configuration � y. This set is
upward closed because the target set � y is upward closed, and transitions can
be moved up, i.e. if a! b is a transition, then also a + c! b + c is a transition,
for every c 2 Nd. (The remaining conditions in the definition of a separator are
easily seen to be satisfied.) For the bottom-up implication, we observe that the
separator contains all configurations that can reach at least one configuration
� y, and possibly other configurations as well.
To prove the lemma, it remains to show a semi-algorithm that checks if there
exists a separator. We claim that a separator, actually any upward closed set,
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can be represented in a finite way using its minimal elements. First, every
element in the separator is above some minimal element, because the order 
on Nd is well-founded. Second, every set has finitely many minimal elements,
because minimal elements form an antichain (i.e. are pairwise incomparable
with respect to ) and antichains are finite according to the following claim.

Claim 9.4 (Dickson’s Lemma). Antichains in Nd are finite.

Proof. We prove a slightly stronger statement: for every sequence

x1, x2, . . . 2 Nd

there is an infinite (not necessarily strictly) increasing subsequence,
i.e. consecutive elements in the subsequence are related by . The stronger
statement is proved by induction on d.

• Induction base d = 1. Take the first element x of the sequence such that all
following elements are � x. Such an element must exist because  on N

is a well-founded total order. Put x into the subsequence, and then repeat
the process for the tail of the sequence after x.

• Induction step. Using the induction assumption, extract a subsequence
that is increasing on the first coordinate, and from that subsequence
extract another one that is increasing on the remaining coordinates.

An alternative proof would use the infinite Ramsey theorem, see
Problem 97. ⌅

By Dickson’s Lemma, every upward closed set can be represented in a finite
way as the upward closure of some finite set. The semi-algorithm from the
statement of the lemma enumerates through all finite subsets S ✓ Nd, and for
each one checks if its upward closure satisfies conditions (1)-(4) in the definition
of a separator. The only interesting condition is (4), i.e. backward closure under
transitions. Consider a potential counterexample for (4), i.e. a transition a! b
such that the target is in the upward closure of S, but the source is not. If the
counterexample a! b is chosen minimal coordinate-wise, then
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(*) there is some c 2 S such that for every coordinate i 2 {1, . . . , d}, either the
source has 0 on coordinate i, or the target agrees with c on coordinate i.

There are finitely many transitions which satisfy (*), namely at most 2d|S|, and
we can go through all of them to check if (4) is satisfied. ⌅

Problem 94. Show that the following conditions are equivalent for every
quasi-order (a binary relation that is transitive and reflexive, but not necessarily
anti-symmetric):

1. every infinite sequence contains an infinite subsequence that is increasing
(not necessarily strictly);

2. there are no infinite strictly decreasing sequences (i.e. the quasi-order is
well-founded) and no infinite antichains (an antichain is a set of pairwise
incomparable elements);

3. every upward closed set is the upward closure of a finite set.

A quasi-order that satisfies the above conditions is called a wqo.

Problem 95. Which of the following ordered sets are wqo’s?

1. N2 with lexicographic order;

2. {a, b}⇤ with lexicographic order;

3. N with divisibility order, i.e. x smaller than y if x | y;

4. S⇤ with prefix order;

5. S⇤ with infix order;

6. line segments with an order: [a, b] smaller than [c, d] if
(b < c) _ (a = c ^ b  d);

7. graphs with subgraph order (remove some edges and some vertices);
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8. trees with subtree order (remove some nodes, but keep the descendant
ordering).

Problem 96. Show that if (X,X) and (Y,Y) are both wqos then also
(X⇥Y,) is wqo, where (x, y)  (x0, y0), x X x0 ^ y Y y0.

Problem 97. Prove the Infinite Ramsey Theorem: in every infinite clique, with
edges coloured on finitely many colours there is an infinite monochromatic
subgraph, i.e. subgraph such that all the edges in it are coloured by the same
colour.

Problem 98. Let (X,�) be a wqo. Show that there is no infinite growing
sequence of upward-closed subsets X, i.e. no sequence

U1 ( U2 ( . . . ,

s.t. for all i 2 N set Ui ✓ X is upward-closed wrt. �.

Problem 99. Show that given a d-dimensional VAS and s 2 Nd, one can
compute the set of all configurations from which s is coverable. Hint: use
Problem 98.

Problem 100. Show that given a vector addition system with a distinguished
source configuration, one can decide if the set of configurations reachable from
the source is finite.

Problem 101. Prove the following version of Higman’s Lemma: if S is a finite
alphabet, then S⇤ ordered by (not necessarily connected) subword is a wqo.

Problem 102. Define a rewriting system over an alphabet S to be finite set of
pairs w! v where w, v 2 S⇤. Define!⇤ to be the least binary relation on S⇤

which contains!, is transitive, and satisfies

w!⇤ v implies aw!⇤ av and wa!⇤ va for every a 2 S.

There exist rewriting systems where!⇤ is an undecidable relation. Show that
!⇤ is decidable if the rewriting system is lossy in the following sense: for every
letter a 2 S, the rewriting system contains a! #.
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Problem 103. Define a Z-vector addtion system in the same way as a vector
addition system, except that configurations are vectors in Zd. Show that the
reachability problem is decidable, i.e. one can decide if there is a run
connecting two given configurations.

Problem 104. Define a vector addition system with states to be a finite set of states
Q, a dimension d, and a finite set d ✓ Q⇥Zd ⇥Q. A configuration is an
element of Q⇥Nd, and a transition is a pair

(q, x)! (p, y) such that (q, y� x, p) 2 d.

Show that the following problem is decidable: given states p, q decide if there is
a run from the configuration (p, 0) to some configuration with state q.

Problem 105. Find a vector addition system, say of dimension d, where the
reachability relation

{(x, y) : there is a run from from x to y} ✓ N2d

is not semilinear. Hint: use states and try to simulate exponentiation.

Problem 106. Find a family of vector addition systems with states, say of
dimension d (the dimension does not need to be fixed for the family), where the
reachability set

{v : there is a run from from the origin to v} ✓ Nd

is finite, but

1. of doubly exponential size,

2. of tower size

with respect to the number of transitions.
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First-order theory of the reals

Consider the real numbers, equipped with binary functions for addition,
subtraction, multiplication, and constants for zero and one, and a binary
relation for the ordering

(R,+,�,⇥, 0, 1,<)

The goal of this section is to prove a Theorem of Alfred Tarski, which says that
the first-order theory of this structure is decidable, i.e. there is an algorithm
which inputs a sentence of first-order logic like

8x9y y⇥ y + x = 0

and says if the sentence is true in the real numbers. Remarkably this theorem
represents a nontrivial algorithm dealing with first-order logic that was found
in the late 1920s, before the notions of “first-order logic” and “algorithm” were
well defined in the modern sense. Although proved earlier, the result was
published only after the war [54].
There is some freedom in the choice of vocabulary. For example we could add
division because it is definable in first order logic by

x/y = z def
= z⇥ y = x.
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Conversely, we could remove subtraction, because it is definable in terms of
addition, or we could remove the ordering, because it is defined by

x < y def
= 9z x + z⇥ z = y.

Also, we could remove the constants for 0 and 1, because 0 is the unit for
addition and 1 is the unit for multiplication. Summing up, as long as we care
about first-order logic, the vocabulary could be reduced to have only + and ⇥.
Nevertheless, we will care about quantifier-free formulas, and some of the
above definitions are not quantifier-free.

Theorem 10.1. For every formula of first-order logic over

(R,+,�,⇥, 0, 1,<)

possibly with free variables, one can compute an equivalent (over the real numbers)
formula that is quantifier-free. In particular, one can decide if a sentence, i.e. a formula
without free variables, is true over the real numbers.

Before proving the theorem, we discuss its relation to decidability of first-order
logic for other fields and rings, such as integers or rationals.

Example 17. The first-order theory of the integers with addition, subtraction
and multiplication

(Z,+,�,⇥, 0, 1,<)

is undecidable. It follows that there is no first-order formula j(x) which
defines the integers inside the real numbers. In contrast, every single integer
can be defined.
A celebrated theorem of Julia Robinson says that there is a first-order formula
that defines the integers inside the rational numbers, and therefore also the
rational numbers cannot be defined inside the real numbers. ⇤

Example 18. A complex number can be coded as two real numbers, its real
and imaginary parts. Addition, subtraction and multiplication of complex
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numbers can be reduced to analogous operations on the real and imaginary
parts. It follows that the first-order theory of the complex numbers

(C,+,�,⇥, 0, 1)

is decidable (note that order is not mentioned above, since it is not defined on
the complex numbers). ⇤
The rest of this chapter is devoted to proving Theorem 10.1. The second part of
the theorem (deciding which sentences are true) is an immediate consequence
of the first part (effective quantifier elimination). Indeed, if we want to know if
a sentence is true in the real numbers, we first eliminate all quantifiers using
the first part of the theorem, arriving at a Boolean combination of sentences
that are similar to this example:

(1 + 1)⇥ (1 + 1 + 0)� 0⇥ (1 + 0) > 0.

A straightforward evaluation leads to the desired true/false answer. It is
therefore enough to prove the effective quantifier elimination. Here, it is
enough to show that a single existential quantifier can be eliminated, since
multiple quantifiers can then be eliminated one by one, starting with the
innermost quantifiers (and using closure of quantifier-free formulas under
Boolean operations).
Therefore, the essence of Theorem 10.1 is showing that for every formula

9x j(x, y1, . . . , yn)| {z }
quantifier-free formula using +,⇥,�, 0, 1,<

there exists, and can be computed, an equivalent one that is quantifier-free over
the same vocabulary. We first observe that the formula j can be without loss of
generality assumed to be a Boolean combination of formulas of the form

p(x, y1, . . . , yn) > 0

where each p is a polynomial with integer coefficients and variables
x, y1, . . . , yn. So the goal is to understand the behaviour of the polynomials p,
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once the arguments y1, . . . , yn have been fixed, as a function of the quantified
parameter x. To understand this behaviour, we will use basic operations from
calculus and algebra, like differentiation and dividing polynomials with
remainders, and then observe that the effect of these operations can be
formalised using quantifier-free formulas.
Instead of working directly with quantifier-free formulas, we introduce an
intermediate computation model for the reals and show that (a) computation in
this model can be simulated using quantifier-free formulas; and (b) quantifier
elimination can be done using the computation model. The point of using the
computation model is that when proving (b), we can appeal to algorithmic
intuitions, like loops and conditionals, which are more cumbersome to
formalise when working directly with quantifier-free formulas. The results (a)
and (b) are presented in Sections 10.1 and 10.2 below.

10.1 Computation on the reals

Consider the following variant of a Turing machine, which we call a bss
machine, standing for Blum Shub and Smale, who introduced the model. The
purpose of a bss machine is to compute a partial function of type R⇤ ! R⇤,
i.e. a partial function that inputs and output tuples of real numbers. The
machine has a single tape, infinite in both directions (i.e. indexed by integers),
whose cells store real numbers plus a finite set R of registers that also store real
numbers. Cells of the tape and registers can be undefined. At any given
moment, the machine is in a state from a finite set of control states, and has a
single head which points to one of the cells on the tape. In the initial
configuration, the tape stores the input of the function (i.e. the i-th cell stores
the i-th number of the input if the input has length � i, otherwise the cell is
undefined), the registers are all undefined, the state is a designated initial sate
and the head points to the cell 0 of the tape. Based on the answers to the
following questions (the second question is actually several question, one for
eachc of the finitely many registers):

• what the current state?
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• what are the signs of the registers (negative, zero, positive, undefined)?

the transition function of the machine indicates deterministically a new state
and an operation from the following set:

accept move the head by i 2 {�1, 1} r := 1 r := s op t

where op ranges over the arithmetic operations (addition, subtraction,
multiplication, dvision) and r, s, t range over registers or the contents of the cell
under the head. For example, the effect of a transition can be that the contents
of registers r, s are multiplied and the result is stored in the cell under the head.
If a division by zero is performed, then the computation is not aborted, but the
cell/register r storing the result becomes undefined. If the computation never
performs the accept operation then the output of the computed function is
undefined. Otherwise, the output of the computed function is defined to be the
contents of the defined cells, read from left to right. If the output is shorter than
the input, then division by zero is used to make cells on the tape undefined.
The running time of a computation is defined to be the number of transitions
that it uses.
As defined above, a bss machine computes a partial function. We can also view
bss machines as computing languages, i.e. yes/no properties of tuples of reals,
by assuming that the answer is “yes” if the function is defined and “no”
otherwise. The following lemma shows that for languages of bounded
dimension and running computation time, the bss model can only compute
quantifier-free properties.

Lemma 10.2. If S ✓ Rn is computed by a bss machine which uses at most k
computation steps in every accepting run, then S is definable by a quantifier-free
formula using +,�,⇥, 0, 1,<. Furthermore, this formula can be computed given the
machine and k.

