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Abstract

Presented in this thesis are two recently published verification tools for Haskell programs:
Haskell Contracts Checker and LiquidHaskell. They are compared with each other in regard
to the verification methods they employ, their expressiveness and performance. In addition, a
serious design flaw leading to erroneous behaviour is identified in each of the systems. Finally,
several possible improvements and enhancements are suggested.
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Narzȩdzia do automatycznej weryfikacji programów w Haskellu





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Existing tools for verification of Haskell programs . . . . . . . . . . . . . . 7
1.1. Haskell Contracts Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2. Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2. LiquidHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2. Syntax and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3. Other tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.1. Catch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2. Zeno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.3. Property-based testing tools . . . . . . . . . . . . . . . . . . . . . . . . 23

2. Comparison of Haskell Contracts Checker and LiquidHaskell . . . . . . . 25
2.1. The pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1. Overview of HCC pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2. Overview of LiquidHaskell pipeline . . . . . . . . . . . . . . . . . . . . 25
2.1.3. Parsing the source file . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.4. The intermediate languages . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.5. Translating λHALO to FOL . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.6. Translating Fixpoint to FOL . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.7. The resulting SMT files . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2. Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1. Expressing HCC primitives in LiquidHaskell . . . . . . . . . . . . . . . 34
2.2.2. Expressing LiquidHaskell primitives in HCC . . . . . . . . . . . . . . . 36
2.2.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3. Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3.1. HCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2. LiquidHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.3. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.1. Ordering of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.2. List concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.1. Use in teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3



3. Verification bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1. LiquidHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.1. Strict vs. lazy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.2. Bounded integer arithmetic . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3. Minor bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2. Haskell Contracts Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1. Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2. Working transitivity definition . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3. Complex statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4. Possible improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1. LiquidHaskell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1. Termination checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2. Abstract refinements within concrete refinements . . . . . . . . . . . . 62
4.1.3. Multiple refinements for a single value . . . . . . . . . . . . . . . . . . 63

4.2. HCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.1. Eliminating the verification bug . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2. Equality operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3. Coq back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2. Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4



Introduction

An important part of software development and maintenance is ensuring that the software
works correctly. That is, its behaviour matches expectations based on documentation and
specification. A popular way of enforcing correctness is testing. This approach, however, is
flawed: Almost always exhaustive testing is impossible due to infinite or enormous domain.
While non-exhaustive testing in practice may greatly increase confidence in program’s cor-
rectness, it cannot by itself prove it. Trust level thus obtained may not be sufficient in some
applications, such as software controllers for medical or military equipment.

In the past years, formal software verification has been getting more and more attention.
It appears, however, that those efforts have been mostly focused on imperative programming
languages, most notably C. Among the popular functional languages, Haskell in particular
suffers from lack of formal verification platforms. One of the possible reasons is low popularity.
According to the TIOBE index1, Haskell is consistently much less popular not only than the
top imperative and objective languages, but also other functional languages, such as Lisp
or ML. Another reason might be developers’ trust in an extremely powerful type system,
statically enforced by the compiler. Thanks to it, programming errors that in other languages
would lead to dangerous bugs or vulnerabilities, in case of Haskell often prevent the program
from compiling. However, this trust, while not baseless, cannot be fully justified, as there is
plenty of programming errors that Haskell type system does not intercept, such as insufficient
neutralization of user input used in SQL and shell commands, or integer overflow. All these
issues, according to MITRE Corporation, are among 25 most dangerous programming errors2.
Yet another reason might be laziness of Haskell, which creates some unique problems and
renders verification strategies for strict languages inapplicable.

Regardless of its cause, this neglect might be starting to get some attention and focus
with two tools for automated verification of Haskell programs having been recently published.
This thesis presents analysis of them both. The thesis is organized as follows:

Chapter 1 describes the recently published tools. The main focus is their functionality
and syntax, illustrated with numerous examples. Other projects related to verification of
Haskell programs are also briefly mentioned, namely: an outdated utility for finding runtime
errors, a model-checking tool using Haskell as a front-end language and two testing platforms.

The two verification tools are then compared with each other in chapter 2, in regard to
their internal workings, their expressiveness and their performance. Presented are also efforts
to verify some simple real-world properties in both the systems. Finally, their usability in
both software development and didactics is assessed based on that comparison.

Both tools are hindered by serious design flaws, which lead to erroneous behaviour. Those
are explained in chapter 3, together with some minor bugs.

Finally, chapter 4 suggests possible improvements to both the systems. Their expected

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
2http://cwe.mitre.org/top25
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benefits include increasing expressiveness, addressing aforementioned design flaws and im-
proving performance of the tools.
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Chapter 1

Existing tools for verification of
Haskell programs

This chapter presents several tools capable of verifying or testing correctness of Haskell pro-
grams. Two verification tools have been published recently, those are discussed in the first
two sections and will remain focus of this thesis. The remaining sections briefly present other
tools that are either outdated or are related to verification of Haskell programs, but are not
actual verification tools.

1.1. Haskell Contracts Checker

The hcc (Haskell Contracts Checker, formerly called halo; [16]) tool allows to express contracts
for Haskell programs and automatically verify that the program indeed complies with its
contract. It can handle higher-order functions and lazy evaluation, the two features of Haskell
that distinguish it from other popular functional languages but also make it hard to analyze.

1.1.1. Definitions

Definition 1.1.1. Crash-freedom (CF ) of an expression e means that e does not crash. That
is, it either evaluates successfully or diverges.

