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Abstract. We discuss various models of ion transport through cell membrane channels. 

Recent experimental data shows that sizes of ion channels are compared to those of ions and 

that only few ions may be simultaneously in any single channel. Theoretical description of ion 

transport in such channels should therefore take into account interactions between ions and 

between ions and channel proteins. This is not satisfied by macroscopic continuum models 

based on Poisson-Nernst-Planck equations. More realistic descriptions of ion transport are 

offered by microscopic Brownian and molecular dynamics. One should also take into account 

a dynamical character of the channel structure. This is not yet addressed in the literature.  
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Introduction 

 

Every living cell is an open system. Continuous transfer of energy and mass between cells and 

their surroundings constitutes a necessary condition for a sustained life. Cell membranes, 

which ensure the autonomy of separated compartments, should be endowed by mechanisms of 

a selective transport of substances indispensable for the life of a cell. In particular, a 

fundamental phenomenon is a transport of ions through cell membranes which ensures that 

the ion content of a cell is different from the one outside the cell. 

Cell membranes, due to their structure and a chemical composition (a two-lipid layer 

with immersed molecules of integral proteins) are characterized by a very low average relative 

electrical permittivity εr (also called dielectric constant) about 2,as compared to a relative 
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permittivity of electrolyte water solutions in their surrounding – about 80. The Born energy 

(the energy required to move a ion from the outside solution to the hydrophobic interior of a 

membrane) corresponding to such values of permittivity is about 300kJ/mol. This rather high 

Born energy should imply a very low ion permeability of a membrane (in particular for such 

important ions as Na, K, Ca, and Cl) – the value lower by several orders of magnitude than 

observed ones. In evolutionary processes, structures and mechanisms have been formed in 

membranes, which lower locally an energy barrier for  penetrating ions. Such structures 

consist of molecules of integral proteins whose hydrophobic parts interact with two-lipid 

layers and polar hydrophilic parts form: a) relatively wide non-selective hydrated pores which 

penetrate membranes, b) specific ion channels, often endowed with special structural elements 

which form gates sensitive to an electric field, chemical ligands, or the mechanical stress, c) 

ion-binding centers (on one or both sides of a membrane) called carriers or transporters which 

interact with ions and transport them to the other side of the membrane where ion-carrier 

complexes dissociate. Such transport can use the energy obtained by metabolic reactions 

(mainly ATP hydrolysis) – then it is called the active transport, or an interior energy – in this 

case it is called the facilitated diffusion. 

All above mentioned transport mechanisms are essential for cell homeostasis, that is 

for securing the content of the interior of a cell, its volume and an electric voltage of the 

membrane (in electrophysiology and biophysics it is called the membrane potential). They are 

also essential (to a certain degree) for the phenomenon of excitability of cells, for which an 

important role is played by ion channels. Investigations in this area are carried in many 

scientific centers. Huge experimental data has been collected and  various  theories proposed 

which describe ion transport in cell membranes. Despite this, our knowledge is still not 

sufficient to explain transport mechanisms and to provide its full description.  

  

Ion channels 

 

In the late forties and early fifties of the last century, Hodgkin and Huxley in the collaboration 

with Katz (Hodgkin & Katz 1949; Hodgkin & Huxley 1952; Hodgkin et al. 1952; Huxley 

2002; Moves 1984) worked out their phenomenological theory of nerve impulses und put up a 

hypothesis that transport of potassium and sodium ions in excitable biological membranes 

takes places in selective ionic paths, different for different ions. These paths, besides a high 

selectivity, displayed the dependence of the conductivity on the membrane voltage. Although, 
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such paths have not been called ion channels in these papers, yet a  widely accepted 

hypothesis was formulated that ions penetrate membranes through specific ion channels made 

of proteins. Channel properties as well as transport mechanisms were deducted from 

macroscopic measurements. Particularly useful was the voltage-clamp method which consists 

of registering  electric currents through a certain macroscopic surface of a membrane for fixed 

values of the membrane potential. A schematic set up for such measurements is presented in 

Fig.1 . 

 

Fig. 1. Schematic set up for measuring ion currents in axons by the voltage-clamp method.  