Proof. By induction on the length of the computation, we can show that the
control state, head position, and signs of the registers can be determined by
asking quantifier-free queries to the input. In the induction step, we observe
that, assuming that the history (sequence of transitions) of the computation is
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known, then the contents of each register/cell can be described by a term that
uses the n input numbers, integer constants, and arithmetic operations
(addition, subtraction, multiplication and addition). Furthermore, if t is such a
term, then a straightforward induction on the size of t shows that the truth sign
(negative, zero, positive) of t can be expressed using a quantifier-free formula
as in the statement of the lemma. (Note that the term t is allowed to use
division, but the quantifier-free formula is not.) For example,

x ⇤ y
x� y + 1

> 0

is equivalent to the quantifier-free formula

(x⇥ y > 0) ^ (x� y + 1 > 0)
| {z }

enumerator and denominator are positive

_ (x⇥ y > 0) ^ (x� y + 1 > 0)
| {z }

enumerator and denominator are negative

⌅

10.2 Quantifier elimination

In Section 10.1 above we have shown that any bounded time procedure in the
bss model can be simulated using quantifier-free formulas. Therefore, to
complete the proof of Theorem 10.1, it is enough to show that the truth values
of formulas with one quantifier can be decided using the bss model. In
principle, the bss model manipulates sequences of reals, but we will also use it
to manipulate more structured entities, such as polynomials or finite sets of
polynomials, implicitly using straightforward encodings as tuples of real
numbers.

Lemma 10.3. For every quantifier-free formula j(x, y1, . . . , yn) there is a bss machine
which computes the following:

• Input. Real numbers a1, . . . , an.

• Output. Is 9xj(x, a1, . . . , an) true in the real numbers?
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Furthermore, the running time of the algorithm is bounded by a number k that depends
only on (and can be computed from) the formula j, and does not depend on the
numbers a1, . . . , an.

Together with Lemmas 10.2, the above lemma completes the proof of
Theorem 10.1, and therefore the rest of this chapter is devoted to proving the
above lemma. Let j and a1, . . . , an be as in the lemma. Without loss of
generality we assume that j is a Boolean combination of formulas of the form

p(x, y1, . . . , yn) > 0 (10.1)

where each p is a polynomial with integer coefficients and n + 1 variables.
Given a tuple of real numbers a1, . . . , an as in the input of the problem from
Lemma 10.3, define P to be the finite set

{p(x, a1, . . . , an) : p(x, y1, . . . , yn) > 0 appears in j}. (10.2)

The set P contains polynomials with one variable x and real coefficients. The
coefficients depend on the parameters a1, . . . , an, in a way that can be computed
in the bss model. Define the sign of a real number to be one of the three results
(negative, zero, or positive) of comparing the number to 0. The truth value of
the comparison in (10.1) depends only on the sign of the left side, and therefore
in order to determine if a real number a satisfies j(a, a1, . . . , an), it is enough to
look at the sign of p(a) for all polynomials p 2 P. This observation motivates
the following definition. In the following definition, R[x] stands for
polynomials with real coefficients and one variable x, and a nonzero
polynomial is one with at least one nonzero coefficient.

Definition 10.4 (Sign table). Let P ✓ R[x] be a finite set of nonzero polynomials, and
let

r1 < r2 < · · · < rn

be all the real numbers that are a root of at least one polynomial in P. (There are finitely
many such numbers, because a nonzero polynomial has finitely many roots.) Define the
sign table of P to be the following information:
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• the number n;

• for each p 2 P and i 2 {0, . . . , n + 1}, the sign of p(ri), where the sign in

r0
def
= �• rn+1

def
= +•

is defined by taking the limit in the natural way.

• for each p 2 P and i 2 {0, . . . , n}, what is the sign of p on the interval (ri; ri+1).

From the discussion before the above definition, it follows that the truth of

9xj(x, a1, . . . , an)

can be (effectively) determined by looking at the sign table of the nonzero
polynomials in P. Therefore, Lemma 10.2 and thus also the Tarski Theorem will
follow from the following lemma.

Lemma 10.5. The sign table of a finite set P ✓ R[x] of nonzero polynomials can be
computed by a bss machine in time bounded by a function of the sum of degrees of P.

Proof. The proof is essentially the observation that the usual method of plotting
polynomials that is taught in high school can be formalised in the bss model1

We begin by observing that the bss model can run the Euclidean algorithm.

Claim 10.6. There is a bss algorithm which inputs polynomials

p, q 2 R[x] with degree of q  degree of p

and outputs a polynomial r 2 R[x] such that

degree of r < degree of q and p = q⇥ s + r for some s 2 R[x].

Proof. Define a finite sequence of polynomials

p = p0, p1, . . . , pn = r

1Tarski taught mathematics in a Warsaw high school for girls. A lesser man would complain
about having to teach calculus, Tarski proved that it could be automated.
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subject to the following invariant: (a) the degrees in the sequence strictly
decrease; and (b) q divides p� pn for every n. We begin with p0 = p. Suppose
that pi has been defined. If the degree of pi is stritly smaller than the degree of
q, then we output r = pi; otherwise we define pi+1 to be the difference

pi �
leading coefficient of pi
leading coefficient of q

x(degree of pi)- (degree of q) · q

which preserves the invariant. This procedure can clearly be implemented in
the bss model. ⌅

Apart from computing remainders using the Euclidean algorithm, we also use
derivatives of polynomials (in the usual sense of calculus). The derivative of a
polynomial p 2 R[x] can clearly be computed in the bss model. By repeatedly
applying derivation and the Euclidean algorithm, we can extend any finite set
of polynomials to a bigger one that is saturated in the following sense: it is
closed under derivations and applying the Euclidean algorithm. Since
computing a sign table can only get harder after adding polynomials, in order
to show the lemma, it suffices to show that sign tables can be computed for sets
P that are saturated.
Suppose then that P is a finite saturated set of polynomials. Take some p 2 P of
maximal degree. The set P� {p} is also saturated, because p has maximal
degree, and both derivation and the Euclidean algorithm decrease degrees.
Therefore, we can use induction to compute the sign table of P� {p}. Let

r0 = �• r1 < · · · < rn rn+1 = +•

be the numbers from the definition of a sign table, as applied to P� {p}. We do
not know the exact values of these numbers, but we do know n and we also
know how the signs of the polynomials from P� {p} behave in the points ri
and the intervals that separate them. Our goal is to enrich this information to
account for the polynomial p.

Claim 10.7. For each i 2 {0, 1, . . . , n + 1} we can compute the sign of p(ri).
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Proof. For i = 0 and i = n + 1 we simply look at the sign of the leading
coefficient of p, and the parity of its degree. This information determines the
sign of p in ±•. We are left with the case of i 2 {1, . . . , n}. By definition of ri,
there must be some polynomial q 2 P� {p} which has a root in ri, and we can
use the sign table to find that polynomial. Since P is closed under applying the
Euclidean algorithm, there must be some r 2 P� {p} such that

p = q⇥ s + r for some s 2 R[x].

Since ri is a root of q, the sign of p(ri) is the same as the sign of r(ri), and the
latter sign is stored in the sign table. ⌅

We now proceed to investigate the behaviour of p in the intervals separating
the roots ri. The important observation is that p does not have any turning
points in these intervals (a turning point is one where the polynomial changes
behaviour between increasing/decreasing). The reason is that a turning point is
also a root of the derivative, and all such roots are in the points r1, . . . , rn

because the derivative of p is belongs to P� {p}. This observation yields the
following claim:

Claim 10.8. For every i 2 {0, . . . , n}, p has at most one root in the interval [ri; ri+1].

Proof. Otherwise there would be a turning point between ri and ri+1. ⌅

Using the above claim, we can describe the behaviour of p in an interval of the
form (ri; ri+1). This is done using the following case analysis, which can readily
be formalised in the bss model.

• One of the signs of p(ri) and p(ri+1) is zero, like this:

picture

In this case, thanks to Claim 10.8, the other sign is nonzero, p has no
roots in the interval (ri; ri+1) and its sign on this interval is the same as in
the nonzero endpoint.
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• The signs of p(ri) and p(ri+1) are the same, like this:

picture

If p would have a root in the interval (ri; ri+1), then it would also have a
turning point in this interval, and this cannot happen. Therefore, p has
no roots in this interval, and its sign in the interval is the same as in
either one of its endpoints.

• The signs of p(ri) and p(ri+1) are nonzero and different, like this:

picture

In this case p has exactly one root in the interval, which splits the interval
into two parts; on the left part the sign of p is as in p(ri) and on right part
the sign is as in p(ri+1).

Doing the above case analysis for all i 2 {0, . . . , n}, we fill in the sign table for
P. This completes the proof of Lemma 10.5, and therefore also of the Tarski
Theorem. ⌅

Problem 107. Show that adding the function sin(x) to the real numbers yields
an undecidable theory.

Problem 108. Show that the following structure has a decidable first-order
theory: the universe consists of subsets of the Euclidean plane R2 that are
points, lines or circles, and there is a binary predicate for inclusion.

Problem 109. Show that every X ✓ R definable by a first-order formula with
one free variable is a finite union of points and open intervals.
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Polynomial grammars

In this chapter, we show that one can decide if a polynomial grammar – a type
of grammar that generates numbers – has its language contained in {0}. The
key tool is the Hilbert Basis Theorem. The application of the Hilbert Basis
Theorem to problems in formal language theory dates back at least to the
solution of the Ehrenfeucht Conjecture by Albert and Lawrence [2]. The
presentation here is inspired by the more recent results from [51] and [6].

Definable reals. As our notion of “numbers”, we use definable reals, which are
those reals that can be defined in the first-order theory of the reals. More
formally, a is definable real if and only if there is formula of first-order logic
j(x) with one free variable that uses +,⇥,�, 0, 1,< and such that a is the
unique real number which satisfies j(x).
For example, the formula

x2 = 2^ x > 0

is true only in
p

2, and hence
p

2 is a definable real. It is easy to see that the
definable reals are a field – i.e. they are closed under addition, multiplication
and inverses. We write F for the definable reals.
An algebraic number is defined to be a complex number that is a root of some
nonzero polynomial in Z[x], i.e. a complex root of a nonzero univariate
polynomial with integer coefficients. The following lemma shows that the
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definable reals are exactly the algebraic numbers that are also real (i.e. have no
imaginary part).

Lemma 11.1. A real number is a definable real if and only if it is a root of some
nonzero polynomial in Z[x].

Proof. For the right-to-left implication, we observe that all roots of such a
polynomial p are definable, the formulas being “first real root of p”, “second
real root of p”, etc. Note how we use the order on the reals here.
For the left-to-right implication, we use Theorem 10.1, which says that if a is
definable, then it is definable by a quantifier-free formula j(x). Such a formula
is a finite Boolean combination of inequalities p(x) > 0 or p(x) = 0, where each
p 2 Z[x]. If j(x) is true for a unique real a, then a has to be a root of one of the
polynomials appearing in j(x), since otherwise there would be some other
solution to j(x) in a sufficiently small neighbourhood of a. ⌅

Why do we use definable reals in this section? What about other fields or rings,
e.g. the rings of reals, complex numbers, rationals or integers? None of these
are going to work for us. The reals and complex numbers are uncountable, so
they cannot be represented. Integers can be easily represented, but they raise
another problem: they are not algebraically closed, and what is more, it is
undecidable if a polynomial (with integer coefficients, and possibly more than
one variable) has a root which uses only integers – this is the famous
undecidability of Hilbert’s 10th problem, see [44] for a brief history. In our
approach, we need to find roots of polynomials, so the undecidability of
Hilbert’s 10th problem rules out the integers as a candidate for our ring.
Similar problems arise with the rational numbers – it is unknown if the rational
version of Hilbert’s 10th problem is decidable, see [44, p. 348].

Polynomial grammars. When talking about polynomials, we mean
polynomials where the coefficients are definable reals. In the definitions below,
it will be convenient to use polynomial functions from vectors to vectors.
Define a polynomial function to be a function of the form

p : Fn ! Fk for n, k 2 {0, 1, 2, . . .}
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which is given by k polynomials representing the coordinates of the output
vector, each one with n variables representing the coordinates of the input
vector.
A polynomial grammar is a variant of a context free grammar. It generates
definable reals (as opposed to words) and uses polynomial functions in the
rules (as opposed to concatenation). Also, nonterminals are allowed to generate
tuples of definable reals, although we require the starting nonterminal to
generate only individual definable reals (this restriction is not important).

Definition 11.2 (Polynomial grammar). A polynomial grammar consists of

• a set X of nonterminals, each one with an assigned dimension in {1, 2, . . .};

• a designated starting nonterminal of dimension 1;

• a finite set of productions of the form

X  p(X1, . . . , Xk)

where k 2 {0, 1, . . .}, X1, . . . , Xk, X are nonterminals, and

dimension of X sum of dimensions of X1, ... , Xk

is a polynomial function.