Definition 1.1.2. For a given type u, a contract of type Contract u is a property of ex-
pressions of type u. The contract itself is not bound to a specific expression.

Examples:

• A contract of any type might be: The expression is crash-free.

• A contract of type Bool might be: The expression value is True.

• A contract of type a -> b for some a and b might be: As long as the argument is
crash-free, the entire expression is also crash-free.

Definition 1.1.3. A statement is a property of a Haskell program to be verified.

The most common kind of a statement is: The expression e complies with contract c.
Other kinds of statements are introduced below.
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1.1.2. Syntax and semantics

Below follows a simplified syntax description for contracts and statements. The description
is detailed enough to understand all the code samples presented in this thesis and to write
one’s own specifications to be verified by the hcc tool. Yet it omits many details that might
unnecessarily confuse the reader. All of those, including formal grammar and subtle type sys-
tem constraints, might be easily deduced from the https://github.com/danr/contracts/

blob/master/testsuite/Contracts.hs file by an experienced Haskell programmer.
The contracts and statements are expressed in Haskell itself. This design decision was

made to save users from the necessity of learning another language. As a result, all the con-
tracts and statements are also Haskell expressions. However, the following description makes
a distinction between them for the sake of readability: Whenever an expression is known to
be a statement or a contract, it’s referred to specifically as such. The word expression is used
to denote expressions that might or might not be contracts or statements (and in almost all
applications are not).

Contracts

A contract might be constructed in one of the following ways:

• CF

the CF can be thought of as a constant of type forall a . Contract a that represents
crash-freedom of expressions.

• Pred e

where the type of e is a -> Bool for some type a. The resulting contract’s type is
Contract a.

The useful way to think about this construct is as a way to turn an ordinary Haskell
predicate into a contract.

• c1 :&: c2

where both c1 and c2 are contracts of the same type, i.e. they are both of type
Contract a for some type a. The resulting contract’s type is also Contract a.

This construct represents conjunction of two contracts.

• c :-> e

where the c contract is of type Contract a and the e expression is of type a -> Contract b

for some types a and b. The resulting contract is of type Contract (a -> b).

As can be deduced from the resulting contract’s type, this construct is used to create
contracts for functions. An expression f of type a -> b complies with the resulting
contract iff for any expression x of type a that complies with the contract c, the ex-
pression e x either diverges or evaluates to a contract that the expression f x complies
with.

For arguments that do not comply with c, the resulting contract does not provide any
guarantees.
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Example 1.1.1 (Dependent arrow contract). Consider the following contract:

CF :-> \x -> CF :&: Pred (>= x)

which can be used with any function of type:

a -> b

with a and b being such types that the operator (>=) :: b -> a -> Bool is de-
fined.
The contract expresses that if the argument is crash-free, then the result is also
crash free and is greater or equal to the argument.

• c1 --> c2

where c1 and c2 are contracts respectively of types Contract a and Contract b for
some types a and b. The resulting contract’s type is Contract (a -> b).

This construct is a special case of the function contract, in which the resulting contract
does not depend on the argument value other than its compliance with the c1 contract.

An expression f of type a -> b complies with the resulting contract iff for any expres-
sion x of type a that complies with the contract c, the expression f x complies with
c2.

Example 1.1.2 (Non-dependent arrow contract). For any unary function the prop-
erty: as long as the argument is crash-free, the result is also crash-free may be
expressed with the following contract:

CF :-> \_ -> CF

However, since the contract for the result does not depend on the argument, the
same property may be expressed in a simplified way:

CF --> CF

Statements

A statement might be constructed in one of the following ways:

• e ::: c

where e is an expression of type a and c is a contract of type Contract a for some type
a.

The meaning is: The expression e complies with the contract c.

• s1 :=> s2
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Where s1 and s2 are statements.

The :=> operator denotes implication: If the s1 statement holds, then s2 also holds.

• All e

Where the expression e is of type a -> Statement for some type a.

The All keyword denotes universal quantification: For any expression x of type a, the
expression e x either diverges or evaluates to a statement that holds.

Beside the constructs listed above there is also the Using keyword:

s1 ‘Using ‘ s2

It does not really create any new statement but indicates a dependency between the s1

and s2 statements. It is a way to hint the hcc tool to first try to verify the s2 statement and
only then the s1 statement.

Examples

All the code samples below will assume the following data definitions:

data Nat = Z | S Nat

Example 1.1.3.

two :: Nat

two = S (S Z)

two_cf = two ::: CF

The statement in the last line simply asserts that the two expression does not crash.

Example 1.1.4.

incr :: Nat -> Nat

incr i = S i

incr_cf = incr ::: CF --> CF

decr :: Nat -> Nat

decr (S i) = i

decr_cf_broken = decr ::: CF --> CF

The incr_cf statement asserts that as long as the argument is crash-free, the appli-
cation of incr function is also crash-free. However, a similar statement about the decr

function is not true: It might crash if provided with the (crash-free) Z constant as an
argument. hcc indeed proves that the decr_cf_broken statement is false.
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Example 1.1.5. The decr function from the previous example is CF as long as the
argument is CF and is not equal to Z. This can be expressed with the help of a predicate
checking that a value is not Z. The same predicate can be used to strengthen statement
about the incr function:

positive :: Nat -> Bool

positive Z = False

positive (S _) = True

decr_cf = decr ::: (CF :&: (Pred positive )) --> CF

incr_cf_and_pos = incr ::: CF --> (CF :&: (Pred positive ))

Example 1.1.6. Other statement constructors can be used to express more complex
properties, as in the following sample found in HCC testsuite1:

reflexive :: (a -> a -> Bool)

-> Statement (All a (Assuming a Bool))

reflexive (~~) =

All (\x -> x ::: CF :=> x ~~ x ::: CF :&: Pred id)

(<=) :: Nat -> Nat -> Bool

Z <= _ = True

_ <= Z = False

(S x) <= (S y) = x <= y

le_refl = reflexive (<=)

The reflexive function when applied to any binary relation produces a statement
asserting that the relation is reflexive. Thus the le_refl statement asserts that the (<=)

relation defined in the sample is reflexive.

