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ABSTRACT
In the paper the model of early stage of tumour growth is described. Two main
cellular processes are considered — proliferation and apoptosis. We focused
on the effect of time delays in both processes. Mathematical analysis and
computer simulations are presented.

INTRODUCTION
Many models which study different stages and effects of tumour growth
were proposed and studied within last years, e.g. [1] – [7]. The model
we study is based on the idea of avascular multicellular spheroids (MCS)
modelling, see [3] – [7]. In this paper we focus on the case of uniformly
proliferating tumour, i.e., MCS without a hypoxic region and necrotic
core inside. We consider the diffusion of nutrient and two basic processes.
One of them is a cell proliferation and second one is underlying apoptosis.
The aim of this paper is to introduce time delays into both processes. For
the case with equal delays some analysis was done in [7]. We consider the
more general case, i.e., with two different delays, which is more interesting
but also more difficult from the analytical point of view.
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At the beginning, we formulate the basic model without delays. We

assume that the growth of MCS is symmetric and the space co-ordinate
is the radius r. We study the changes of two variables

• σ(r, t) — the diffusiable chemical (a vital nutrient) concentration
at radius r and time t,

• R(t) — the outer MCS (tumour) radius at time t.

The changes of nutrient (e.g. oxygen or/and glucose) are described
by reaction - diffusion equation. It is assumed that the nutrient is sim-
ply consumed by tumour cells with the consumption rate s. Because
the tumour doubling time - scale (weeks) is much longer than the nutri-
ent diffusion time - scale (minutes or hours) we make the quasi - steady
approximation in the nutrient equation. Therefore, we assume that the
derivative of σ with respect to time is equal to 0 and obtain the following
equation

1

r2

∂

∂r
(r2∂σ

∂r
) = a, (1)

where the left - hand side of Eq. (1) represents Laplasian in spherical
co-ordinates.

The changes of MCS volume are governed by the principle of mass
balance, i.e.,

1

4π

d

dt
(
4

3
πR3(t)) = S(t) − Q(t), (2)

where

S(t) =

∫ R(t)

0

sσ(r, t)r2dr, Q(t) =

∫ R(t)

0

scr2dr (3)

are the total rate of cell proliferation and the total rate of cell death,
respectively. In Eq. (3) s and sc are positive constants and denote the
rates of cell proliferation and cell death within the tumour. For simplicity,
we assume that s = 1 (if not we can re-scale the coefficients σe, a and
c). We close the model be prescribing the following boundary and initial
conditions

σ(R(t), t) = σe,
∂σ

∂r
(0, t) = 0, R(0) = R0, (4)

where σe is the constant nutrient concentration external to the tumour.
It is reasonable to assume that σe > c. Calculating σ from Eq. (1) under



3
the conditions defined in Eqs. (4) we obtain

σ(r, t) = σe − a

6
(R2(t) − r2). (5)

STATEMENT OF THE MODEL WITH DELAYS
In this section we study the model with delays in proliferation and under-
lying apoptosis. Both of these processes incorporate time delays. In the
first case, the delay represents the time taken for the cells to undergo mi-
tosis. In the second one, the delay represents the time taken for the cells
to modify the rate of cell loss due to apoptosis. We assume that these
delays are constant (τ1, τ2 > 0). Hence, instead of Eq. (3) we consider

S(t) =

∫ R(t−τ1)

0

σ(r, t − τ1)r
2dr, Q(t) =

∫ R(t−τ2)

0

cr2dr. (6)

Using Eqs. (6) and (2) we obtain

d

dt
R3(t) = σeR

3(t − τ1) − a

15
R5(t − τ1) − cR3(t − τ2).

Let denote x(t) = R3(t). Hence,

d

dt
x(t) = σex(t − τ1) − a

15
x

5
3 (t − τ1) − cx(t − τ2). (7)

Using the steep method (see, e.g., [8]) it is easy to see that for every
nonnegative initial function x0(t) : [−τ̃ , 0] → R

+, τ̃ = max(τ1, τ2) the
unique solution to Eq. (7) exists, because on every time interval of the
form [nτ̄ , (n + 1)τ̄ ], n ∈ N, τ̄ = min(τ1, τ2) the solution is defined by the
formula

x(t) = x(nτ̄ ) +

∫ t

nτ̄

(σex(s − τ1) − a

15
x

5
3 (s − τ1) − cx(s − τ2))ds,

where x(s − τ1) and x(s − τ2) are known. It is also easy to see that for
nonnegative initial condition x0 the solution may be negative (for details
see [7]).

Assume that the positive solution to Eq. (7) exists for every t > 0.
Then we can study its asymptotic behaviour.

There are two stationary solutions to Eq. (7) – the trivial one and
the positive nontrivial x̄ =

(15(σe−c)
a

) 3
2 .
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Lemma 1. The trivial stationary solution to Eq. (7) is unstable inde-
pendently on the values of both delays.

Proof. Linearizing Eq. (7) around the trivial solution we obtain

d

dt
x(t) = σex(t − τ1) − cx(t − τ2).

The characteristic quasi - polynomial has the form D(λ) = λ− σee
−λτ1 +

ce−λτ2 . The assumption σe > c implies that the zero solution is unstable
for every τ1 ≥ 0 and τ2 ≥ 0 (for details see [8]).

For the nontrivial solution x̄ we have the linearized equation of the
form

d

dt
x(t) = −(

2

3
σe − 5

3
c)x(t − τ1) − cx(t − τ2) (8)

and the characteristic equation of the form

z = −(
2

3
σe − 5

3
c)e−zτ1 − ce−zτ2 . (9)

Theorem 1. If Eq. (9) has no purely imaginary roots and |2σe−5c|
3

τ1 +
cτ2 ≤ 1, then the nontrivial solution x̄ is stable.