If a nonterminal has dimension n, then it generates a set of n-tuples of
definable reals, which is defined as follows by induction. (The language
generated by the grammar is defined to be the subset generated by its starting
nonterminal.) Suppose that

X  p(X1, . . . , Xk)

is a production and we already know that vectors v1, . . . , vk are generated by
the terminals X1, . . . , Xk respectively. Then the vector p(v1, . . . , vk) is generated
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by nonterminal X. The induction base is the special case of k = 0, where the
polynomial p is a constant.
In all of our examples, the rules in the grammars will only use positive integers,
and therefore the grammars will only generate tuples of positive integers. The
fact that the grammars are allowed to use definable reals is an artefact of the
method that we use to solve the grammars, and does not come from any desire
to model definable reals.

Example 19. This grammar (there is only the starting nonterminal, which has
dimension one) generates all odd natural numbers

X  1 X  X + 2.

If we replace X + 2 by X⇥ 2, then we get the powers of two. The following
grammar generates numbers of the form 22n :

X  2 X  X2.

We can also generate factorials. Apart from the starting nonterminal X, we have
a nonterminal Y of dimension two which generates pairs of the form (n, n!).
The crucial rule is this:

Y  p(Y) where p is defined by (a, b) 7! (a + 1, (a + 1) · b).

The remaining rules are Y  (1, 1) and X  p1(Y) where p1 is defined by
(a, b) 7! a. ⇤
As usual, one can adopt an alternative fix-point view on grammars. We present
this view since it will be used in the proof of Theorem 11.3. Define a solution to
a grammar to be a function h which associates to each nonterminal X a set of
vectors of definable reals of same dimension as X, and which satisfies all of the
productions in the sense that

X  p(X1, . . . , Xk)| {z }
is a production

implies h(X) ◆ p(h(X1)⇥ · · ·⇥ (h(Xk))
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It is not difficult to see that the function which maps a nonterminal to the set of
vectors generated by it is a solution, and it is the least solution with respect to
coordinate-wise inclusion.
This chapter shows the following theorem.

Theorem 11.3. One can decide if the language of a polynomial grammar is contained
in {0}.

The nonzeroness problem mentioned in the above theorem is clearly
semi-decidable: one can enumerate all derivations of the grammar, and stop
when a derivation is found that generates a nonzero number. The interesting
part of the theorem is that the problem is also co-semi-decidable, i.e. one can
find a finite witness proving that the generated language is contained in {0}.
For this, we use the Hilbert Basis Theorem.

Hilbert’s Basis Theorem. Let X be a set of variables. Define an ideal to be a
set I ✓ F[X] with the following closure properties:

p, q 2 I ) p + q 2 I
| {z }

addition inside I

p 2 I, q 2 F[X] ) pq 2 I
| {z }

multiplication by arbitrary polynomials

.

If P ✓ F[X] is a set of polynomials, then the ideal generated by P, denoted by
hPi, is the set of polynomials of the form

p1q1 + · · ·+ pnqn where pi 2 P, qi 2 F[X].

This is the inclusion-wise least ideal that contains P. We now state the Hilbert
Basis Theorem.

Theorem 11.4. If X is a finite set of variables, then every ideal in F[X] is finitely
generated, i.e. of the form hPi for some finite set of polynomials.

Algebraic closure. We say that a polynomial function p : Fn ! F vanishes on
a set X ✓ Fn if p is the constant zero over this set. For a fixed dimension n,
consider the following two operations pol and zero which go from sets of
vectors to sets of polynomials, and back again:
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subsets of subsets of 

polynomials which vanish
on all vectors from A

vectors, where all
polynomials from P vanish

The picture above is a special case of what is known as a Galois connection. Note
that the operation pol produces only ideals. For a set of vectors A ✓ Fn, define
its closure as follows:

A def
= zero(pol(A)).

The closure operation defined above is easily seen to be a closure operator, in
the sense that it can only add elements to the set, it is monotone with respect to
inclusion, and applying the closure a second time adds nothing. A closed set is
defined to be any set obtained as the closure, equivalently a closed set is the
vanishing set for some ideal of polynomials. By the Hilbert Basis Theorem,
ideals of polynomials can be represented by giving a finite basis. Therefore,
closed sets can be represented by giving a finite basis for the corresponding
ideal of polynomials.

Example 20. Suppose that the dimension is n = 1. A univariate polynomial in
F[x] has infinitely many zeros if and only if it is constant zero. Therefore pol(A)
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contains only the constant zero polynomial whenever A is infinite. This means
that the algebraic closure of any infinite set A ✓ F is the whole space F. On the
other hand, when A is finite, then there is a polynomial which vanishes exactly
on the points from A, and therefore A = A. For higher dimensions, an example
of a closed set is the unit circle, because in this case the ideal pol(A) is
generated by the polynomial x2 + y2 = 1. ⇤
The following lemma is the key to deciding if a grammar generates only zero.

Lemma 11.5. Let G be a polynomial grammar with nonterminals X, and let h be a
solution (not necessarily the least solution). Then h, defined by X 2 X 7! h(X) is also
a solution.

Proof. We first prove two inclusions, (11.1) and (11.2), which show how closure
interacts with polynomial images and Cartesian products. The first inclusion is
about polynomial images:

p(A) ✓ p(A) for every A ✓ Fn and polynomial p : Fn ! Fm. (11.1)

To prove the above inclusion, we need to show that if a polynomial vanishes on
p(A), then it also vanishes on p(A). Suppose that a polynomial q vanishes on
p(A). This means that the polynomial q � p vanishes on A, which means that
q � p also vanishes on A, by definition of closure. Therefore q, vanishes on p(A).
The second inclusion is about Cartesian products:

A⇥ B ✓ A⇥ B for every A ✓ Fn and B ✓ Fm. (11.2)

We need to show that if a polynomial vanishes on A⇥ B, then it also vanishes
on A⇥ B. Suppose that q vanishes on A⇥ B. Take some b 2 B. The polynomial
q( , b) vanishes on A, and therefore it vanishes on A by definition of closure.
Therefore, q vanishes on A⇥ B. Applying the same reasoning again, we get
that q vanishes on A⇥ B, proving the inclusion (11.2).
We are now ready to prove the lemma. Let h be some solution to the grammar.
Take some rule X  p(X1, . . . , Xn) in the grammar G. The following shows that
h is compatible with the rule, and therefore h is a solution to the grammar by
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arbitrary choice of the rule.

p(h(X1), . . . , h(Xn)) = by definition of h

p(h(X1), . . . , h(Xn)) ✓ repeated application of (11.2)

p(h(X1)⇥ · · ·⇥ h(Xn)) ✓ by (11.1)

p(h(X1)⇥ · · ·⇥ h(Xn)) ✓ because h is solution and closure is monotone

h(X) = by definition of h

h(X)

This completes the proof of the lemma. Note that the proof is not very specific
to polynomials and definable reals, and it would work for more abstract
notions of algebra, as will be defined in Section 11.1. ⌅

We now complete the proof of Theorem 11.3. We use two semi-algorithms, as in
Chapter 9. By enumerating derivations, there is an algorithm that terminates if
and only if the grammar generates some nonzero vector. We now give an
algorithm that terminates if and only if the grammar generates a language
contained in {0}. The algorithm simply enumerates through all closed solutions
to the grammar, i.e. solutions which map each nonterminal to a closed set. By
Lemma 11.5, the generated language is contained in {0} if and only if there is a
an assignment h which maps nonterminals to closed sets such that:

1. h is a solution to the grammar; and

2. h maps the starting nonterminal to a subset of {0}.

We assume that a closed set A is represented by a finite basis of the ideal
pol(A). By Hilbert’s Basis Theorem, we can enumerate candidates for h, by
using finite sets of polynomials to represent closed sets. It remains show that,
given h, one can check if conditions 1 and 2 above are satisfied. To do this, we
use decidability of the first-order theory of the reals from Theorem 10.1,
although there are more efficient algorithms that have been developed in the
area computational algebraic geometry, see [7, Theorem 11].
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Lemma 11.6. Given a set of variables X and two finite sets P, Q ✓ F[X] of
polynomials, one can decide if zero(P) ✓ zero(Q).

Proof. The question can be formalised in first-order logic; but there is a slightly
subtle point, which needs to be explained. Let us write

zeroR(P) ◆ zeroF(P)

for the set of tuples of reals (respectively, definable reals) where all polynomials
from P vanish. Even if the coefficients of P are definable reals, the two sets
above are typically not the same (although they would be the same if there
would be only one variable in X). The question in the statement of the lemma is

zeroF(P) ✓ zeroF(Q) (11.3)

while a call to Theorem 10.1 allows us to decide the answer to the question

zeroR(P) ✓ zeroR(Q). (11.4)

However, the answers to the questions (11.3) and (11.4) are the same. The
reason is that the symmetric difference

zeroR(Q)� zeroR(Q).

is a definable set of reals, i.e. it can be defined in first-order logic. Every
definable set of reals contains at least one definable real; which is most easily
proved assuming that the definition is quantifier-free. ⌅

From the above lemma, it follows that inclusion on closed sets is decidable, and
hence condition 2 is decidable. Condition 1 boils down to testing a finite
number of inclusions of the form

p�1(A) ◆ A1 ⇥ · · ·⇥ An

for closed sets A, A1, . . . , An and some polynomial p. In Exercise 121 we show
that closed sets are (effectively, using our representation) closed under products
and inverse images of polynomials, which completes the algorithm.
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11.1 Application to equivalence of register automata

In this section, we use Theorem 11.3 to decide equivalence for automata which
use registers to manipulate values in certain kinds of algebras. In this section,
we use the notion of algebra from universal algebra, i.e. an algebra is defined to
be a set equipped with some operations. Examples include

(F,+,⇥) ({a, b}⇤, ·).

We adopt the convention that boldface letters like A and B range over algebras,
and the universe (the underlying set) of an algebra A is denoted by A. Define a
polynomial with variables X in an algebra A to be a term built out of operations
from the algebra, variables from X and elements of the universe. Here is a
picture of a polynomial with variables {x, y} in an algebra where the universe
is {a, b, c}⇤ and the operations are concatenation (binary) and reverse (unary):

xy

aba

aba elements of the universe
of the algebra

x variables 

reverse operations in the algebra
cacc

reverse

x

We write A[X] for the set of polynomials over variables X in the algebra A.
Such a polynomial represents a function of type AX ! A in the natural way.
We extend this notion to function of type An ! Am by using m-tuples of
polynomials with n variables.

Example 21. If the algebra is (F,+,⇥), then the polynomials are the
polynomials in the usual sense, e.g. a binary polynomial is

x2 + 3x3y4 + 7.
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If we choose the algebra to be F with the operations being addition and the
family of scalar multiplications {x 7! ax}a2F, then the polynomials are exactly
the affine functions. ⇤

Definition 11.7 (Register automaton). Let A be an algebra. The syntax of a register
automaton over A consists of:

• a finite input alphabet S;

• a finite set R of registers;

• a finite set Q of states;

• an initial configuration in Q⇥ AR;

• a transition function d : Q⇥ S! Q⇥ (A[R])R;

• an output dimension n and an output function F : Q! (A[R])n.

The semantics of the automaton is a function of type S⇤ ! An defined as follows. The
automaton begins in the initial configuration. After reading each letter, the
configuration is updated according to

(q, v) a7! (p, f (v)) where d(q, a) = (p, f ).

If the configuration after reading the entire input is (q, v), then the output of the
automaton is obtained by applying F(q) to v.

Example 22. A language L ✓ S⇤ is regular if and only if its characteristic
function S⇤ ! {0, 1} is recognised by a register automaton with no registers
over the algebra with universe {0, 1} and no operations. ⇤

Example 23. Let S be a finite alphabet. Here is a register automaton over the
algebra (S⇤, ·) which implements the reverse function S⇤ ! S⇤. The automaton
has one register, call it x and one state. When it reads a letter a 2 S, it executes
the register update given by the polynomial a · x. The output function is the
identity. ⇤
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Example 24. Consider an algebra A where the universe is the set of trees
(viewed as directed graphs, with edges directed away from the root), and which
has one binary operation depicted as follows:

inputs two trees joins them into one

It is not difficult to write a register automaton over the algebra A, with input
alphabet {a}, which maps a word an to a balanced binary tree of depth n. ⇤
The following result is a direct corollary of Theorem 11.3. The result was first
shown in [6, Theorem 4], were the proof was also based on the Hilbert Basis
Theorem.

Theorem 11.8. The following problem is decidable:

• Input. Two functions S⇤ ! Fn given by register automata over (F,+,⇥);

• Question. Are the functions equal?

The above theorem generalises Theorem 8.7, because weighted automata can be
viewed as a special case of register automata over (F,+,⇥) where only linear
maps are allowed as the register updates, instead of arbitrary polynomials, as
allowed in Theorem 11.8. The generalisation of Theorem 8.7 is only in terms of
decidability, since the running time of the algorithm for Theorem 11.8 is not
estimated in any way, not to mention polynomial time. In fact, a lower bound
of Ackermann time is given in [6, Theorem 1].
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Proof. Suppose that the input functions are f , g. By doing a natural product
construction, we can compute a register automaton that recognises the
difference function f � g. Therefore, the problem boils down to deciding if a
function h, e.g. the difference, is constant equal to zero. For this we use a
grammar. Suppose that h is recognised by an register automaton with states Q
and n registers. Define a grammar where the nonterminals are

Q|{z}
dimension n

+ 1|{z}
dimension 1

.