 

The registered current through the membrane is the sum of ion currents and the capacity 

current (a current of charging the membrane’s electrical capacity). The second current 

vanishes with a time constant specified by the membrane’s capacitance and the electrical 

resistance of the measuring  circuit. The total current Im is written as  

 ∑+=
i

icm III ,                    (1) 

where Ic is the capacity current and Ii are currents carried by respective types of ions (mainly 

sodium and potassium currents but also a chloride current one which is a main ingredient of 

the leakage current for which the electrical conductance is independent of the membrane 

potential). Using toxins blocking specifically particular type of ions, one can decompose 

experimentally the total current into different ion currents. This is illustrated in Fig.2. 

 
Fig. 2. Time dependence of ion currents for a fixed membrane potential. 
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After applying to a membrane a fixed voltage Vm , the total current is given by the curve 1.  

(the capacity current is not seen in Fig.2 due to its very low time constant). Then using a 

specific blocker, for example for sodium ions, one registers the total current diminished by its 

sodium component - line 2. Line 3 corresponds to the difference between values of currents 

given by lines 1 and 2 (assuming that the leakage current is negligibly small) and therefore 

describes the current crossing through all sodium channels on the membrane surface between 

measuring electrodes. There are many channels on this surface and therefore their individual 

properties can be only deducted from current-voltage characteristics obtained in concrete 

experimental conditions. One can read about the voltage-clamp method for example in  

(Weiss 1996). The patch-clamp worked out by Neher and Sakmann (1976) make possible 

measuring currents through individual channels. In this method, the ending of a glass pipette 

(of the diameter of 1µm and the resistance of the contact of 109 ohms) is attached to the 

membrane. One can register electric currents through the surface adhered to the pipette for 

fixed voltage between measuring electrodes. There should be only one ion channel located on 

such a small surface and therefore one can obtain transport characteristics of individual 

channels. A schematic set-up of this method is presented in Fig. 3. 

 
Fig. 3. Schematic set-up for measuring ion currents by the patch- clamp method . 

 

We will not discuss details of this method which can be found in the very good monograph of 

Sakmann and Neher (1995). 

Investigations using the patch-clamp method confirmed a high selectivity of ion 

channels. Transport velocity of ions, obtained from these measurements, equals to about 107 

ions per second (a number of ions crossing a channel during one second) appeared to be close 

to values observed in the diffusion in water solutions of electrolytes with the thickness 

compared to that of cell membranes. Such high velocity of ions in membranes indicates that 

the transport mechanism cannot be of a carrier type which is the case in the active transport 

realized by ion pumps or in the passive exchange transport (for example realized in the case of 

anions by band 3 protein in the erythrocyte membrane). Channels in excitable membranes are 
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highly selective for univalent kations (Na+ and  K+). Such selectivity cannot be therefore the 

effect of electrostatic interactions between ions and charges of the inner surface of the 

channel. It results from interactions with chemical residues of channel proteins directed 

towards the interior of the channel (Beckstein & Sansom 2004; Gouaux & MacKinnon 2005; 

MacKinnon 2003; Miller 2000; Noskov et al. 2004a; Noskov & Roux 2006; Zhou & 

MacKinnon 2003). Biochemical studies tell us which proteins form particular channels. We 

know their aminoacid sequences and ternary and quaternary structures. It is known which 

parts of channel proteins are responsible for hydrated pores, which parts form a filter 

responsible for the channel selectivity and which ones play the role of a voltage sensor which 

can change the state of a voltage-dependent channel from the conductive to the non-

conductive one (and vice versa). Bibliography discussing these issues is immense and we will 

not cite it here but rather refer readers to the new edition of an excellent monograph (Hille 

2001) and review papers (Sansom et al. 2002; Tombola et al. 2006; Yesylevskyy & 

Kharkyanen 2004). A new idea on this matter is presented in MacKinnon’s papers ( Lee et al. 

2005; Schmidt et al. 2006). 