1.2. LiquidHaskell

The LiquidHaskell project (formerly called Hsolve, [15]) aims to strengthen Haskell type
system. The project stems from a similar system for OCaml, called LiquidTypes (short for
Locally Qualified Data Types; [10]).

It allows to annotate type signature declarations with logical predicates. It can also
infer such annotated types to minimize annotation burden put on the user. The predicate
language is fixed in such a way that the verification is decidable. As a result, however, the

1https://github.com/danr/contracts/blob/master/testsuite/Properties.hs and https://github.

com/danr/contracts/blob/master/testsuite/Nat.hs
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expressiveness of the system is severely limited.
Since LiquidHaskell is under active development and newer revisions are very unstable,

discussed in this thesis is version 0.1 of the software, which can be obtained from https:

//github.com/ucsd-progsys/liquidhaskell/tree/liquidHaskell-0.1.

1.2.1. Definitions

Definition 1.2.1. Refined type is a Haskell type combined with a logical predicate. The
predicate is called refinement. A bare Haskell type can be thought of as a refined type whose
refinement is trivial: A predicate that is true for any value.

Definition 1.2.2. When talking about a refined type, the underlying Haskell type is called
sort.

1.2.2. Syntax and examples

Since the aforementioned annotations are not expressed in Haskell, LiquidHaskell defines its
own syntax. It is introduced below by means of examples with comments and explanations
rather than more formal methods. This approach should be more efficient for several reasons:

1. the syntax is quite complicated, with several inconsistencies;

2. it mirrors Haskell syntax and thus reading complete examples should be easy for a
reader familiar with the language;

3. formal description of LiquidHaskell syntax has not been published.

Basic refinements

All LiquidHaskell annotations within a Haskell source file are enclosed between {-@ and @-}

sequences. That way they are treated as comments by the compiler and do not confuse it.
A refined type declaration is a copy of type signature with refinements inserted into it.

Any type or type variable a appearing in the original type signature might be refined using
the following syntax:

{ v:a | f }

where f is a formula, possibly containing v as a free variable. This construct mirrors notation
commonly used in mathematics:
{v ∈ N | v ≥ 42}
In addition, when a function is being specified, any argument might be named, by prefixing

its refined type with a name of user’s choosing and a colon.

Definition 1.2.3. Dependent refinement is a refinement of a functional type that depends
on the function’s arguments.
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Example 1.2.1 (Basic refinement).

{-@ id :: x:a -> {v:a | v = x} @-}

id :: a -> a

id x = x

The first line contains declaration of the refined type for the id function. The first part
(x:a) declares the sort of the argument to be a. It also names the argument as x.

The second part ({v:a | v = x}) defines the refined type of the result. It states that
the result is equal to the argument. Since the name given to the argument appears in
the formula as a free variable, it is a dependent refinement.

It’s worth to note that the sort of refined type matches the type signature in the
program.

Example 1.2.2 (Argument refinement).

{-@ divide :: Int -> {v:Int | not(v=0)} -> Int @-}

divide :: Int -> Int -> Int

a ‘divide ‘ b = a ‘div ‘ b

Produced with the refined type above, LiquidHaskell enforces that any call to divide

function has a correct refined type. That is, that the second argument passed to divide

is never 0.
This example comes from the LiquidHaskell blog2.

Abstract refinements

The concept of abstract refinements is best explained with an example:

2http://goto.ucsd.edu/~rjhala/liquid/haskell/blog/blog/2013/01/01/refinement-types-101.

lhs/
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Example 1.2.3 (Abstract refinements).

{-@ max :: forall a <p :: a -> Prop > .

(Ord a) => a<p> -> a<p> -> a<p> @-}

max :: (Ord a) => a -> a -> a

max x y = if x < y then y

else x

The liquid type above states that for any type a belonging to the Ord typeclass and
for any possible refinement p of that type, if the refinement is true for both the arguments
passed to the max function then it will be also true for the result.

Just as the type variable a will be instantiated with concrete types when the function
max is called, so the abstract refinement p will be instantiated with concrete refinements
by LiquidHaskell.

This example comes from [15].

As can be deduced from the example above, it is possible to use universal quantification
over all possible predicates of a given sort when defining a refined type. The syntax extends
the one introducing universally quantified types in Haskell. In LiquidHaskell, the forall

keyword may be followed not only by type variable names but also by predicate names
and their sorts. The return type of every predicate must be Prop, which is LiquidHaskell’s
analogue of Haskell’s Bool. Such predicates are called abstract refinements. A comma-
separated list of abstract refinements must be enclosed in angle brackets.