The starting nonterminal is 1. By copying the transitions of the automaton, we
can write the rules of the grammar so that nonterminal q generates exactly
those tuples a 2 Fn such that configuration (q, a) can be reached over some
input. By using the output function of the automaton, we can ensure that the
starting nonterminal produces exactly the outputs of the automaton. Therefore,
the language defined by the grammar is contained in {0} if and only if the
automaton can only produce 0, and the former is decidable by
Theorem 11.3. ⌅

Note that the above theorem, with the same proof, would also work for tree
register automata, i.e. a generalisation of register automata for inputs that are
trees.

Other algebras. In Theorem 11.8, we showed that equivalence is decidable for
register automata over the algebra (F,+,⇥). From this we can infer
decidability for some other algebras, by coding them into rational numbers
according to the following definition.

Definition 11.9. Let A and B be algebras. We say that A can be simulated by
polynomials of B (no relation to polynomial time computation) if there is some
dimension n and an injective function

a : A! Bn
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with the following property. For every operation f : Am ! A in the algebra A, there is
a polynomial g : Bm⇥n ! Bn of B which makes the following diagram commute

Am

f
✏✏

(a,...,a)
// Bm⇥n

g
✏✏

A
a
// Bn

It is easy to see that if A can be simulated by polynomials of B, then
decidability of equivalence of register automata over B implies decidability
equivalence of register automata over A.

Corollary 11.10. For every finite alphabet S, the equivalence problem is decidable for
register automata over the algebra (S⇤, ·).

Proof. By Theorem 11.8, it suffices to show that (S⇤, ·) can be simulated by
polynomials of (F,+,⇥). The proof is the same as in Lemma 8.10. Assume
without loss of generality that S is {0, . . . , n� 1}. We use the coding:

aiai�1 · · · a0 2 S⇤ a7! (ni, aini + · · · a0n0
| {z }

input as a number in base n

) 2 F2

The unique operation of the algebra (S⇤, ·), namely string concatenation, is
encoded by the polynomial

((a, b), (a0, b0)) 7! (a⇥ a0, b⇥ a0 + b0)

By the remarks after Theorem 11.8, the decidability result would extend to tree
automata over the algebra (S⇤, ·). This yields the result that equivalence is
decidable for tree-to-string transducers, as considered in [51].

⌅

Problem 110. Which of the following structures are rings:

1. (N,+, ·, 0);

2. (Z,+, ·, 0);
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3. (R,+, ·, 0);

4. ({0},+,+, 0);

5. (Z[x1, . . . , xn],+, ·, 0);

6. (Q[x1, . . . , xn],+, ·, 0);

7. (Z, max,+, 0);

8. (N, max,+, 0);

9. (Sn, ·, ·, id);

10. (Zn,+, ·, 0) for n 2 N.

Problem 111. Let (R,+, ·, 0) be a ring. A subset I ✓ R is called an ideal if the
following two conditions hold: 1) for all i, j 2 I it holds i + j 2 I, 2) for all
i 2 I, r 2 R it holds i · r, r · i 2 I. Find all ideals in the following rings:

1. (Z,+, ·, 0);

2. (Q,+, ·, 0).

Generalize the second case to any field.

Problem 112. A ring congruence is an equivalence relation ⌘ such that x1 ⌘ y1,
x2 ⌘ y2 implies x1 ⇤ x2 ⌘ y1 ⇤ y2 for ⇤ 2 {+, ·}. For an ideal I ✓ R and r1, r2 2 R
we say that r1 ⌘I r2 if r1 � r2 2 I. In case of the ring of integers all the ⌘I are
actually ⌘n, so in particular ring congruences. Show that for every ideal I, the
relation ⌘I is a ring congruence.

Problem 113. Show that every ideal in Q[x] is generated by one element.

Problem 114. Is every ideal in the following rings generated by one element:

1. Z[x]?

2. Q[x, y]?
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Problem 115. Is there a constant c 2 N such that every ideal in Z[x] is
generated by at most c elements?

Problem 116. Show that for every ring R the following conditions are
equivalent:

1. every ideal in R is finitely generated;

2. every growing sequence of ideals I1 ( I2 ( . . . is finite.

Problem 117. Prove the Hilbert’s Basis Theorem in the following formulation:
if R is a ring where every ideal in R is finitely generated, then also every ideal
in R[x] is finitely generated.

Problem 118. Show that for every set A ✓ F the set pol(A) is an ideal.

Problem 119. Consider the closure operation from P(Q) to P(Q) defined for
A ✓ Q as A = zero(pol(A)). Show that the following conditions are true for
every A, B ✓ Q:

• A ✓ A;

• if A ✓ B then A ✓ B;

• A = A.

Problem 120. Consider the field of rational numbers Q. Show that for every
finite set of variables X and every ideal I ✓ Q[X], there is an ideal J ✓ Q[x]
generated by a single polynomial such that zero(I) = zero(J).

Problem 121. Assume that a closed set A ✓ Fn is represented by a finite basis
for the ideal pol(A). Show that closed sets are effectively closed under products
and inverse images of polynomials, i.e. if A, B are closed and p is a polynomial,
then the sets A⇥ B and p�1(A) are closed, and their representations can be
computed.

Problem 122. Show that the following problem is decidable: given a
polynomial grammar and a finite set X ✓ Q, decide if the language generated
by the grammar is equal to X.
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Parsing in matrix multiplication time

The classical dynamic cyk algorithm for parsing context-free grammars runs in
cubic time (in terms of the input word). In this chapter we present a parsing
algorithm of Valiant [59], which parses context-free languages in approximately
the same time as (Boolean) matrix multiplication. For readers who do not like
matrices, multiplying two n⇥ n Boolean matrices is the same as computing the
composition R � S of two binary relations R, S ✓ {1, . . . , n}2. The naive
algorithm for this problem runs in time n3, but smarter algorithms run faster,
e.g. the Strassen algorithm runs in time approximately O(n2.8704), and the
record holder as of 2017 is O(n2.3727), see [60]

Theorem 12.1. Assume that multiplication of n⇥ n Boolean matrices can be
computed in time O(nw) for some real number w. Then membership in a context-free
language can be decided in time at most

poly(G) · nw · log2(n) where G is the grammar and n is the length of the input.

For the rest of this chapter, fix w and a context-free grammar G. We assume that
the grammar is in Chomsky Normal Form, i.e. every rule is of the form
X  YZ or X  a, where X, Y, Z are nonterminals and a is a terminal. A
grammar can be converted into Chomsky Normal Form in polynomial time, so
this assumption can be made without loss of generality. Define a length n parse
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matrix to be a family

M = {MX}X is a nonterminal

such that each MX is a family of intervals in {1, . . . , n}. Here an interval is a set
of numbers connected by the successor relation, like this:

interval

The intuition is that, given an input word, we put into MX all those intervals
that correspond to infixes of the input word which can be generated by
nonterminal X. For parse matrices M, N of same length, define their product
M � N by

(M � N)X
def
=

[

X!YZ
MY �MZ

where the union ranges over rules of the grammar and MY �MZ is defined to
be the family of intervals that can be decomposed as a disjoint union of an
interval from MY followed by an interval from MZ, as in the following picture:

interval in M interval in N
interval in (M◦N)

ZY

X

A family of intervals contained in {1, . . . , n} can be seen as the binary relation
over {0, . . . , n}, where an interval {i, . . . , j} is represented as a pair (i� 1, j).
Under this representation, product of sets of intervals is the same as composing
binary relations, which in turn is the same as multiplying Boolean matrices.
Hence, we get the following observation.

Lemma 12.2. For length n parse matrices, product can be computed in time O(nw).



189

We say that a parse matrix M is closed if it satisfies M �M ✓ M, and we say that
it is closed on an interval I ✓ {1, . . . , n} if it is closed when restricted to
intervals contained in I. For a parse matrix M, define its closure M⇤ to be the
least (with respect to inclusion) parse matrix that contains M and is closed.

Proposition 12.3. There is an algorithm which runs in time, call it T(n), at most

poly(G) · log(n) · nw

and which computes the closure of a length 2n parse matrix, assuming that it is closed
on the intervals {1, . . . , n} and {n + 1, . . . , 2n}.

Before proving the proposition, we show how it implies the Theorem 12.1.

Proof of Theorem 12.1. Suppose that we want to know if the grammar G
generates a word w of length n. Define M to be the length n parse matrix where
MX contains intervals {i} such that nonterminal X generates the i-th letter of w,
using a rule of the form X ! a. This parse matrix can be computed in time
linear in n. The word w is generated by the grammar if and only if the closure
M⇤ contains the interval {1, . . . , n} on the component corresponding to the
starting nonterminal. It suffices therefore to compute the closure M⇤. To make
the computation easier, suppose that the length of the word is a power of two,
i.e. n = 2k. We do a divide an conquer approach: we compute the closures of
the parse matrix for the first and second halves of w (using a recursive
procedure), and then combine these using the algorithm from Proposition 12.3.
The running time of this algorithm is at most

T(n) + 2T(
n
2
) + · · ·+ 2kT(

n
2k ). (12.1)

Because T(n) is at least linear, it follows that

2iT(
n
2i )  T(n),

which shows that the running time (12.1) is at most log n times slower than
T(n), thus proving the theorem, given the bounds on T(n) from
Proposition 12.3. ⌅
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It remains to prove the proposition. We use the following lemma.

Lemma 12.4. Suppose that M is a length k + 2n parse matrix that is closed on the
intervals A [ B and B [ C as depicted below:

A B C{ { {n positions k positions n positions

closed

closed

Then the closure M⇤ can be computed in time poly(G) · nw + T(n).

Proof. Define N to be M [M �M restricted to intervals that contain B or are
disjoint with B. The main observation in the lemma is

M⇤ = M [ N⇤, (12.2)

where the sum above is component-wise (recall that a parse matrix is a family
of sets of intervals). Before proving the above equality, we note that the right
side of the above equality can be computed in time as in the statement of the
lemma, thus proving the lemma. By Lemma 12.2, N can be computed in time
poly(G) · nw. Because the matrix M was closed over intervals A and C, it
follows that N is also closed over these intervals. Since all entries of N contain
B or are disjoint with B, it is essentially a matrix of length 2n whose first and
second halves are closed. It follows that N⇤ can be computed in time T(n).
It remains to prove the equality (12.2). The inclusion ◆ is immediate, it remains
to justify the inclusion ✓. We need to show that if M⇤ contains interval I on
nonterminal X, then this is true for M [ N⇤. If I is contained in A [ B or B [ C,
then this implication holds by the closure assumptions on M. The remaining
case is when I contains B. The reason for M⇤ containing I on nonterminal X is
a parse tree as described in the following picture:
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A B C

{{{
a leaf with label X

represents an interval
on component X of M

a non-leaf with label X
represents an interval
on component X of M*

X

Y

Y Z

Z X X Y X ZYXYX

X

X Y YZ

In the parse tree, use red consider the smallest interval which contains B, and
use yellow for the descendants of the red interval:

A B C

{{{

smallest interval
which contains B

X

Y

Y Z

Z X X Y X ZYXYX

X

X Y YZ

By minimality, each yellow interval is contained in either A [ B or B [ C, and
therefore belongs to M by the closure assumptions on M. Therefore, the red
itself belongs to M �M. The red interval contains B, and the blue intervals are
disjoint with B, therefore the red and blue intervals are in N. It follows that the
red and blue intervals form a parse tree corresponding to the matrix N⇤. ⌅

Proof of Proposition 12.3. Here is the algorithm. Suppose that M is a length 2n
parse matrix which is closed on its first and second halves, as in the statement
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of the proposition. Let us write A, B, C, D for the intervals describing the four
quarters of 2n, as in the following picture:

A B C D{ { { {
As in Lemma 12.4, the blue rectangles indicate the intervals which are closed.

1. By induction, compute the closure of the interval B [ C:

A B C D{ { { {

2. Using Lemma 12.4 twice, compute the closures of A [ B [ C and
B [ C [ D:

A B C D{ { { {

3. Using Lemma 12.4, compute the closure of A [ B [ C [ D:

A B C D{ { { {
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The cost of the above procedure is:

T(n) = T(n/2)| {z }
step 1

+ 2 · (T(n/2) + c · nw)| {z }
step 2

+ T(n/2) + c · nw

| {z }
step 3

for some c polynomial in the grammar. Summing up,

T(n) = 4T(n/2) + 3c · nw.

Reasoning as in the end of the proof of Theorem 12.1, we get

T(n) = 3c · nw + 4 · 3c · (n
2
)w + · · ·+ 4k · 3c · ( n

2k )
w.