Scientists who worked out theoretical description of ion transport in open channels had 

to base their models on biochemical data and experimentally obtained channel transport 

characteristics. Until recently we had lacked directly obtained channel images. First reports 

of such images appeared in the end of nineties of the last century. There have been obtained  

X-rays images of potassium and chlorine channels, an acetylocholin receptor, and water 

channels (aquaporins). Particularly important is a paper (Doyle at al. 1998) whose authors 

were able to crystallize the protein of a potassium channel, KcsA, from the membrane of the 

bacteria Streptomyces lividans, and obtained its three-dimensional X-ray image with 0,32 nm 

resolution. Results obtained in this paper were confirmed in (Morais-Cabral et al. 2001, Zhou 

et al. 2001) with images with 0,2 nm resolution. Despite the fact that the KcsA channel is not 

voltage-dependent and its image corresponds to the non-conductive state, it has become the 

base for constructing realistic models of ion channels (mainly potassium ones) (Sansom et al. 

2002; Tieleman et al. 2001, and the literature cited therein). 

The general scheme of the potassium channel following from the above papers is 

presented in Fig. 4. 
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Fig.4. Schematic cross-section of a ion channel. 

One can see that the channel cross-section changes along its axis. In the channel part directed 

toward the outside of the cell there is located a filter responsible for channel selectivity (of the 

length of 1,2 nm length and the diameter of 0,3 nm). In the middle part there is a relatively 

wide cavity of the length of about 1,0 nm which is capable of containing tens of water 

molecules. In the part of the channel directed toward the interior of the cell (of the length of 

about 2,0 nm) there are subunits of the protein channels responsible for the opening and 

closing the channel (a channel gate). In the closed channel, the smallest diameter of this part 

of the channel is 0,24 nm, whereas the diameter of K+ ion is equal to 0,26 nm. The surface of 

this part of the channel is hydrophobic. The above data come from (Chung & Kuyucak 2002). 

It is seen from the X-ray image of the channel that there can be at most two potassium ions in 

the filter (separated by a water molecule). In the middle cavity of the channel there can be a 

third potassium ion. Such distribution of ions in a channel is confirmed by Brownian 

dynamics (Chung et al. 2002), and molecular dynamics (Allen et al. 1999; Burykin et al. 2002; 

Sansom et al. 2002, and the literature cited therein). 

Detail studies of channel proteins indicate that a filter part is the same in all potassium 

channels (Hille 2001; LeMasurier et al. 2001; Morais-Cabral et al. 2001). It is formed from 

segments of polypeptide chains (two or four subunits of a channel protein) with the amino 

acid sequence TVGYG. One can distinguish four centers (S1, S2, S3, and S4) in which 

oxygen atoms of the carbonyl residues exactly correspond to the coordination bond of 

potassium ions and can substitute oxygen atoms of water molecules around the hydrated K+ 

ion (Miller 2000). X-ray studies (Zhou et al. 2001) and molecular dynamics (Berneche & 

Roux 2001) indicate that there exists another center (S0) in the exterior of the channel 

entrance domain. This is schematically illustrated in Fig.5.  
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Fig.5. Schematic distribution of K+  ions  (• ) and water molecules (o ) in the channel filter. 

The presence of such filter in all potassium channels allows the construction of a 

uniform theoretical description of the ion transport in all open potassium channels. It was 

shown in (Corry et al. 2001) that such description can also be used in calcium channels. 

 

Ion transport in channels 

 

In describing  ion transport in membrane channels, one has to take into account both 

geometrical sizes of a channel and types of chemical residues of proteins on the channel 

surface. One cannot forget that an image of a ion channel obtained from structural studies is a 

static one (averaged over a certain time), whereas  the real structure varies in time. Uptill now, 

all theories of ion transport (with the exception of the molecular dynamics) (Allen et al. 2004; 

Allen et al. 2006; Bastug et al. 2006; Beckstein & Sansom 2004; Chung & Tieleman 2006; 

Sands et al. 2006) were not taking this important fact into consideration. 

A continual electro-diffusion theory, proposed by Goldman (1943) and then developed 

in many papers has been and still is often used to describe the ion transport in open channels. 