To state that a Haskell type a is refined by an abstract refinement p, the notation:

a<p>

is used. It can be thought of as equivalent of:

{ v:a | p v }

However, LiquidHaskell parser does not allow those two notations to be used interchange-
ably. The former is reserved exclusively for abstract refinements and the latter for concrete
refinements.

Existential quantification

LiquidHaskell allows also for existential quantification over values of a given type in refined
type declarations. An example3 will best demonstrate its usage:

3From: http://goto.ucsd.edu/~nvazou/liquidtutorial/Composition.lhs.slides.html, with slight
modifications
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Example 1.2.4 (Existential quantification).

{-@ compose :: forall a b c < p :: b -> c -> Prop

, q :: a -> b -> Prop > .

f:(argb:b -> c<p argb >) ->

g:(arga:a -> b<q arga >) ->

x:a ->

exists[y:b<q x>] . c<p y> @-}

compose :: (b -> c) -> (a -> b) -> a -> c

compose f g x = f $ g x

In the code above, the compose’s refinement is parametrized with two abstract refine-
ments. They describe possible properties of the first and second arguments respectively,
which are functions to be composed. x denotes the argument to which both functions are
to be applied in composition. The line:

exists[y:b<q x>] . c<p y>

states that there exists y such that:

• it has the same refined type as application g x and

• the result of the compose function has the same refined type as f y.

Measures

Measures are LiquidHaskell analogues of Haskell’s functions. They allow for expressing basic
properties of complex data structures and may be used within predicates (since the predicates
may not use Haskell functions) or to reason about termination. They are defined with the
use of measure keyword. Other than that, the syntax closely resembles that used for defining
functions in Haskell.

Example 1.2.5 (Measure).

{-@ measure len :: [a] -> Int

len ([]) = 0

len (x:xs) = 1 + len(xs) @-}

{-@ append :: l:[a]

-> m:[a]

-> {v:[a]|len(v)=len(l)+len(m)} @-}

append :: [a] -> [a] -> [a]

append [] zs = zs

append (y:ys) zs = y : append ys zs
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The above sample from [15] defines len measure which represents length of any list.
The measure is then used to verify that append produces list whose length is the sum of
lengths of the arguments.

It is important to note that a measure may accept only one argument which must be of
an algebraic data type and there must be exactly one definition for every data constructor of
that type.

Predicates

The keyword predicate can be used to define macros to be inlined in refinement formulae.

Example 1.2.6 (Predicate). Using code from the previous example, we can assert that
the result of append is a non-empty list if the second argument is also non-empty:

{-@ predicate NonNull X = len(X) > 0 @-}

{-@ append :: [a]

-> {v: [a] | (NonNull v)}

-> {v: [a] | (NonNull v)} @-}

Invariants

The keyword invariant, as the name suggests, can be used to assert that certain property
holds for every instance of a given data structure.

Example 1.2.7 (Invariant). Length of a list is always a non-negative value:

{-@ invariant {v:[a] | (len v) >= 0} @-}

Data Abstract Refinements

While data abstract refinements have similar syntax to abstract refinements in ordinary type
declaration, the purpose they serve is quite different. When defining a new data type, one
can use data abstract refinements to specify semantics of refining that particular data type,
i.e. what kind of concrete refinements might be defined for it.

Consider the following definition of list data type:

data L a

= N

| C a (L a)
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While some characteristics can be expressed using measures, one may need to assert other,
more demanding properties. For example, a property that all the members of the list are
the same, or unique, or that the list is sorted. Those cannot be expressed with the use of
LiquidHaskell predicate language, since its designers cannot anticipate all possible data types
declared by the users. Data abstract refinements allow users themselves to overcome this
limitation.

Example 1.2.8 (Data Abstract Refinement — List).

data L a

= N

| C a (L a)

{-@ data L a <p :: a -> a -> Prop >

= N

| C (x :: a)

(xs :: L (a<p x>) <p>)

@-}

{-@ type IncrL = L<{\a b -> b > a}> Int @-}

{-@ type DecrL = L<{\a b -> b < a}> Int @-}

The example above inspired by [15] contains declaration of a custom list type. The
declaration is copied and annotated. The data type is parameterized with one abstract
refinement. Any concrete predicate to replace that abstract refinement should accept two
arguments, members of the list.

If the data abstract refinement is replaced with a concrete predicate, the predicate is
guaranteed to be true for any two distinct members of the list. The first argument passed
to the predicate is guaranteed to occur in the list before the second one. To understand
why it is so, consider the last line of refined declaration:

(xs :: L (a<p x>) <p>)

It refers to the tail of the list. The (a<p x>) part states that the predicate has to
be true when applied first to x and then to any element of the tail. But x is head of the
current list.

The <p> part states that the predicate has to be true when applied in the same
manner to the tail of the list, i.e. when applied first to the head of the tail and then to
any element of the tail of the tail. And so on until the empty list is reached.

The last two lines instantiate this refined declaration with concrete refinements. They
define type synonyms that denote lists of Ints in increasing and decreasing order respec-
tively.

There are two points worth noting:

• In reality, custom list type declaration is not required as LiquidHaskell comes with
annotated versions of many built-in functions and data constructors, including the
standard list.

• Since concrete refinements have to be enclosed in angle brackets, they can be easily
distinguished from the other arguments to the type constructor. For this reason,
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LiquidHaskell parser allows them to appear anywhere within the type constructor
application.