Because nw is at least quadratic (an algorithm for matrix multiplication must at
least read two n⇥ n matrices), it follows that

2i · ( n
2i )

w  nw,

which gives the bound in the proposition. ⌅

Problem 123. Show that the operation M � N is not associative.

Problem 124. Design an algorithm, which for an undirected graph G with n
vertices answers whether there exists a subgraph of G, which is

1. a triangle, in time O(nw);

2. a cycle with 4 vertices, in time O(nw);

3. a cycle with k vertices, in time O(nw);

4. a clique with 4 vertices, in time O(n1+w);

5. a clique with 5 vertices, in time O(n2+w);

6. a clique with 6 vertices, in time O(n2w);

7. a clique with 3k vertices, in time O(nkw).



194 PA R S I N G I N M AT R I X M U LT I P L I C AT I O N T I M E

Problem 125. Design an algorithm, which for an undirected graph G = (V, E)
with 3n vertices answers whether there exists a subset S ✓ V with
|E(S, V � S)| � k in time O(2nw · poly(n)) (by E(A, B) we denote the set of all
the edges with one endpoint in A and another endpoint in B).

Problem 126. Let U, V ✓ Nd be sets of d-dimensional vectors, each one with n
vectors. Show that for n � d one can check whether there are u 2 U and v 2 V
such that u ? v in time o(n2d).

Problem 127. Design an algorithm, which multiplies two matrices of size n⇥ n
in time O(nlog2 7).
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Two-way transducers

In this chapter, we talk about transducers, i.e. automata that input words and
output words. We cover three families of transducers as shown below:

deterministic two-way

rational

sequential

 replace every a by b

duplicate every a

duplicate every letter at
an even-numbered position

swap the first and last letter

identity of last letter is a,
otherwise empty output

duplicate reverse
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13.1 Sequential functions

Recall the definition of a nondeterministic finite automaton with output from
Definition 8.11. This is an nfa where every transition is labelled by a (possibly
empty) output word over a designated output alphabet, and every final state is
labelled by a (possibly empty) end-of-input word, also over the output alphabet.
Here is an example:

a/aa
a/ε

b/ε

b

b/bb

transition which inputs a
and outputs aa

end-of-input word

The output of a run is obtained by concatenating the output words of all
transitions used, followed by the end-of-input word of the last state used. The
semantics of the automaton is defined to be the function which maps an input
word to the multiset of words over the output alphabet that are produced by
accepting runs (if the same output is produced by n different accepting runs,
then it appears n times in the output multiset).
The automaton in the picture above has the following outputs: if the input
word is empty, then the output multiset is empty; if the input word is
nonempty, then the automaton produces exactly one output (i.e. a multiset with
one word) which is obtained from the input by deleting the first letter, doubling
the other letters, and appending b to the end.
Define a dfa with output to be the special case of an nfa with output where: (a)
the transition relation is a deterministic, i.e. for every state there is a unique
outgoing transition for each input letter; and (b) all states are final. Under these
assumptions, the automaton produces exactly one output for every input, and
therefore its semantics can be viewed as a function from words over the input
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alphabet to words over the output alphabet. Any function obtained this way is
called a (left-to-right) sequential function1 . Here is an example:

a/a

qp

a/ε

ε #

The transducer above erases a’s at even-numbered positions, and appends # or
nothing to the output, depending on the parity of the input length. Other
examples of left-to-right sequential functions include: “erase all appearances of
letter a” or “erase all appearances of letter a at even-numbered input positions”.

Define a right-to-left sequential function symmetrically: the syntax is the same,
except that in the semantics, the input letters are read from right to left, and the
end-of-input word is produced after reading the leftmost position. The function
“identity if the input ends with a, otherwise empty output” is a right-to-left
sequential function but not a left-to-right sequential function.

1The name sequential is used for at least four transducer models in the literature, starting with the
original transducer models described by Shannon [52, Section 8] and later developed by Moore [39]
and Mealy [38]. Both the Moore and Mealy models – which are two non-equivalent models of
letter-to-letter transducers – were called sequential by their authors. In those days, sequential seems
to have been a synonym for “recognised by an automaton”. Then, Ginsburg introduced a model,
called submachines, that could produce words (and not just letters) in transitions [30]. Soon Gins-
burg’s model started to be called sequential, see e.g. [25, p. 298]. Then, Schützenberger extended
submachines with end-of-input words [50]. Now it is Schützenberger’s model – originally called
subsequential – that is being called sequential, e.g. [28], and this is the convention that we adopt
here.
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13.2 Rational functions

We now move to a richer class of functions from words to words, called the
rational functions2. This class admits several equivalent definitions; we give five.
Another advantage is that the class is symmetric, i.e. there is no need to define
“right-to-left rational functions”. We begin with two definitions that use nfa’s
with output.

Functional and unambiguous nfa’s with output. We say that an nfa with
output is functional if for every input word, the output multiset contains exactly
one word, but possibly with multiplicities. In other words, there might be
several accepting runs, but all accepting runs produce the same output word,
and there is always at least one accepting run. We say that an nfa with output
is unambiguous if for every input word, the output multiset contains exactly one
word, used exactly one time. In other words, for every input there is exactly
one accepting run. Functional, and therefore also unambiguous, nfa’s with
output can be viewed as recognising functions from words to words, by
mapping an input word to the unique output word in the output multiset.
Functional nfa’s with output are essentially the same as the original definition
of rational functions given by Eilenberg in [25, Chapter IX].
We will later show that – when viewed as recognisers of functions from words
to words (without multiplicities of outputs) – functional and unambiguous
automata have the same expressive power, i.e. nothing is gained by using
functional but possibly ambiguous nfa’s with output.

Lookahead dfa with output. A lookahead nfa with output is a model that
extends an nfa with output as follows: instead of pairs (input letter, word over
the output alphabet), the transitions are pairs (regular language over the input
alphabet, word over the output alphabet). A transition labelled by a pair (L, w)

2The name rational comes from Eilenberg. Eilenberg introduced rational subsets of any
monoid [25, Chapter VII], which covers the special case of rational relations [25, Chapter IX] de-
fined as rational subsets of monoids of the form S⇤ ⇥ G⇤, which in turn covers the special case of
rational functions which are functional rational relations.
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can be applied if the unread part of the input belongs to L; the effect of using
such transition is that w gets added to the output and one input letter is
consumed. Here is a picture of a run:

input word

en
d-

of
- i

np
ut

 w
or

dM must contain this suffix{
output word

run r rq p qq

b ab

b a ab bb aa

aa
(L, b) (K, ε) (M, a) (L, ab) (L, bb)

aa

A lookahead dfa with output is the special case where (a) for every state, the
regular languages labelling outgoing transitions form a partition of all
nonempty words; and (b) every state is final.

Example 25. The following lookahead dfa with output swaps the first and last
letters:

bΣ*a/a

bΣ*b/b

a+b/ε

aΣ+/a

bΣ+/b

aΣ*a/a
a+b/ε

aΣ*b/b

ε

aΣ+/a

bΣ+/b

ε ε

word begins with b{ word begins with a

the output depends
on the last letter

{
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⇤

Eilenberg bimachine. We now present Eilenberg bimachines, which are
essentially another syntax for lookahead dfa with output. An Eilenberg
bimachine [25, Chapter XI.7] consists of two finite automata A,B over the input
alphabet – with A left-to-right deterministic and B right-to-left deterministic –
as well as an output function of type

states of A⇥ input alphabet⇥ states of B ! (output alphabet)⇤.

In the automata A,B the final states are irrelevant and can be omitted from the
syntax. The semantics of the bimachine is defined as follows. Given a
nonempty input word, define for each position in the input word an output
word as described in the following picture:

a1 a3 a6a2 a5a4

w1 w3 w6w2 w5w4

q6 q3 q1 q0q4 q2q5

p0 p2 p5p1 p4 p6p3

the i-th output word is the value of the output function on
- the state of left-to-right automaton after reading letters <i
- the i-th letter
- the state of right-to-left automaton after reading letters >i

input word

output of bimachine

run of right-to-left
automaton

run of left-to-right
automaton

The output of the bimachine is defined to be the concatenation of the output
words, in the order inherited from the input positions. To deal with empty
inputs, an Eilenberg bimachine is equipped with an designated output word
that is used for the empty input.
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Equivalence of the models. The following theorem shows that all the models
described above are equivalent. We use the name rational function for a
word-to-word function that is defined by any one of the equivalent models in
the theorem.

Theorem 13.1. The following models are equivalent, in terms of the functions from
words to words that they define:

1. functional nfa with output;

2. lookahead dfa with output;

3. unambiguous nfa with output.

4. Eilenberg bimachines.

5. compositions of right-to-left sequential functions with left-to-right sequential
functions.

Proof sketch.

1 ✓ 2 Consider a functional nfa with output A. We define an equivalent
lookahead dfa as follows. The lookahead dfa computes some run of the
functional nfa that can be extended to an accepting run. Each transition
is chosen using the lookahead, to determine if it can be extended to an
accepting run. If more than one transition can be chosen, some arbitrary
tie-breaking mechanism is used.

2 ✓ 3 Consider some lookahead dfa with output A. We define an equivalent
Eilenberg bimachine as follows. Let B be a right-to-left dfa (without
output) that simultaneously recognises all the languages which are used
in the transitions of A, i.e. the lookahead languages. The simulating nfa
with output guesses the runs of these two automata (the run for B is
right-to-left, and the run for A is left-to-right, and depends on the run of
B). This guess is unambiguous, because the automata A and B are
unambiguous.
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3 ✓ 4 Consider an unambiguous nfa with output A. We define an equivalent
Eilenberg bimachine as follows. The left-to-right automaton is a
left-to-right powerset construction applied to states of A, i.e. its states are
sets of states in A and the transition function is defined by

P · a = {q : the automaton A has a transition p a/w! q for some p 2 P }.

The right-to-left automaton is defined symmetrically, i.e. its transition
function is defined by

a · P = {p : the automaton A has a transition p a/w! q for some q 2 P }

The output function maps a triple (P, a, Q) to the unique output word w
such that the automaton has a transition

p a/w! q p 2 P, q 2 Q.

This function is well defined by the assumption that A is unambiguous.

4 ✓ 1 Consider an Eilenberg bimachine A. We define an equivalent functional –
in fact, unambiguous – nfa with output as follows. The states of the
simulating automaton are pairs (state of the left-to-right automaton in A,
state of the right-to-left automaton A). The transition relation is defined
by

(q, ap) a/w! (qa, p)

w is the output word in the bimachine that is associated to the triple
(q, a, p). This automaton is unambiguous by the determinism
assumptions in the definition of a bimachine.

2 ✓ 5 A right-to-left sequential function can label the input word with states of
right-to-left automata recognising the lookahead, and a left-to-right
sequential function can then simulate the dfa with lookahead.

5 ✓ 3 Functional nfa with output are closed under compositions and generalise
both left-to-right and right-to-left sequential functions.

⌅
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13.3 Deterministic two-way transducers

We now turn to the most powerful class of transducers discussed in this
chapter, namely deterministic two-way transducers. In the next chapter, we will
present an equivalent one-way model, which uses registers to store parts of the
output.

Definition 13.2. A deterministic two-way transducer consists of:

• finite input and output alphabets S and G;

• a finite set of states Q with a distinguished initial state;

• a transition function

d : Q⇥ (S [ {`,a})! {accept} [ (Q⇥ {left, stay, right}⇥ G⇤)

The semantics of the transducer are defined similarly to Turing machines.
Actually, the model is equivalent to a Turing machine where there is one
read-only input tape and one append-only output tape. The automaton begins
in the following configuration:

the automaton begins in the
left end marker in its initial state

the input is embelished by left and right end markers

input word

{b
q

ab aa
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(For two-way automata, the head is over a letter, as opposed to one-way
automata, where the head is between letters.) At any given moment, the
automaton applies its transition function to its current state and the symbol
under the head. The result of the transition might be “accept”, in which case
the automaton ends its run, or a triple (state, direction, output word), in which
case the new state is assumed, the head is moved in the direction, and the
output word is appended to the output. The output letters are used in
chronological order, i.e. those which are output at the beginning of the run are
at the beginning of the output, regardless of the position of the head when
executing the transition. The run of the automaton might fail, either by moving
out of the word (i.e. moving left on the left marker or moving right on the right
marker), or by entering an infinite computation that never sees a final state;
such failing runs do not produce any output, and therefore the semantics of the
automaton is a partial function from S⇤ to G⇤.
Typical things that can be done using a two-way transducer are duplication or
reversing the input. The main result of this chapter is that deterministic
two-way automata are closed under composition.

Theorem 13.3 ([1, 19]). Functions recognised by deterministic two-way transducers
are closed under composition.