We present foundations of such description in Appendix A. A comprehensive bibliography 

can be found in monographs (Hille 2001; Sten-Knudsen 2002). It is a mean-field theory. It can 

only be used to describe ion transport in channels of a sufficiently large diameter and for 

solutions of dilution ensuring that ions do not interact with themselves. In such channels, 

concentration of ions can be described as a statistical quantity. Electrical permeability and the 

diffusion coefficient for ions inside the channel are equal to the corresponding values in the 

solution adjacent to the membrane. However, this is not true for channels presented above. 

Eisenberg and his coworkers (Chen & Eisenberg 1993a; Chen & Eisenberg 1993b; Eisenberg 
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1998; Eisenberg 2000a; Eisenberg 2000b; Eisenberg 2003; Gillespie et al. 2002; Nonner et al. 

1999; Schutz et al. 2001) and Kurnikova with her coworkers (Cardenas et al. 2000; Graf et al. 

2004; Kurnikova et al. 1999; Mamonov et al. 2003) developed a three-dimensional electro-

diffusion theory based on the Nernst-Planck equation and the Poisson equation for the 

potential of electrostatic interactions. This theory, called PNP (Poisson-Nernst-Planck) theory, 

is still a mean-field theory and as it was shown in (Corry et al. 2000; Moy et al. 2000), it 

cannot be used in channels of dimensions described above. It can be applied to channels of 

dimensions exceeding twice the value of the Debye radius. The PNP theory cannot be used to 

describe the transport in channels discussed here because the average number of ions observed 

in such channels is compared to the size of fluctuations and therefore the concept of 

concentration ceases to have a sense. This problem was pointed out in (Miller 1999; Schutz et 

al. 2001). However, this was not taken into account in proposed theories and in the case of the 

second paper, this problem was bypassed by averaging over a long time in the manner which 

is not completely understood. In a recent paper, the Eisenberg group generalizes the PNP 

equations by adding to the chemical potential of ions, an “excess” responsible for interactions 

between ions and non-electrostatic interactions between ions and the surface of a channel 

(Gillespie & Eisenberg 2002; Gillespie et al. 2002). 

The PNP theory fails to explain an experimentally observed saturation of the ion flux 

as a function of the concentration of ions in the solution adjacent to the membrane for the 

fixed membrane potential. According to the PNP theory, this dependence should be linear. 

It is worth to point out once again that using the continuous description of the ion 

transport in channels with atomic dimensions is inherently inappropriate. Macroscopic 

parameters of channels such as the diffusion coefficient (equivalently ions mobility), 

concentration and electric permeability, taken from continual theories cannot be rationally 

justified. This is confirmed by Monte-Carlo simulations of a double electric layer in 2 nm 

nano-pores (Yang & Yiacoumil 2002; Yang et al. 2002). 

The above remarks about continual description of ion transport  in open channels, 

based on the PNP theory suggest that it should not be used for channels with dimensions 

observed experimentally. Accidental agreement of this theory with an experimental data can 

follow from cancellation effects of assuming wrong channel parameters and wrong 

assumptions about the physics of channels (Corry et al. 2001). 

A fundamental model aspiring to provide a realistic description of ion transport in 

channels of excitable membranes is the molecular dynamics (MD) (Allen et al. 1999; Allen et 
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al. 2006; Berneche & Roux 2001; Chung et al. 2002; Levitt 1999; Nadler 2002; Roux 2005; 

Roux et al. 2004; Chung & Tieleman  2006). Ions, molecules of water and of channel proteins 

are treated as individual objects. Newton equations of motion of ions interacting with other 

ions, water molecules and the surface of a channel are solved. Unfortunately, the computer 

time needed to solve these equations and to calculate properties of channels (like their 

conductivity) is so far prohibitively large (years for the fastest computers). In such situation, 

even if one could have a realistic model of channels and a proper physical theory describing 

interactions between molecules in a channel, then limitations in computer power prevent us 

from using molecular dynamics to describe the ion transport. 