Take, for example, the fragment from the above sample:

(xs :: L (a<p x>) <p>)

It could be also replaced by:

(xs :: L <p> (a<p x>))

In fact, the latter notation (i.e., placing refinement immediately after type construc-
tor) is prevalent in LiquidHaskell testsuite and for this reason is also frequently used
in this thesis.

Data abstract refinements can be instantiated with several different concrete refinements.
That way, single data declaration can be reused in many different refined type declarations
that may or may not overlap. Similarly to how refining a type was done, refining a data
declaration requires one to copy original declaration and then annotate it.

Example 1.2.9 (Data Abstract Refinement — Map).

data Map k a = Tip

| Bin Size k a (Map k a) (Map k a)

{-@

data Map k a < l :: root:k -> k -> Prop

, r :: root:k -> k -> Prop >

= Tip

| Bin (sz :: Size)

(key :: k)

(value :: a)

(left :: Map <l, r> (k <l key >) a)

(right :: Map <l, r> (k <r key >) a)

@-}

{-@ type OMap k a = Map < {\root v -> v < root }

, {\root v -> v > root } > k a @-}

The last line declares OMap to be a map preserving the BST condition, i.e. any keys
in the left and right subtree are respectively strictly smaller and strictly greater than the
key in the root. To do so, it instantiates refined Map declaration with two predicates, as
requested in the refined definition.

The (k <l key>) and (k <r key>) parts of the declaration indicate that the root’s
key is passed as the first argument to both the predicates. The Map <l, r> parts indicate
that those predicates are applied in the same manner to both the subtrees.

The code sample comes from LiquidHaskell testsuite4.

4https://github.com/ucsd-progsys/liquidhaskell/blob/liquidHaskell-0.1/tests/pos/Map.hs
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As can be seen in the two examples above, the syntax for instantiating a data abstract
refinement is similar to that of lambda expressions in Haskell. The \ symbol is followed by
arbitrary names of arguments, then by an arrow (->) and then by a formula, possibly using
the arguments as free variables. Every data abstract refinement must be enclosed in braces.

Sets

LiquidHaskell is capable of reasoning about sets of values. To this end it introduces the Set

type and several measures operating on it5:

-- | union

measure Set_cup :: (Set a) -> (Set a) -> (Set a)

-- | intersection

measure Set_cap :: (Set a) -> (Set a) -> (Set a)

-- | difference

measure Set_dif :: (Set a) -> (Set a) -> (Set a)

-- | singleton

measure Set_sng :: a -> (Set a)

-- | emptiness test

measure Set_emp :: (Set a) -> Prop

-- | membership test

measure Set_mem :: a -> (Set a) -> Prop

-- | inclusion test

measure Set_sub :: (Set a) -> (Set a) -> Prop

Names of the measures and comments above them should be self-explanatory. Is is im-
portant to note that even though LiquidHaskell’s Set in many ways resembles the data type
defined in Data.Set module, they are two separate constructs.

5Source: https://github.com/ucsd-progsys/liquidhaskell/blob/liquidHaskell-0.1/include/Data/

Set.spec
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Example 1.2.10 (Reasoning about sets).

{-@ measure lMembers :: [a] -> (Set a)

lMembers ([]) = {v | Set_emp(v) }

lMembers(x:xs) = {v |

v = (Set_cup (Set_sng x) (lMembers xs) ) }

@-}

{-@ append :: l:[a]

-> k:[a]

-> {v: [a] | (lMembers v) =

(Set_cup (lMembers l)

(lMembers k) ) } @-}

append :: [a] -> [a] -> [a]

append [] zs = zs

append (y:ys) zs = y : append ys zs

The lMembers measure when applied to a list returns a set of its elements. It is used to
express the following refinement of append’s type: The set of resulting list’s elements is
a sum of sets of elements of the arguments. In other words, the result contains all the
elements that either of the arguments contains.

Termination

While verifying type refinements is the main functionality of LiquidHaskell, the tool is also
capable of verifying termination of recursive functions. It does so by proving that one of the
numerical arguments to the function decreases with every recursive call. The argument might
be also of an algebraic data type, as long as there is a measure defined for it that produces
an integer.

By default, the first such argument is considered, but the user might customize this
behaviour using the Decrease keyword.
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Example 1.2.11 (Proving termination).

{-@ Decrease append 1 @-}

append :: [a] -> [a] -> [a]

append [] zs = zs

append (y:ys) zs = y : append ys zs

LiquidHaskell will prove that append function terminates because the first argument
decreases with every recursive call (or rather, the len measure, which is a default mea-
sure used for lists, applied to the first argument decreases with every call). Because the
first argument is also the first argument that is either numeric or has a numeric mea-
sure defined, the Decrease declaration is optional: LiquidHaskell would have assumed it
anyway.

Had the user declared Decrease append 2 instead, LiquidHaskell would have pro-
duced an error since the second argument remains unchanged in every recursive call.

The measure to be used for a given algebraic data type is declared in the refined data
type definition.

Example 1.2.12 (Default measure for an algebraic data type).

{-@

data Map [mlen] k a < l :: root:k -> k -> Prop

, r :: root:k -> k -> Prop >

= Tip

| Bin (sz :: Size)

(key :: k)

(value :: a)

(left :: Map <l, r> (k <l key >) a)

(right :: Map <l, r> (k <r key >) a)

@-}

{-@ measure mlen :: (Map k a) -> Int

mlen(Tip) = 0

mlen(Bin s k v l r) = 1 + (mlen l) + (mlen r)

@-}

In the sample above6 measure mlen is declared as the default measure for the Map data
type. That means that whenever LiquidHaskell tries to prove termination of a recursive
function using an argument of that type, it will try to prove that every recursive call
is performed with a map for which this measure’s value is smaller than for the original
argument.
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Termination checking may be disabled by running the tool with a --notermination

option.