For sequential and rational functions, closure under composition is done using
a straightforward product construction. For two-way automata, the
construction is much more challenging, since the automata begin composed
might choose to move in different directions.
The rest of this chapter is devoted to proving Theorem 13.3. We do it in two
steps. First, we show in Lemma 13.4 a weaker version – namely that
deterministic two-way automata are closed under pre-composition with
rational functions. Then we bootstrap the weaker version to get composition
with deterministic two-way automata.

Rational preprocessing. We begin by proving that deterministic two-way
transducers can be pre-composed with rational functions. A different
perspective on this result is that deterministic two-way transducers would not
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become more expressive if equipped with “regular lookaround”, i.e. transitions
that depend not only on the letter under the head, but also on some regular
properties of the words to the left and right of the head.

Lemma 13.4. Deterministic two-way transducers are closed under pre-composition
with rational functions. In symbols,

2Det|{z}
functions recognised by

deterministic two-way automata

= 2Det � Rat|{z}
rational functions

Proof. The left-to-right inclusion is immediate, because the identity is a rational
function. For the converse inclusion, recall the following characterisation

Rat = Seq!| {z }
left-to-right

sequential functions

� Seq | {z }
right-to-left

sequential functions

from Theorem 13.1. By the above, to prove the theorem it is enough to show

2Det ◆ 2Det � Seq! 2Det ◆ 2Det � Seq .

By symmetry of two-way automata, it is enough to prove the first inclusion.
Summing up, it suffices to show that if f is left-to-right sequential and g is
recognised by a deterministic two-way transducer, as in the following diagram,

S⇤
left-to-right sequential f

//

f �g
**

G⇤

two-way g
✏✏

D⇤

then the composition f � g is also recognised by a deterministic two-way
automaton. The difficulty is the machines for f and g have different types of
movement.
The idea for the proof comes from Hopcroft and Ullman [58, Lemma 3]. To
simplify notation, we assume that f is letter-to-letter, i.e. each transition of the
underlying dfa with output produces exactly one output letter, and there are
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no end-of-input words. The proof for the general case – without the
letter-to-letter assumption – can be easily inferred from the special case.

Suppose that the two-way automaton recognising g is in state p over the i-th
position of its input (which is the output of f ), like in the following picture:

head of g in state p

position i

the automaton f was in state q after reading i-1 letters

input of f

{
output of g

Then the simulating two-way automaton for the composition g � f has its head
over the i-th position of the input word (which is the input of f ), and knows the
states p and q described in the picture above. The question is how to maintain
this information, especially when the simulated two-way automaton g wants to
move its head to the left. The key insight is to consider the graph which
describes the states of f and how they are updated by the transition function.
This graph looks likes this:
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initial

input letters

co
lu

m
n 

1

co
lu

m
n 

2

co
lu

m
n 

12

The vertices of the graph are configurations of f , i.e. pairs (state of f , column
between positions in the word), and the edges correspond to transitions of the
automaton. Each edge is labelled by an output letter. We number the columns
beginning with 1. Because f is deterministic, the graph is a forest.
Define qi to be the state of f in the i-th column, i.e. after reading the first i� 1
letters of the input word. The simulating two-way automaton uses the state qi
to get the i-th letter in the output f (w). Suppose that the head of the simulating
two-way automaton is over some position i in the input word, and the state qi
of the oracle is known, as indicated by a red circle in the following picture:

initial

input letters

head of simulating automaton

We show below how to maintain the state of f when simulating one transition
of the two-way automaton g. If the transition of the two-way automaton g does
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not move the head, or moves it to the right, there is no problem, since the
transition function of f can be simply applied to the known state qi.
The issue is when the simulated two-way automaton f wants to move the head
to the left, and we need to compute the state qi�1.
Here is the solution. In terms of the forest in the pictures above, we want to
determine the unique child of the red node which has the initial configuration
in its subtree. To find this unique child, we do the following. We start by
moving the head one step to the left, which identifies all possible candidates for
the predecessor configurations. Here is the picture, with the candidates being
coloured yellow:

initial

input letters

previously known
configuration

candidates for 
the predecessor

If there is only one yellow configuration, i.e. only one candidate for the
predecessor, then we are done. The more interesting case is when there is more
than one yellow configuration. In this case, we keep moving to the left, and use
green to colour all descendants of the yellow configuration (and therefore of the
red configuration as well). For each green configuration we remember which of
the yellow configurations is its ancestor. Two cases may happen.

1. We might reach a column where all green configurations are descendants
of the same yellow configuration, as in this picture:



D E T E R M I N I S T I C T W O - WAY T R A N S D U C E R S 209

initial

input letters

all are descendants of the same
yellow configuration

In this case, the unique yellow configuration is the one that we want to
compute. The question is how to return to this unique configuration?
The solution is this: suppose that we stopped in column i, i.e. all green
configurations in column i are descendants of the same yellow
configuration, but this is not true for column i + 1. We store in our
memory the state of the unique yellow configuration that is the ancestor
of all green configurations in column i. Then we start moving to the
right, storing in each column that states reachable from the green
configurations in column i + 1. We stop when this set becomes a
singleton – this happens exactly when we reach the column with the red
node. Then we can move one step to the left and use our stored yellow
state to determine the predecessor configuration of the red one.

2. The remaining case is when we reach the first column at the beginning of
the input. Here we do the same trick to return to the red configuration,
and we can keep in our state which branch of the subtree corresponds to
the computation of the past oracle.

⌅
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Closure under composition. Using Lemma 13.4 on pre-compositions with
rational functions, we complete the proof of Theorem 13.3 on composition
closure of deterministic two-way transducers. For our proof, it is more
convenient to use a definition – clearly equivalent in terms of expressive power
– of two-way transducers where the initial configuration is (initial state, end of
input marker a).
Fix two deterministic two-way transducers

S⇤
f
// G⇤

g
// D⇤ .

We use the following colour coding. The first alphabet S is written in black.
Blue is used for the states and output alphabet of f . Red is for the states and
output alphabet of g. Our goal is to give a deterministic two-way transducer
which recognises the composition g � f .
We begin with a naive construction that will not work. Take some input word
w 2 S⇤, and consider the configuration graph of f on this input word, which
looks like this:

accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b
ε

ab

ε

a

bb

a cc aab b

Vertices of the graph – the blue dots – are pairs (state, position in w extended
with end markers), and the edges correspond to transitions. The transitions are
labelled by output words from the intermediate alphabet G. We can represent
the configuration graph as a labelling of the input word, with arrows stored in
the positions where they originate, and the descriptions of the end markers
stored in the adjacent input positions.
The natural construction for the composition g � f would be to have an
automaton which stores a state of g and a pointer to one of the letters from G
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that are in the label of an edge in the configuration graph, as in the following
picture:

bb

aba

a

ε

b

aa ab

ε

b
εε

ε

ab

ε

a

bb

c da

q

b

state of the automaton g

The problem with this construction is that a vertex in the configuration graph
might have several incoming edges. For example, suppose that in the situation
from the above picture, the automaton g decides to move its head to the left
and change the state to p. Then the automaton for the composition g � f would
not know which of the following two choices should be made:

bb

aba

a

ε

b

aa ab

ε

b
εε

ε

ab

ε

a

bb

c da

p

b

The solution – and also the reason why we use rational preprocessing from
Lemma 13.4 – is to restrict the configuration graph of f to edges that are
reachable from the initial configuration.
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Lemma 13.5. The following function is rational. The input is a configuration graph of
f , like this:

accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b
ε

ab

ε

a

bb

The output is the same graph, but only with those edges that are reachable from the
initial configuration, like this:

accept

start

a a a a

a

a

bb ε ε ε ε

ε ε

a

bb

Proof. We assume that a configuration graph is represented as word where each
letter represents the outgoing transitions from one column (i.e. position in the
input word with end markers). Here is a picture of a letter

ab

ε

a

bb

For this claim, it is convenient to use an Eilenberg bimachine as the
representation of rational transducers. Given a position i in a configuration
graph, the bimachine generates the following information:



D E T E R M I N I S T I C T W O - WAY T R A N S D U C E R S 213

accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b

ab

ε

a

a

bb

po
si

tio
n 
i

positions <i positions >i

(b) for which states p, q is there a 
      path from (p, i+1) to (q, i+1) that
      only visits positions > i.

(a) for which states p, q is there a path
      from (p, i-1) to (q, i-1) that only visits
      positions < i.

(c) for which states q is there a path
      from the initial configuration to (q, i+1) 
      that only visits positions > i.

The information can be generated by deterministic automata, as required by the
definition of an Eilenberg bimachine, using the standard conversion of two-way
automata (without output) to one-way automata. Based on this information
and the label of the position i, one can determine which states in position i are
reachable from the initial configuration. In its output, the bimachine only leaves
edges that originate from reachable states. ⌅

By Lemma 13.4, deterministic two-way transducers are closed under rational
preprocessing, and by Lemma 13.5 a rational function can restrict a
configuration graph to reachable configurations. Therefore, in order to find a
deterministic two-way transducer for the composition g � f , it suffices to give a
deterministic two-way transducer which inputs configuration graph of f
restricted to reachable configurations, like this:
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accept

start

a a a a

a

a

bb ε ε ε ε

ε ε

a

bb

and outputs the value of g on the labelling of the unique path from the starting
configuration to the accepting configuration. Since the blue nodes have
indegree at most one, this can be done using the naive construction described
before Lemma 13.5.

Problem 128. Show that deterministic two-way automata (seen as acceptors of
words) can be complemented with polynomial blowup.

Problem 129. Consider a sequential transducer, which defines a function
f : Sw ! Gw. Show that this function is continuous with respect to the distance
defined in Problem 9.

Problem 130. Show that the reverse function is not left-to-right sequential.

Problem 131. Which of the following functions over a unary alphabet are
sequential?

1. an 7! an2 ;

2. an 7! ab
p

nc.

Problem 132. Show that the duplication function w 7! ww is not rational.

Problem 133. Show that left-to-right sequential functions are closed under
compositon, i.e.

Seq! = Seq! � Seq!.

Problem 134. Show that rational functions are closed under compositon, i.e.

Rat = Rat � Rat.
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Problem 135. Show that if f is recognised by a deterministic two-way
transducer and and g is rational (with suitable input and output alphabets),
then g � f is recognised by a deterministic two-way transducer.

Problem 136. Consider nondeterministic two-way automata with output. Show
that for every nondeterministic two-way automaton with output A there is a
deterministic two-way automaton with output B that uniformises it in the
following sense: for every input word, B produces one of the outputs of A. (If
there is no output of A, then also there is no output of B.)

Problem 137. Show that the following problem is in polynomial time: given
two letter-to-letter (i.e. each transition produces exactly one letter) left-to-right
sequential functions with the same input alphabet, decide if for every input
they produce the same output.

Problem 138. Show that the following problem is undecidable: given two
left-to-right sequential functions with the same input alphabet, decide if for
some input, they produce the same output.





14
Streaming string transducers

In this chapter we present a one-way automaton model that has the same
expressive power as two-way transducers.
We begin by defining register transducers, which are automata that use
registers to store parts of their output. We have already seen register
transducers in Chapter 11 – in a more general setting, for arbitrary algebras –
and we have even proved in Corollary 11.10 that their equivalence is decidable
for the specific algebra of words with concatenation that we use in this chapter.
To make this chapter self-contained, we give a stand-alone definition below.
Register transducers, as defined below, will turn out to be strictly more
powerful than two-way transducers, but a model with the same expressive
power as two-way transducers will be recovered by placing a certain copyless
restriction on the register updates.

Definition 14.1. A register transducer consists of:

• finite input and output alphabets S and G;

• a finite set of states Q;

• a finite set of registers R;

• an initial configuration in Q⇥ (R! G⇤);
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• a transition function

d : Q⇥ S! Q⇥ (R! (R + G)⇤)| {z }
register update

• an output function
out : Q! (R + G)⇤

The automaton is run as follows. Define a register valuation to be any function
from registers to words over the output alphabet G, and define a register update
to be any function from registers to words over the alphabet R + G. There is an
action of updates on valuations

(v 2 register valuations, t 2 register update) 7! v · t 2 register valuations

where v · t is obtained from t by replacing each register name with its contents
under t. A configuration of the automaton is defined to be a pair (state, register
valuation). The automaton begins in the initial configuration. When reading an
input letter a, the automaton uses its transition function to determine its new
state and the register update. More formally, the configuration is updated as
follows:

(q, v) · a def
= (p, vt) where d(q, a) = (p, t).

After the entire word has been processed, with the last configuration being
(q, v), the automaton outputs out(q), with register names replaced by their
contents in v.