A model which is less fundamental but still describing motion of individual ions is the 

Brownian dynamics (BD). In order to reduce the number of equations, the force acting on a 

given ion (originated from water molecules and the surface of a channel) is decomposed into 

the sum of a deterministic friction force and a random force (a white noise) with the zero 

average. In this way we pass from deterministic Newton equations to stochastic Langevin 

equations,  

sFEq(t)Fvγm
dt

dv
m jrjjj

j
j +++−= ,      (2) 

where mj, qj, vj, are respectively a mass, a charge, and a velocity of the j-th ion,  E is the 

electric field. The friction, mjγjvj,  (where γj is the friction coefficient per unit mass) and a 

stochastic force, Fr , are results of random collisions of ions with water molecules and the 

channel surface. Fs is the force of  a short-range non-electrostatic interaction between the ion 

and the channel. The electric field responsible for the force exerted on ions, is computed 

numerically from the Poisson equation in the form 

 [ ] ( )rρ)r()rε( −=∇∇ ϕ ,                    (3) 

where r = (x,y,z) is a position vector, ρ is the total charge of ions and channel proteins, ϕ is 

the potential of the electric field, ε = εoεr - the electric permittivity (where εο is the permittivity 

of free space, and εr is a relative permittivity) and ∇ = (
zyx ∂

∂
∂
∂

∂
∂

,, ) – the gradient operator. 

One adds to the obtained electric field, an exterior field connected with the membrane 

potential.  

            In a very narrow selective channel, in an axon of a nerve cell for example, there can be 

only few ions of  the same type. In such membranes, ions of different types are separated and 

their transport takes place in different channels. The electric field inside such channels is a 
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sum of fields coming from surface charges and individual ions. The first field is an exterior 

field in the Langevin equations (2). The second one is a result of interactions between ions. 

The Langevin equations (2) were derived under the assumption that random Brownian motion 

of ions is independent of the presence of other ions. The problem of  interaction between ions 

in very narrow channels requires a separate discussion.   

In the first paper (Cooper et al. 1985), where Brownian dynamics was used to describe 

ion transport, one assumed that ions movement is one-dimensional. Such assumption is far 

from realistic models of ion channels. Papers published since 1998, mainly by a group of 

physicists from the Australian National University in Canberra, contain numerical simulations 

in a three-dimensional space. A detailed list of references devoted to this issue can be found in 

extensive reviews (Chung & Kuyucak 2002; Chung & Tieleman 2006, Kuyucak et al. 2001, 

Kuyucak & Chung 2002, Kuyucak & Batsug 2003; Roux  2005). 

 Parameters required in equations (such as an electric permittivity or a diffusion 

coefficient) are taken from molecular dynamics. One very often uses parameter fitting based 

on an optimization principle (Corry et al. 2001; Edwards et al. 2002; Mamonov et al. 2003; 

Mamonov et al. 2006). Geometrical dimensions of channels are often taken from 

experimentally obtained images or from molecular dynamics. In a recent paper 

(Krishnamurthy & Chung 2007), a stochastic optimization algorithms were constructed to 

estimate certain structural parameters of ion channels.  

In Brownian dynamics, Langevin equations are solved to describe trajectories of all 

ions.  In order to do so in very short time intervals (steps) of few femtoseconds (10-15 s), 

Langevin equations are integrated to find velocities and locations of all ions before the next 

step. This procedure is repeated for a sufficiently long time, usually few microseconds (10-6 s), 

to find the number of ions (∆n) passing through the channel in time (∆t). This gives us the 

flux of ions,  

∆t

∆n
J = .                         (4) 

Details of this method can be found in a review paper (Kuyucak et al. 2001). Fluxes obtained 

for different values of a membrane potential for a fixed ion concentration or for different 

concentrations but a fixed membrane potential, allow us to describe current-voltage and 

current-concentration characteristics. Such characteristics can be confronted with an 

experimental data. 
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In the introduction to (Corry et al. 2001), the authors declare that in their model, based 

on Brownian dynamics, ion chemical potentials and other channel parameters were neither 

assumed ad hoc or fitted to experimental data. It seems that they cannot really justify it. An 

optimization of channel parameters and their calculations based on molecular dynamics are 

not free from necessary approximations (for example treating water in a channel as a 

continuum, putting the relative electric permittivity of a channel protein to 2 or treating 

channel proteins as static structures). 