Proof. If 2σe = 5c, then for cτ2 ≤ 1 it easy to see that x̄ is stable. Let
2σe �= 5c and

A1 =
2

3
σe− 5

3
c, A2 = c, λ =

z

|A1| , A =
A2

|A1| , τ1 =
r1

|A1| , τ2 =
r2

|A1| .
(10)

If 2σe − 5c > 0, we obtain the normalised characteristic equation

λ = −e−λr1 − Ae−λr2 , (11)

in the other case we obtain

λ = e−λr1 − Ae−λr2 . (12)

Assume 2σe − 5c > 0 and denote D(λ) = λ + e−λr1 + Ae−λr2 . Then
for λ = iω, ω ≥ 0 we have

�(D(iω)) = cos(ωr1)+A cos(ωr2), �(D(iω)) = ω−sin(ωr1)−A sin(ωr2).
(13)
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To study stability we use the Mikhailov Criterion (see e.g. [9], [10] for
details) that belongs to the class of criterions based on the principle of
argument (compare the Nyquist Criterion, e.g. [9]). To obtain stability
it is enough that the change of the argument of D(iω) with ω increasing
from 0 to +∞ is equal to π

2
. We see that �(D(0)) = 1+A and �(D(0)) =

0. Moreover, sin(D(iω)) → 1 and cos(D(iω)) → 0 as ω → +∞. Hence,
if �(D(iω)) ≥ 0 for every ω > 0, then all the roots D(λ) have strictly
negative real parts. It easy to see that

�(D(iω)) ≥ ω(1 − r1 − Ar2), (14)

and �(D(iω)) > 0 if r1 + Ar2 ≤ 1.
For 2σe − 5c < 0 we denote D(λ) = λ − e−λr1 + Ae−λr2 . Then

�(D(iω)) = − cos(ωr1) + A cos(ωr2) and �(D(iω)) = ω + sin(ωr1) −
A sin(ωr2). We have sin(D(iω)) → 1 and cos(D(iω)) → 0 as ω → +∞.
Moreover, �(D(iω)) ≥ ω−| sin(ωr1)|−Aωr2 ≥ ω(1−r1−Ar2), as before.
This completes the proof.

Theorem 2. If 2σe �= 5c and 3c
|2σe−5c| < 1 and τ1 ≤ 3

|2σe−5c|+3c
, then the

nontrivial solution x̄ is stable.

Proof. We consider two cases. The first one for 2σe − 5c > 0 is proved in
[11]. Assume now that 2σe − 5c < 0 (i.e., A1 < 0). It is easy to see that
for r1 = 0 all the roots of Eq. (12) have strictly negative real parts. The
nontrivial solution x̄ could be unstable if for some r1 ≤ 1

1+A
Eq. (12) has

a pair of purely imaginary roots ±iω. These roots satisfy

cos(ωr1) = A cos(ωr2), ω + sin(ωr1) = A sin(ωr2). (15)

Squaring both equations and adding up, we obtain

sin(ωr1) =
−ω2 − 1 + A2

2ω
. (16)

Inequality |sin(ωr1)| ≤ 1 implies that ω ≤ 1 + A. Denoting the absolute
value of the right - hand side of Eq. (16) by g(ω) we have

g(ω) ≥ ω

2

[
1 +

1 − A2

(1 + A)2

]
= ω

1

1 + A
≥ ωr1 > | sin(ωr1)|. (17)

This contradicts the definition of g(ω). Therefore, all the roots of Eq. (12)
have negative real parts.
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NUMERICAL SIMULATIONS AND CONCLUSIONS

At the beginning of this Section, we present some numerical simulations
of the model defined by Eq. (7) with two different delays. We focus on
the influence of delays on the behaviour of solutions. For all numerical
simulation we fixed the following parameter values: a = 30, c = 1,
σe = 5.5 and τ1 = 0.5. We only change the magnitude of τ2.

Stability of solutions depends on the behaviour of so - called Mikhailov
hodograph. Therefore, at the beginning we present some examples of it
— see Figs. 1-3. Figs. 4-5 show simulation results for Eq. (7). If the
hodograph does not circle around the point (0, 0), then the solution is
stable (compare Fig. 1 and 4). If it crosses this point, then the Hopf
bifurcation is possible and the solution may oscillate (see Figs. 3 and 5).
Otherwise the solution is unstable. It should be noticed that for models
with two different delays stability switches can occur what is not possible
in the case with one delay.
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Figure 1. Mikhailov hodograph for τ2 = 0.2
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Figure 2. Mikhailov hodograph for τ2 = 0.7
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Figure 3. Mikhailov hodograph for τ2 = 1.225 (left) and τ2 = 50 (right)
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Figure 4. Solution evolution in time for τ2 = 0.2 (left) and τ2 = 0.7
(right)
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Figure 5. Solution evolution in time for τ2 = 1.225 (left) and τ2 = 50
(right)

Concluding our study we can say that the model with two delays
admits much more complicated behaviour then the model without or with
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one discrete delay and it seems to be more realistic. From the medical
point of view it shows that the outcome of the disease is closely related
to the environment in patient’s body. If this environment is described
by the parameters from the region of regular behaviour, then it is much
easier to propose a treatment. On the other hand, for the regions of
irregular behaviour (quick stability switches) an appropriate treatment
can be not possible.
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