Example 26. Here is an automaton where the input and output alphabets are
{a}, and the recognised function is an 7! a5+3·2n . The automaton has one
register and one state. The initial configuration stores the word a in the unique
register. When reading an input letter, the unique register r is updated by
r := rr. The output function maps the unique state to aaaaarrr.
The function recognised by this register transducer is not recognised by any
two-way transducer. There reason is that the function has exponential growth,
while a two-way transducer has necessarily at most linear blowup, because a
position in the input word can be visited at most once for each state. ⇤
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Copyless restriction. As argued in Example 26, register transducers can have
exponential growth, and therefore are not in general equivalent to deterministic
two-way transducers. To recover equivalence with two-way transducers, we use
the copyless restriction (also known as the single use restriction) described in the
following picture:

ab

a

aba

bbb

register 1

picture of a
register update

old value of
register 1

copyless means that every
register appears at most once
in the right hand sides of the 
substitutions

new value of
register 1

old value of
register 3

 1 := ab 1 a 3

 2 := ε

 3 := aba

 4 := 4 aba

register 2

register 3

register 4

le
ft 

co
lu

m
n

rig
ht

 co
lu

m
n

In other words, a register update is copyless if every vertex in the left column
has outdegree at most one. The intuition is that the register contents are
physical objects and can only be moved around and not duplicated.

Definition 14.2. A streaming string transducer1 is a register transducer where the
transition function produces only copyless register updates.

The output function need not be copyless. Requiring it to be copyless would
not weaken the model, though, because the output function is applied only
once. For example, if the output function uses each register at most k times,
then by taking k disjoint copies of the registers we can make the output
function copyless.

1The model and name of streaming string transducers comes from [3], although similar and es-
sentially equivalent models have been known before in the literature on attribute grammars, e.g. at-
tributed tree transducers from [29].
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The goal of this chapter is to prove that streaming string transducers are
equivalent to deterministic two-way transducers.

Theorem 14.3. Streaming string transducers recognise the same word-to-word
functions as deterministic two-way transducers

The above theorem was proved by Alur and Cerny in [3]. A similar result
(using a model of streaming string transducers with lookahead) can also be
recovered from earlier work of Bloem, Engelfriet and Hogeboom: (a) mso
transductions are equivalent to deterministic two-way transducers [27]; and (b)
mso transductions are equivalent (even over trees) to a certain kind of attribute
transducers [8].
We begin by describing the proof strategy. Our goal is to prove the equality

SST|{z}
functions recognised by

streaming string transducers

= 2Det.| {z }
functions recognised by

deterministic two-way transducers

(14.1)

As in the proof of Theorem 13.4, we write Rat for the class of rational functions.
In Section 14.1, we prove the following inclusions

SST
Lemma 14.4
✓ 2Det � Rat and SST � Rat

Lemma 14.5
◆ 2Det.

In other words, every streaming string transducer can be recognised by a
deterministic two-way automaton with preprocessing by a rational function,
and likewise in the opposite direction. Rational functions are easily seen to be
closed under composition, using a straightforward product construction, see
Exercise 134. Combining the inclusions from Lemmas 14.4 and 14.5, and using
closure of rational functions under composition, we get

SST � Rat = 2Det � Rat. (14.2)

To finish the proof of Theorem 14.3, it suffices to show that both streaming
string transducers and deterministic two-way transducers are closed under
preprocessing with rational functions. For deterministic two-way transducers,
this was shown in Theorem 13.4 from Chapter 13. For streaming string
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transducers, this will be done in Lemma 14.7, which is the most challenging
construction in this chapter. Combining these results, we get

SST
Lemma 14.7

= SST � Rat (14.2)
= 2Det � Rat Theorem 13.4

= 2Det

which completes the proof of Theorem 14.3. It remains to prove
Lemmas 14.4, 14.5 and 14.7.

14.1 Equivalence after rational preprocessing

In this section, we prove that streaming string transducers and deterministic
two-way transducers are equivalent if we allow rational preprocessing

Lemma 14.4. Every streaming string transducer can be decomposed as a rational
function followed by a deterministic two-way transducer. In other words

SST ✓ 2Det � Rat.

Proof. Fix a streaming string transducer. A run of the transducer looks like this:

control state of the SST

a aab bc
input letter

register update executed in
the transition from p3 to p4 

output of 
the SST

p0 p2 p5p1 p4 p6p3

ab

a

aba

bbb

b

a

b

ab

a

b

b

ab

a

aba
aba

bbb

b

a

b

ab

a

a

b

b

ab

a
b

{

output function
of the SST

{



222 S T R E A M I N G S T R I N G T R A N S D U C E R S

It is not hard to see that there is a rational – in fact left-to-right sequential –
transducer which transforms an input word

a aab bc

to a word describing the corresponding sequence of register updates:

letter 1

ab

a

aba

bbb

b

a

b

ab

a

b

b

ab

a

aba
aba

bbb

b

a

b

ab

a

a

b

b

ab

a
b

{

letter 2

{

letter 3

{

letter 4

{

letter 5

{

letter 6

{
letter 7

{
By using the above rational transducer as a preprocessor, to prove the lemma it
is enough to find a deterministic two-way transducer which inputs a tree that
describes the register updates, and outputs the final value. To do this, we use a
depth-first search through the tree as explained in the following picture

ab

a

aba

b

b

ab ab

b

123

4
5

6

7

8

the word a 
is the 4th
one to be
output 

search begins
and ends 

here
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It is easy to implement a depth-first search using a deterministic two-way
automaton. One simply has to remember the current register and the direction
from which it came. ⌅

Lemma 14.5. Every deterministic two-way transducer can be decomposed as a rational
function followed by a streaming string transducer. In other words

2Det ✓ SST � Rat.

Proof. As in the proof of Theorem 13.3, it is more convenient to use a definition
of two-way transducers where the initial configuration is (initial state, end of
input marker a). Consider the configuration graph of the two-way automaton
over a given input word, as in the following picture:

accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b
ε

ab

ε

a

bb

a cc aab b

We begin with a naive idea, which will not work because of the copyless
restriction. For a vertex in the configuration graph, define its segment to be the
(unique, by determinism) path that begins in the configuration, and is cut off at
the first visit to the same column as the source configuration, as in the
following picture:
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accept

startab

ε

a a aa

a

a

a

a

bb

bb

a

ε

b

ε

a

ε

b

a

ε ε

εε ε

ε

bb

b
ε

ab

ε

a

bb

the segment of this configuration

the segment of this configuration

The segment might accept/reject/loop without returning to the column of the
source configuration. The naive idea would be to store for each state q the
output word that is found by reading the labels on the segment of the
configuration that has state q in last read position. The problem with this
construction is that it violates the copyless restriction, because configurations
can have more than one incoming edge, and therefore the labels of one segment
can be shared by several longer segments.
Like in the proof of Theorem 13.3, the solution is to restrict the configuration
graph to edges that are reachable from the initial configuration. As shown in
Lemma 13.5, a rational function can be used to restrict the configuration graph
to reachable configurations, so that the result looks like this:

accept

start

a a a a

a

a

bb ε ε ε ε

ε ε

a

bb

When only reachable edges are used, the indegree is at most one, because
otherwise the automaton would loop, which cannot happen by the assumption
that it defines a total function. Using the naive idea, one can write a streaming
string transducer which inputs a configuration graph with only reachable edges
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– represented as a word over a finite alphabet in any natural way – and outputs
the label of the segment corresponding to the initial configuration. ⌅

14.2 Lookahead removal

In this section we show that functions recognised by register transducers and
streaming string transducers are closed under pre-composition with rational
functions.

A different perspective on this result is that register transducers and streaming
string transducers would not become more expressive if equipped with an
oracle that gives regular information about the input word to the left and right
of the head. Since the information about the word to the left of the head can be
stored in the state, the interesting part of the oracle is the one that talks about
the word to the right of the head. In other words, in this section we show that
lookahead can be eliminated from the transducers without affecting expressive
power.

Lemma 14.6. Functions recognised by register transducers are closed under
pre-composition with rational functions.

Proof. Consider functions

S⇤
f
// G⇤

g
// D⇤

such that f is rational and g is recognised by a register automaton. We use the
following colour coding. The first alphabet S is written in black. Blue is used
for the states and output alphabet of f . Red is for the states and output
alphabet of g. A run of the composition g � f looks like this:
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a b ab aa

a ε aababa bbaab

q6 q3 q1 q0q4 q2q5

p0 p2 p5 p7p1 p4
a
a
ε
ba

aba
ab
a
ba

abaab
ε
ba
baa

abaab
ε
babaa
a

aa
abaab
babaab
ab

aaabaab
a
babaaba
ε

aaabaabbaba
ab
a
ε

ε
ε
ε
ε

p6p3

register valuation pn is the state after
reading output produced by
f in the last n-1 transitions
and end-of-output word.

input word

run of f

output of f
end of word

output

run of g

The register transducer for the composition f � g stores a function

states of lookahead f ! configurations of g

which maps a state q of f to the configuration that would be used by g
assuming that q is the state of the lookahead f after reading the unread part of
the input (in a right-to-left pass). Such a function can be represented by using

(number of states in lookahead f )⇥ (number of registers in g)

registers; and the representation can be updated in the transition function.
After reading the entire word, the transducer for the composition looks at the
value of the function under the initial state of f , and then applies the output
function of g. ⌅

The construction in the above lemma cannot be used for streaming string
transducers because it violates the copyless restriction. The violation comes
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from merging states in the right-to-left sequential function f . For example,
suppose that the state transformation of f over some input letter a 2 S looks
like this:

ba

aaa
ε

ε

q0

q1

q2

q0

q1

q2

q3q3

Then the register transducer described in the proof of Lemma 14.6 would
duplicate the information stored for state q1, using it for both q0 and q1.
To eliminate lookahead for streaming string transducers, we use a data
structure, called a transformation forest, which stores register updates
organised in a forest structure so that composition can be done without
copying. We describe this data structure below.

Composing register updates. We begin with defining a composition
operation on register updates. Here is the picture:

ab

a

aba
aba

bbb

b

a

b

ab

a

a

b

b

two register updates τ, σ their composition τ·σ
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The composition operation is defined so that if t, s are two register updates
and v is a register valuation, then

v · (t · s) = (v · t) · s.

Using the above composition, we can view the set of register updates – for a
fixed set of register names and output alphabet – as a monoid.

Transformation forests. Suppose that M is a monoid and Q is a finite set.
(Our intended application is that S is the monoid of register updates for some
streaming string transducer, but the abstract definition requires less notation.)
Define a transformation forest (over M and Q) to be any labelled forest of the
following form:

q p

r
a

b

c

a
b

c

p

q

r
r

s

nodes are labelled 
by elements of Q

if a node is neither a root nor leaf,
then it has ≥2 children

each element of Q
appears in exactly

one leaf

edges are labelled 
by elements of S

each root 
has a different

label

We now describe how transformation forests can be composed. Suppose that
we have two transformation forests t and s, as illustrated below:

τ σ

q p

r
a

b

c

a
b

c

p

q

r

r s

q p r

r

b b

c

a
b

b
c

p

q

r

s s
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Their composition ts is obtained by doing the following steps.

1. To each root of s we can associate a unique leaf of t with the same label,
because roots of s have different labels and all labels appear in leaves of
t. Merge each root of s with the associated leaf of t:

q p

r
a

b

c

a
b

c

p

q

r

r s

p r

r

b b

c

a
b

b
c

p

q

r

s

2. Eliminate nodes that do not reach any node leaf of s:

q p

r
a

b b

c

q

r s

p r

r

b b

c

a
b

b
c

p

q

r

s

3. Contract into a single edge every path that uses only nodes with unary
branching (except the source and target):

q
abbb

r

r

r
c

a
b

b

cc

p

q

r

s

The label of a contracted path is the product, in the semigroup S, of the
labels of edges on the path before the contraction.

It is not hard to see that this operation is associative, i.e.

t(sr) = (ts)r.
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Also, there is a neutral element, namely the transformation forest where each
leaf is a root (and there are no edges). Therefore, the set of transformation
forests is a monoid, which we denote by M[Q]. The reader might recognise
transformation forests from Lemma 1.6 from Chapter 1. In that lemma, the
monoid M had two elements “accepting” and “non-accepting”. In this chapter,
M will be the infinite monoid of copyless register updates.

Lookahead elimination for streaming string transducers. Equipped with the
data structure of transformation forests, we are ready to prove the copyless
variant of Lemma 14.6.

Lemma 14.7. Functions recognised by streaming string transducers are closed under
pre-composition with rational functions. In other words

SST = SST � Rat.

Proof. The left-to-right inclusion is immediate, since the identity is a rational
function. For the converse inclusion, recall the following equality

Rat = Seq!| {z }
left-to-right

sequential functions

� Seq | {z }
right-to-left

sequential functions

from Theorem 13.1. Since both streaming string transducers and left-to-right
sequential functions are instances of left-to-right automata, a straightforward
product construction can be used to yield the inclusion

SST ◆ SST � Seq!

Therefore, in order to prove the lemma it suffices to show

SST = SST � Seq .

Here we cannot use a simple product construction, because we compose
automata that move in different directions. The rest of the proof is devoted to
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proving the above inclusion. We use the same notation and colour convention
as in the proof of Lemma 14.6. Let

S⇤
f
// G⇤

g
// D⇤

be functions such that f is right-to-left sequential and g is a streaming string
transducer. Our goal is to design a streaming string transducer that recognises
the composition g � f . To make notation lighter, we assume that f has empty
end-of-input words. This assumption can be lifted without greater conceptual
difficulty.