Despite many simplifications, the description of ion transport in ion channels based on 

Brownian dynamics explains more experimentally observed channel characteristics than the 

PNP theory (Edwards et al. 2002). In particular, it predicts, in the agreement with 

experiments, current-voltage and current-concentration characteristics (including the observed 

flux saturation with respect to the ion concentration in a solution near the membrane 

(LeMasurier et al. 2001; Miller 1999), caused by the independence of the time of the ion 

passage through a selective filter of the concentration (Berneche & Roux 2003; Chung & 

Kuyucak 2002; Kuyucak et al. 2001;  Kuyucak & Chung 2002;  Roux et al. 2004). 

A description of the ion transport based on the fenomenological Brownian dynamics is 

still a rough approximation and does not explain all experimentally observed ion channel 

characteristics (like channel selectivity for univalent cations). 

When we realize that proteins form dynamical structures whose pores, allowing ion 

transport, have cross-sections of atomic sizes, then we understand that using statistical 

macroscopic parameters (like an electric permittivity ε, and a diffusion coefficient D inside 

the channel) to describe their functions is not justified. This may constitute a fundamental 

limit of usability of Brownian dynamics to describe the ion transport in channels. Moreover, it 

is argued in (Burykin et al. 2002; Schutz & Warshel 2001) that one cannot define an electric 

permittivity of protein molecules and a solution near their surface of contact. In particular, one 

cannot characterize a protein molecule by an average permittivity (an estimated permittivity 

varies in space and it depends on the method of calculation). Protein channels are commonly 

treated as equilibrium structures with a time-independent permittivity. In reality, ion channels 

are non-equilibrium structures in which moving ions induce a time-dependent electric 

permittivity of channel proteins (Burykin et al. 2002). The above described problem of the 

electric permittivity of ion channels concerns in the same degree models of Brownian 

dynamics, molecular dynamics (Murzyn 2002), and the PNP theory.  
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We would like to pinpoint still another problem. Brownian dynamics describes 

movements of individual ions. Results of experimental papers (Morais-Cabral et al. 2001) and 

of molecular dynamics (Berneche & Roux 2000; Berneche & Roux 2003; Shrivastava & 

Sansom 2000) suggest that potassium ions are moving collectively together with a water 

molecule between them – they pass from S1 and S2 centers to S2 and S4. Such collective 

transport cannot be described in a simple way within models based on molecular dynamics. A 

kinetic theory of collective transport was presented by Nelson (2002, 2003a, 2003b). He 

assumed that transport barriers exist at the channel entrance and exit and there no barriers 

inside the channel (which is consistent with molecular dynamics). Results of the above papers 

display a saturation in current-concentration characteristics. We would also like to point out 

that ion sizes are compared to those of water molecules, therefore treating ions in channels as 

Brownian particles is not justified (Graf et al. 2004). 

We would like to discuss yet another issue. In many physiology and biophysics 

textbooks, in chapters devoted to nerve impulses, one uses the concept of permeability of the 

membrane of a nerve cell for ions of the i-th type. In particular, the permeability constant, Pi , 

is used to estimate the selectivity of ion channels (Hille 2001; Loughed et al. 2004; Tieleman 

et al. 2003). The time dependence of the action potential is explained by changes of  

membrane-potential dependent permeability constants of sodium ions, NaP , and potassium 

ions, KP , according  to the Goldman-Hodgkin-Katz equation for the diffusive rest potential. 

One has to remember that the formula  derived by Goldman (1943) holds  for uniform 

membranes, where ions are subject to an electro-diffusion through the whole membrane 

surface. Permeability constants, Pi, which appear in his formula are defined by the following 

expression: 

 
d

D K
P ii

i = ,                     (5) 

where Ki is a coefficient of a ion division between a membrane and an electrolyte, Di is a 

diffusion coefficient, and d - the thickness of the membrane. 

Because ions in excitable membranes pass through membrane potential-dependent 

channels, the concept of the constant membrane permeability losses its sense for single 

channels. 