Totality

When passed the --totality option, the tool also reports errors for every incomplete pattern
matching. A function domain might be limited with refined types and so pattern matching
need not necessarily be exhaustive.

Example 1.2.13 (Incomplete pattern matching).

{-@ incomplete :: {v:Bool| v=True} -> Bool @-}

incomplete :: Bool -> Bool

incomplete True = True

{-@ incomplete2 :: {v:Bool| v=False} -> Bool @-}

incomplete2 :: Bool -> Bool

incomplete2 True = True

When ran with --totality option, LiquidHaskell reports an error for incomplete2

function but not for incomplete.

1.3. Other tools

1.3.1. Catch

The Catch project ([9]) aims at verifying that a Haskell program does not crash, but not its
functional correctness. The tool works by:

1. For every non-exhaustive pattern-matching, implicitly adding missing patterns and
defining the corresponding expression to call the error function.

2. Identifying all calls to the error function.

3. Computing preconditions on every function’s arguments that prevent any call to the
error function from being reached.

The tool has two major shortcomings:

1. The preconditions might be more restrictive than necessary. As a result, Catch might
report false errors.

2. The tool is able to reason only about algebraic data types. It thus simplifies integer
data types with the following definition:

data Int = Neg | Zero | One | Pos

6Taken from LiquidHaskell testsuite: https://github.com/ucsd-progsys/liquidhaskell/blob/

liquidHaskell-0.1/tests/pos/Map.hs
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Despite that, it was tested against real-life projects and used in development cycle of at
least one of them. The results presented in [9] look indeed very promising.

The project was, however, discontinued due to termination of a project it depended on.
Even though the source code is still available, nowadays it is virtually impossible to build the
package. For this reason the project is not further discussed in this thesis.

1.3.2. Zeno

Quite opposite to Catch, Zeno ([13]) is capable of of verifying functional correctness of a
program but it requires all the values defined in the program to be total, i.e. not crashing or
diverging.

It verifies programs written in a small subset of Haskell, called HC. The specification
language (called PHC) is fairly simple. It can be used to express:

• Equality of two HC expressions.

• Implication of the form:

e1 = e2 ∧ e3 = e4 ∧ . . . ∧ ei = ei+1 ⇒ ei+2 = ei+3

It also allows for using universal quantification but only at the topmost level and it does
not allow for existential quantification. As a result, it is strictly weaker than FOL.

It appears that Zeno is not meant to be a verification tool for Haskell, but rather a model
checking tool for verifying functional programs that happens to be using a subset of Haskell
as a front-end. For this reason, Zeno is also not further discussed in this thesis.

1.3.3. Property-based testing tools

Reader familiar with testing tools such as QuickCheck ([3]) or SmallCheck ([11]) might find
HCC syntax familiar. Those utilities allow for describing Haskell functions with so called
properties, which consist of logical predicates. The predicates can be written in Haskell and
may consist of arbitrary boolean-valued expressions, as is the case with HCC. What is more
properties may use not only predicates, but also quantifiers and implication.

The key difference between those two tools and HCC, is that instead of verifying they test
properties by either generating random test cases (QuickCheck) or fully searching domain
up to a user-provided depth (SmallCheck). In combination with Haskell Program Coverage
toolkit ([7]) they might provide great confidence in program correctness. Nevertheless, since
they do not formally verify programs, they are not further discussed in this thesis.
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Chapter 2

Comparison of Haskell Contracts
Checker and LiquidHaskell

This chapter compares and further analyzes Haskell Contracts Checker and LiquidHaskell, the
two verification tools introduced in the previous chapter. First verification methods employed
by both systems are discussed in section 2.1. Then they are compared against each other in
regard to their expressiveness in section 2.2 and their performance in section 2.3. Finally,
section 2.4 describes efforts to write and verify some real-world yet simple specifications in
both the systems.

2.1. The pipeline

The comparison of both systems begins with presenting their pipelines. That is, their ver-
ification procedures, including all the custom intermediate languages and translating tools.
This description should provide enough information about the inner workings to understand
limitations and bugs of both systems, discussed in the next sections and the next chapter.

2.1.1. Overview of HCC pipeline

Figure 2.1 presents simplified pipeline employed by HCC. The source code is first translated
to the Core language, using API provided by a Haskell compiler. It is then further simplified
and translated to a language called λHALO. Each statement exported by the source file is
then translated to first order logic, together with all the program definitions relevant to it,
and placed in its own file. All such files are then checked by a theorem prover.

2.1.2. Overview of LiquidHaskell pipeline

Figure 2.2 presents LiquidHaskell’s pipeline. The source code is translated to the Core lan-
guage, but the source file is also parsed to obtain all the refinements provided by the user.
Both the Core representation and refinements are then used to produce a file in a format
internally called Fixpoint. The file contains refinements provided by the user and describes
dependencies between refinements of expressions present in the original program. A tool
called fixpoint is then provided with that file to produce several FOL theories, each corre-
sponding to a different possible set of concrete refinements inferred for every subexpression
in the program. All those theories are placed in a single file which is then checked by the Z3
theorem prover [4].
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Source File
(e.g. Sample.hs)

Abstract representation
of Core language

GHC API

Abstract representation
of λHALO language

Concrete representation
of FOL theory

(e.g. Sample.statement2.stm)

Concrete representation
of FOL theory

(e.g. Sample.statement3.stm)

Concrete representation
of FOL theory

(e.g. Sample.statement1.stm)

...