Overview of the construction. The idea is that instead of storing register
valuations, the streaming string transducer for g � f will store register updates,
organised in a transformation forest. To illustrate this idea, consider the
configuration graph of the right-to-left sequential function f over an input
word w 2 S⇤, as shown in the following picture:
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ε
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Nodes of the configuration graph are labelled by states of f and edges are
labelled by output words of f . Because the f is right-to-left deterministic, the
configuration graph is a forest, with the roots in the first column. The output of
f is obtained by reading from left to right the labels on the path that goes from
the unique leaf with the initial state of f to the unique root that is its ancestor.
(We use the assumption that the end-of-input words are empty; otherwise we
would need to add one more column at the left end of the picture.)
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The automaton recognising the composition g � f will store in its configuration
a transformation forest

t 2 (register updates of g)
| {z }
monoid of copyless register
updates for registers and

output alphabet of g

[states of f ].

The nodes of this transformation forest will correspond to the leaves of the
configuration graph, their closest common ancestors, and the roots that are
reachable from leaves, as represented by the big yellow circles below:
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ε
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ε
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For a path connecting two adjacent yellow nodes, the transformation forest t
will store the register update done by g on that path. To describe the automaton
in more detail, we begin by discussing how copyless register updates, and
therefore also transformation forests over the monoid of copyless register
updates, can be stored in the configuration of a streaming string transducer.

Storing register updates. Recall the graphical representation of register
updates that was used when defining the copyless restriction. A copyless
register update can be stored by a streaming string transducer like this:

abb

abb
aaa

aaa

bbaa

bbaa

3 registers used to
store these words
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In general, to store a copyless register update we need a bounded number of
bits to store the tree structure of the update plus

2 · (number of registers in g)

registers to store the output words used in the update. To store a
transformation forest

t 2 (register updates of g)[states of f ].

we use a bounded number of bits to store the structure of the forest and its
labelling by states of f , plus

2 · (number of registers in g)
| {z }

registers to store
a register update

· 2 · (states in f )
| {z }
number of edges in

a transformation forest

registers to store the register updates. The following claim says that
transformation forests can be updated in a copyless way.

Claim 14.8. Fix a transformation forest

s 2 (register updates of g)[states of f ].

Then the function

t 2 (register updates of g)[states of f ] 7! ts 2 (register updates of g)[states of f ]

can be done using a copyless register update.

Proof. Almost by definition, copyless register updates can be composed using a
copyless register update. The same is true when composing transformation
forests ts, because each label from t and each label from s is used at most once
in the composition. In fact, copyless register updates can be seen as a special
case of transformation forests, see Exercise 143. ⌅
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The automaton. Before describing the automaton, let us introduce some
notation that will be used in its definition and correctness proof. Let q be a state
of f and let p be a state of g. Define fq to be the right-to-left sequential function
obtained from f by changing the initial state to q and define [p, w, q] to be the
run of g – viewed as a sequence of transitions – which begins in state p and
reads the word fq(w). We have the following equality, which is obtained by
unravelling the definitions:

[p, wa, q] = [p, w, aq] · [p( fq(a)), a, q] for every w 2 S⇤ and a 2 S.
(14.3)

In the above, we write q and p for the state transformations of the automata
underlying f and g.
Equipped with the above notation, we are ready to define the streaming string
transducer recognising the composition g � f . After reading an input word
w 2 S⇤, the transducer will store a transformation forest

tw 2 (register updates of g)[states of f ]

whose intuitive meaning was described at the beginning of the proof. The
transformation forest tw is stored as described before Claim 14.8, and it satisfies
the following invariant:

(*) Let q be a state of f and let p be the unique root-to-leaf path in tw that
ends in a leaf with label q. Then the composition of register updates
labelling p is the same as the register update done by the run
[initial state of g, w, q].

To update its configuration, the transducer will also store in its finite state space
the function dw defined by

q 2 states of f 7! target state of the run [initial state of g, w, q]

Using (14.3), it is not hard to see how dwa can be computed from dw and an
input letter a. It remains to show how to update the transformation forest tw.
Initially, t# is a forest with no edges and one leaf per state of f , like this
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every leaf is also
a root, and there

are no edges

q0

q1

q2

q3

and therefore the invariant (*) is satisfied because p is the empty path which
yields an identity register update. When reading a letter a, the transformation
forest is updated as follows. The new transformation forest twa is defined to be
the composition – in the monoid of transformation forests – of tw with the
following transformation forest:

a leaf for
each state of f the parent of a leaf with label q

is a root with label aq

the edge to a leaf with label q
is labelled by the register update
done by the run [δw(aq), a, q] 

b

a

ba

ab

a

b

a

ba

ab

a

q0

q1

q2

q3

q0

q1

q2

q3

q0q0

q1

q2

q3q3

Using the equality (14.3), it is not hard to check that twa satisfies the invariant.
Furthermore, the update can be done while preserving the copyless discipline,
by Claim 14.8.
It remains to define the output function so that the automaton recognises the
composition g � f . By the invariant, once the automaton has finished processing
an input w, by looking at the transformation forest tw we can recover the
register update t that is done by the run of g on f (w), i.e. the run

[initial state of g, w, initial state of f ].
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To get the output of g � f on w, it remains to apply t to the empty register
valuation, and finally apply the output function of g to the resulting register
valuation. All of this can be done using the register representation of the
transformation forest tw. ⌅

Problem 139. Show that the class sst of functions recognised by streaming
string transducers has the following closure properties:

1. if f , g are in sst, then so is w 7! f (w)g(w).

2. if f is in sst, then so is w 7! reverse of f (w).

Problem 140. Show that the class of regular languages is closed under inverse
images of streaming string transducers, but not under forward images.

Problem 141. Show that a language L ✓ S⇤ is regular if and only if there is a
streaming string transducer with input alphabet S and output alphabet {0, 1}
which recognises the characteristic function of L.

Problem 142. Define a nondeterministic streaming string transducer by (a)
allowing several applicable transitions in each state; (b) distinguishing
accepting states, so that only runs that end in an accepting state count. A
functional streaming string transducer is a nondeterministic one where every
accepting run produces the same output. Show that functional streaming string
transducers recognise the same functions as deterministic ones.

Problem 143. Consider the least class of monoids that contains G⇤, and is
closed under:

• reversing the monoid operation, i.e. m · n becomes n · m;

• submonoids;

• homomorphic images;

• if M is the class, then so is M[Q] for every finite set Q.
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Show that this class contains, for any finite set R of registers, the monoid of
copyless register updates with alphabet G and registers R.

Problem 144. A streaming string transducer is called monotone if its registers
can be totally ordered as r1, . . . , rn so that every register update t preserves the
order in the following sense: after concatenating the words t(r1), . . . , t(rn) and
keeping only the register names, we get a subsequence of r1, . . . , rn. Show that
every streaming string transducer can be decomposed as g � f where f is a
rational function and g is a monotone streaming string transducer.

Problem 145. Show that the following problem is PSpace-hard (it is also in
PSpace, but this is more challenging to prove): given a streaming string
transducer, decide if it produces the empty word for every input.





15
Learning automata

This chapter is about learning regular languages of finite words. All automata
here are deterministic finite automata. The setup is that there are two parties:
Learner and Teacher. Teacher knows a regular language. Learner wants to learn
this language, and pursues this goal by asking two types of queries to the
Teacher:

• Membership. In a membership query, Learner gives a word, and the
Teacher says whether or not Teacher’s language contains that word.

• Equivalence. In an equivalence query, Learner gives regular language,
represented by an automaton, and Teacher replies whether or not the
Teacher’s and Learner’s languages are equal. If yes, the protocol is
finished. If no, Teacher gives a counterexample, i.e. a word where the
Teacher’s and Learner’s languages disagree.

Membership queries on their own can never be enough to identify the
language, since there are infinitely many regular languages that match any
finite set of membership queries. Given enough time, equivalence queries alone
are sufficient: Learner can enumerate all regular languages, and ask
equivalence queries until the correct language is reached, without ever using
membership queries. The lecture is about a more practical solution, which was
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found by Dana Angluin [4]. Angluin’s algorithm is a protocol where Learner
learns Teacher’s language in a number of queries that is polynomial in:

• the minimal automaton of Teacher’s language;

• the size of Teacher’s counterexamples.

If Teacher provides counterexamples of minimal size, then the second
parameter above is superfluous, i.e. the number of queries will be polynomial
in the minimal automaton of Teacher’s language. As mentioned above, we only
talk about deterministic automata, and therefore the minimal automaton refers
to the minimal deterministic automaton.

State words and test words. Suppose that Teacher’s language is L ✓ S⇤. We
assume that the alphabet is known to both parties, but the language is only
known to Teacher. At each step of the algorithm, Learner will store an
approximation of the minimal automaton of L, described by two sets of words:

• a set Q ✓ S⇤ of state words, closed under prefixes;

• a set T ✓ S⇤ of test words, closed under suffixes.

The idea is that the state words are all distinct with respect to Myhill-Nerode
equivalence for Teacher’s language, and the test words prove this. This idea is
formalised in the following definitions.

Correctness and completeness. If T is a set of test words, we say that words
v, w 2 S⇤ are T-equivalent if

wu 2 L iff vu 2 L for every u 2 T

This is an equivalence relation, which is coarser or equal to the Myhill-Nerode
equivalence relation of Teacher’s language. In terms of T-equivalence we define
the following properties of sets Q, T ✓ S⇤ that will be used in the algorithm:

• Correctness. All words in Q are pairwise T-non-equivalent;
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• Completeness. For every q 2 Q and a 2 S, there is some p 2 Q that is
T-equivalent to qa.

If (Q, T) is correct and complete, then we can define an automaton as follows.
The states are Q, the initial state being the empty word. When the automaton is
in state q 2 Q and reads a letter a, it goes to the state p described in the
completeness property; this state is unique by the correctness property. The
accepting states are those states that are in Teacher’s language.

Lemma 15.1. If (Q, T) is correct but not complete, then using a polynomial number of
membership queries, Learner can find some P ◆ Q such that (P, T) is correct and
complete.

Proof. If q 2 Q and a 2 S are such that no word in Q is T-equivalent to qa, then
qa can be added to Q. The membership queries are used to test what is
T-equivalent to qa. ⌅

The algorithm. Here is the algorithm.

1. Q = T = {e}

2. Invariant: (Q, T) is correct, not necessarily complete.

3. Apply Lemma 15.1, and enlarge Q, making (Q, T) correct and complete.

4. Compute the automaton for (Q, T) and ask an equivalence query for it.

5. If the answer is yes, then the algorithm terminates with success.

6. If the answer is no, then add the counterexample and its suffixes to T.

7. Goto 2.

Note that if (Q, T) is correct, then all words in Q correspond to different states
in the minimal automaton (for Teacher’s language). Furthermore, if the size of
Q reaches the size of the minimal automaton, then Q represents all states of the
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minimal automaton, and the transition function in the automaton for (Q, T) is
the same as the transition function in the minimal automaton. Therefore, if Q
reaches the size of the minimal automaton, the equivalence query in step 4 has
a positive result.
To prove that the algorithm terminates, we show below that after step 6, (Q, T)
is no longer complete. This will mean that step 3 will necessarily enlarge Q,
and therefore the number of times we do ”Goto 2” will be bounded by the size
of the minimal automaton.

Lemma 15.2. After step 6, (Q, T) is no longer complete.

Proof. Let (Q, T) be the pair in step 4, and let a1 · · · an be the counterexample,
which witnesses that the automaton for (Q, T) does not recognise Teacher’s
language. Define T0 to be T plus all suffixes of the counterexample, and
suppose toward a contradiction that (Q, T0) is complete. If (Q, T0) is complete,
then the automata for (Q, T) and (Q, T0) are the same. Define qi to be the state
of either of these automata after reading a1 · · · ai. By construction, the state qi is
a word which is T0-equivalent to qi�1ai, and since ai+1 · · · an 2 T0, it follows that

qi�1ai · · · an 2 L iff qiai+1 · · · an 2 L.

Since q0 is the empty word, the above and induction imply that

a1 · · · an 2 L iff qn 2 L

which means that the automaton gives the correct answer to the
counterexample, a contradiction. ⌅

Problem 146. Show that one can design an algorithm for learning DFA without
membership queries and counterexamples, which finds a correct DFA in
exponential time. Show that one cannot do better.

Problem 147. Show that there is no algorithm, which asks only membership
queries and guesses a correct DFA at the first time it asks an equivalence query.
Show that the same holds for a fixed number of mistaken equivalence queries
allowed.
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Problem 148. Show that there is no algorithm running in polynomial time,
which learns a correct DFA in the following setting: both membership and
equivalence queries are allowed, but in the case when answer for an
equivalence query is ”NO” Teacher delivers no counterexample.
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