Even if parameters appearing in the right-hand side of  (5) are well defined, they 

should be space-dependent because the channel cross-section varies in space. Moreover, 

because ion concentrations are not well defined so is the coefficient of  the ion division, Ki.  
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Ions conductivities are measurable. They appear in the equation for the current through 

the membrane in an excited state (Hodgkin et al. 1952). The conductivity of ions of the i-th 

type is given by the following expression:  

 Gi = ni Pi gi,                                                                          (6) 

where ni is the number of channels of the i-th type on the membrane surface (for example in 

the case of squid Loligo axon, there are 360 sodium channels and 80 potassium ones per one 

micrometer square), Pi is a membrane potential dependent probability of the channel opening,  

and gi is the conductivity of a single channel. Time changes of sodium and potassium ion 

conductance describe time dependence of the action potential. 

Finally, we would like to emphasize once again the fundamental problem present both 

in continuum models of the PNP type as well as in the Brownian dynamics. In channels 

containing several ions simultaneously, it seems to be essential to take into account 

interactions between them. In Langevin equations, random collisions between ions and water 

molecules and the surface of the channel are represented by a sum of a deterministic friction 

force and a purely random force. Relations between friction and fluctuations of random 

interactions are described by a dissipation-fluctuation theory. Such theory requires the system 

to be in a thermodynamic equilibrium and particles not to interact. Then the diffusion 

coefficient (which measures the size of fluctuations) is given by the Einstein relation, 

Di=kT/miγi,   where T is the temperature of the system. However, if we take into account ion 

interactions, then random forces acting on ions are no longer independent. Also the division of 

a force into a deterministic and a random part becomes problematic.  

In (Schuss et al. 2001), authors claim channel solutions are very diluted and therefore 

one can neglect correlations between random forces exerted on particular ions (however, they 

explicitly consider interactions between ions). Then they introduce appropriate electro-

diffusion equations with a self-consistent electric field – a solution of Poisson equations. Let 

us observe, however, that solutions in channels, in comparison to diluted surrouding solutions 

where ions are far apart, are not diluted. Despite that fact that there are only few ions in the 

channel, due to atomic sizes of channels, ions are close to each other and therefore their 

interactions cannot be neglected. Moreover, the concept of a self-consistent field treats 

concentration as a statistical quantity. In the case of a low number of ions, concentration 

fluctuations are of the order of  the concentration itself. 

Different approach is contained in (Canales & Sese 1998). The authors analyze there a 

motion of interacting ions in electrolyte solutions. In the appropriate Langevin equation, a 
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friction force has the form of an integral dependent upon a history. Friction with a memory is 

also used if sizes of Brownian particles are compared to sizes of solution particles (Kubo 

1966) which takes place in ion channels. 

Taking into consideration interactions between ions in the description of ion transport 

in channels requires further studies. Ion interactions cause dependence between fluxes of 

different ion types. However, interactions between ions of the same type within one channel 

does not lead to interactions between channels. This was used in (Burykin et al. 2002) where 

an additivity principle was invoked. 

In conclusion, one can say that only a truly microscopic description of ion channels 

(based for example on molecular dynamics) can fully explain mechanisms of their functioning 

(Chung & Tieleman 2006). Further development of computational techniques, a more detailed 

knowledge of a molecular structure of ion channels and also advances of physics of nano-

systems are needed to achieve this goal. 

 

Acknowledgements: 
 
JM would like to thank the EU project Modeling, Mathematical Methods and Computer 
Simulations of Tumour Growth and Therapy, Contract No. MRTN--CT--2004--503661  
and the Polish SPUB--M Grant for a financial support. 
 
 
Appendix A 

 

Electro-diffusion equations 
 
Within the Goldman theory (Goldman 1943), description of ion transport through cell 

membranes is based on the one-dimensional Nernst-Planck (NP) electro-diffusion equations 

for ion fluxes, 

 






 +−=
dx

d

kT

cq

dx

dc
DJ iii

ii

ϕ
       (A1) 

and the Poisson equation, 

 ( ) ( )∑ +=
i

ii2

2

xNqxc
dx

d
ε

ϕ
,       (A2) 

where Di is a diffusion coefficient for ions of the i-th type, ci is their concentration,  
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k – the Boltzmann constant, T – the absolute temperature, qi – a charge of a ion of the i-th 

type, φ – an electric potential, ε =εοεr - electric permittivity, and N  - a fixed charge of the 

membrane. The NP equation can be obtained by statistical considerations (Appendix B).  