Theorem prover
(e.g. Z3)

Figure 2.1: HCC pipeline
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Source File
(e.g. Sample.hs)

Abstract representation
of Core language

GHC API

Abstract representation
of refinements provided

by the user

Custom parser

Concrete representation
of refinements and constraints

in Fixpoint format
(e.g. Sample.hs.fq)

Concrete representation of
FOL implications for several

different refinement instantiations
(e.g. Sample.hs.fqout.smt)

fixpoint tool

Z3 theorem prover

Figure 2.2: LiquidHaskell pipeline
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2.1.3. Parsing the source file

HCC uses GHC (Glasgow Haskell Compiler) API to parse the Haskell program and translate
it to Core, an intermediate, greatly simplified language used by the compiler. On top of that,
HCC further simplifies the code, thus translating the original program to the λHALO language
introduced in [16]. At this stage contracts and statements are not treated differently from
other definitions in the program.

LiquidHaskell also uses GHC API to obtain Core translation of the original program.
Contrary to HCC, however, it also parses the source file on its own, specifically, all the
LiquidHaskell declarations enclosed between {-@ and @-} markers which are translated to an
abstract internal representation.

2.1.4. The intermediate languages

Both the systems introduce custom intermediate languages that the original programs get
translated to. Those languages, however, are vastly different since they serve different pur-
poses, as will become evident in the following description.

λHALO, the HCC’s intermediate language

The intermediate language used by HCC, λHALO, has been described in depth in [16]. Pre-
sented in this subsection is a brief summary.

λHALO is a small subset of the Haskell language. The most notable limitations are:

• It supports only algebraic data types.

• It does not support typeclasses.

• It does not support lambda expressions.

• Pattern matching may occur only at the topmost level of a function definition.

• It does not allow for partial application of data constructors.

The latter three limitations do not impose any restrictions on the original program. HCC
takes care of them in the process of translation from Core to λHALO by means of lambda-
and case-lifting. The former two, however, must be put also on the input program.

λHALO behaves like Haskell in other important aspects. That is, it is purely functional
and lazily evaluated.

Fixpoint, the LiquidHaskell’s intermediate language

The intermediate language used by LiquidHaskell is internally called Fixpoint. Unlike λHALO,
it is not a programming language but a format for expressing two kinds of constraints on
refined types:

• Well-Formedness constraint is put on a single refined type. It enforces that the refine-
ment is a valid refinement for the sort of refined type.
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Example 2.1.1 (Well-formedness constraint). The refined type { v:Int | v > 0}

is well-formed. The refined type { v:[Int] | v > 0}, however, is not since lists
cannot be compared with integers.

• Subtyping constraint is put on two refined types. It enforces that the first type is a
subtype of the second type (hereafter called supertype). What it means, is that sorts of
both refined types are the same and the refinement of the first one implies the refinement
of the second one.

The notation employed to state that { v:sort | refinement1 } is a subtype of
{ v:sort | refinement2 } is:

{ v:sort | refinement1 } <: { v:sort | refinement2 }

Example 2.1.2 (Subtyping constraint). Assume environment in which:

x, y :: { v:Int | v > 0 }

Then { v:Int | v = x + y } is a subtype of { v:Int | v > 1 }, because their
sorts are the same and the former refinement implies the latter.

To specify those constraints, Fixpoint also has a notion of environment. In context of
Fixpoint files, an environment is a mapping of variable names to their refined types. Each
constraint is set in its own environment and the refinements under the constraint may refer-
ence variables from the environment.

It is also possible to use integer arithmetic and uninterpreted functions in Fixpoint files.
However, there is no notion of a program or source code.

As to the refinements in refined types, they can be either of the two:

• A concrete refinement, most likely if the user provided the entire refined type in the
specification.

• A liquid variable, possibly with pending substitutions.

A liquid variable is a placeholder variable to be replaced by a concrete refinement later
on.

Pending substitution to a liquid variable is a pair of variable name and refined type
that corresponds to it. Pending substitution is performed once a concrete refinement
is assigned to the liquid variable.

A very detailed explanation may be found in [10].

Generating the Fixpoint file

While translation to λHALO performed by HCC is quite trivial, the translation performed by
LiquidHaskell requires some explanation. First, it is important to understand the purpose of
translation. It should be easiest to explain with an example:
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Example 2.1.3. Let’s assume that LiquidHaskell tries to prove the following specifica-
tion:

{-@ type PosInt = { v:Int | v > 0 } @-}

{-@ max :: Int -> PosInt -> PosInt @-}

max x y = if x > y then x else y

In order to prove that the specification is met, LiquidHaskell needs to prove that the
refined type of expression defining the max function is a subtype of the specified refined
type of the result. That is, in the environment:

x :: Int

y :: PosInt

the expression if x > y then x else y has a refined type rtype1 such that:

rtype1 <: PosInt

But the expression itself evaluates to value of one of the expressions: x and y. Liq-
uidHaskell thus needs to prove that (or rather find refined types such that) refined types
of those expressions are in certain circumstances subtypes of rtype1 which in turn is a
subtype of PosInt.