Taking into account interactions between ions and the membrane requires the 

presence, in the equation for ion fluxes, Ji , an additional term representing the potential of 

such interactions. In this case, the generalized NP equation has the following form: 

 






 +−=
dx

dU

kT

c

dx

dc
DJ iii

ii ,                            (A3) 

where iii WqU += ϕ , qiϕ is the energy of a ion in the electric field, and Wi – the energy of a 

non-electrostatic ion-channel interaction (Kurnikova et al. 1999; Levitt 1999; Oosting 1977; 

Roux et al. 2004). For wide multi-ion channels, of diameters exceeding several times the 

Debye radius, one can neglect Wi. One can also justify for such channels the concept of ions 

concentration. 

If we  assume that the electric field is constant in the channel, then the right-hand side 

of (A2) is zero (electroneutrality). In the stationary state, (A1) can be integrated. One then 

obtains the following expression for the flux Ji: 
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where d is the thickness of the layer, Vm – a membrane potential, ci,w – ion concentration in 

the membrane on the boundary with an internal solution, and ci,o – ion concentration in 

membrane on the boundary with an external solution.  

 Assuming that an electric current in the membrane is caused by the passive transport of  

Na+, K+ , and Cl- ions, in the stationary state of the cell (the zero total current), the equation 

(A4) allows to express the membrane potential Vm in the following Goldman-Hodgkin-Katz 

form:  

 
[ ] [ ] [ ]
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F
RT

V −++

−++

++
++

= ,                                              (A5)  

where PK, PNa, PCl are defined above permeability constants for corresponding ions, F is the 

Faraday constant, R – the gas constant, and square brackets denote mol concentrations of 

corresponding ions in the interior of the cell (w) and outside it (o).  
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Appendix B 
 
Smoluchowski equation 
 
The Nernst-Planck equation can be obtained from statistical considerations following Einstein 

and Smoluchowski theory of the Brownian motion. One assumes that ions passing through a 

channel are subject to a severe dumping which justifies neglecting the inertial term 

( 0
dt

dv
m = ) in Langevin equations (2). One obtains reduced Langevin equations, 

( ) sjrjjj FEqtFvγm ++= ,                                 (B1) 

where the ion velocity is proportional to the total force acting on the ion. Of course, one also 

has to assume, for (B1) to have a sense, that exterior forces do not vary substantially during 

dumping. This assumption is dubious in narrow channels – a cross section of such channels is 

not a constant and therefore ion-channel interactions vary on short distances. 

Ions, considered as Brownian particles, move chaotically and their trajectories are 

stochastic. Their positions and velocities can be described only with certain probabilities 

which satisfy Fokker-Planck equations. In the dumping case, the probability density of finding 

a ion of the i-th type at a certain location x at the time t, pi(x,t), is a solution of the 

Smoluchowski equation (which is a particular case of the Fokker-Planck equation), 

( )
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,         (B2) 

where Fi = qiE + Fs.  

Continuity equation for the probability pi reads    

ip
i J

xt

p

∂
∂−=

∂
∂

          (B3)  

From (B2) and (B3) we get the following formulae for probability fluxes: 

i
i

ii

i
p p

γ

F

x

p

γ

kT
J +

∂
∂

−=
i

       (B4) 

For wide multi-ion channels, their interior can be treated as a continuous media and therefore 

probabilities pi can be then replaced by ion concentrations ci. We can also neglect Fs and 

obtain the following expression for ion fluxes: 

dx

d

γ

cq

dx

dc

γ

kT
J
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iii

i
i

ϕ−−=        (B5) 
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From the dissipation-fluctuation theory we get the relation between γi and the diffusion 

coefficient Di,  

i
i

γ

Tk
D = ,         (B6) 

hence 








 +−=
dx

d

kT

cq

dx

dc
DJ iii

ii

ϕ
       (B7)  

For  uniform channels, Di does not depend on x and we get (A1) which is a fundamental 

equation leading to the Goldman-Hodgkin-Katz equation (Appendix A). 
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