To the best of author’s knowledge constraint generation performed by LiquidHaskell has
not been publicly documented anywhere. One may find, however, a detailed description
of constraint generation in Liquid Types, a similar tool for OCaml, in section 2.3.2 of [10].
Shared codebase of both projects and analysis of intermediate files produces by LiquidHaskell
suggests that the latter uses a similar procedure.

The constraint generation procedure accepts an environment as an argument and for a
given expression it produces its refined type and a (possibly empty) set of constraints. It
works recursively over an abstract representation of the expression. To provide intuitive
understanding of how the procedure works, presented below is explanation for two types of
expressions. A reader interested in details may consult [10].

• Application:

e1 e2

The constraint generation proceeds as follows:

1. Recursively obtain the type x:Tx -> T and set of constraints C1 for e1. (The
type is guaranteed to be of the same sort as Tx -> T, otherwise the type checking
performed by the compiler would have failed.)

2. Recursively obtain the type Tx2 and a set of constraints C2 for e2.

3. The resulting type is T with appropriate substitution for x: T[x := Tx2]. The re-
sulting set of constraints is union of C1, C2 and the subtyping constraint: Tx2 <: Tx.

• If-then-else:

if b1 then e1 else e2
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The constraint generation proceeds as follows:

1. Generate a new refined type T with the refinement represented by a liquid variable.
(The sort of the refined type is obtained from type inference performed by the
compiler.)

2. Recursively obtain the set of constraints Cb for expression b1.

3. Generate a new environment Γ1 by adding to the current environment the infor-
mation that b1 is true. In that environment recursively obtain the type T1 and
set of constraints C1 for e1.

4. Generate a new environment Γ2 by adding to the current environment the infor-
mation that b1 is false. In that environment recursively obtain the type T2 and
set of constraints C2 for e2.

5. The resulting type is T. The resulting set of constraints is union of Cb, C1 and C2

with the following constraints added:

– T is well-formed.

– In environment Γ1, T1 is a subtype of T.

– In environment Γ2, T2 is a subtype of T.

In general, refinements of almost all expressions are either provided by the user or repre-
sented by a liquid variable, to be replaced by a concrete refinement in the inference procedure.
If a refinement provided by the user includes an abstract refinement, a concrete refinement
to replace it needs to be inferred at every call site. To achieve that, for each call site, a liquid
variable is created to represent the concrete instantiation.

2.1.5. Translating λHALO to FOL

The HCC tool translates abstract representation of the λHALO language to first order logic,
using either the TPTP ([14]) or SMT 2.0 ([2]) formats. Each statement exported by the
original Haskell module is translated to FOL, negated and put in a separate file to be processed
by a theorem prover. In addition to the negated statement, the file contains also translation
of the program, but only definitions that are relevant to that specific statement are included.
The resulting theory is then checked by a prover for satisfiability. The original statement
holds iff the theory is not satisfiable.

While the details of the translation to FOL of a subset of the statement and contract
constructs, as well as proof of soundness, are well explained in [16], presented below is brief
summary crucial to understanding advantages and shortcomings of the system.

The bad constant

There are two constants used in the signature: bad and unr. The former represents a crash.
Translation of any application of the error function produces a term that is equal to bad.
Also, whenever there is an incomplete pattern matching in the program, the missing patterns
are implicitly added during the translation in such a way that the corresponding values are
also equal to bad. As a result, an expression crashes if and only if its translation is equal to
bad.
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Dropping type information and the unr constant

unr stands for unreachable. The constant represents two kinds of situation: when an expres-
sion diverges or when it is ill-typed. While the former is quite straight-forward, the latter
requires some more explanation.

Since the translation is performed after the type-checking took place, the program is
guaranteed to be well-typed. That’s why the type information can be safely dropped and
that’s indeed what happens. Now consider the following example1:

data A = X

data Bool = True | False

not :: Bool -> Bool

not True = False

not False = True

After the type information is dropped, there is no way to tell that the not function can
be applied only to the True and False values, which might lead to errors, for example if
there is universal quantification over all possible arguments to not. That’s why translations
of any application of not to any other value are explicitly defined to be equal to unr.

Functions and function application

A function application is represented by the app(·, ·) operation in the signature. The ex-
pression e1 e2 gets translated as app(t1, t2) where t1 and t2 are translations of e1 and e2

respectively.
For any function definition f x1 x2 ... xN = e in the program, hcc introduces into the

signature an operation f(. . .) of the same arity and a constant fptr. The operation is defined
in a natural way:

f(x1, x2, . . . , xN ) = t
where t is the translation of the expression e and xi is the translation of the name xi.

The relationship between the fptr symbol and the operation is defined in following way:
∀x1,x2,...,xNapp(. . . (app(app(fptr, x1), x2) . . . , xN ) = f(x1, x2, . . . , xN )

Induction

Whenever HCC encounters a recursive function (or other recursive value) f that is provided
with a contract c, it replaces its identifier with two other. For this brief explanation let them
be f1 and f2. f1 is defined just as f, with all calls to f replaced by calls to f2. HCC then
tries to prove that if f2 meets contract c, then also f1 meets c. This approach is generalized
and used also for mutually recursive functions.

Statements and contracts

Translation of statements and contracts is mostly obvious and straight-forward. One excep-
tion is treatment of the unr constant. A compliance with a contract statement (e ::: c) is
defined to be true if translation of the expression e is equal to unr. It is also defined to be
true if translation of the contract c is equal to unr, which might be the case with a predicate
contract (one defined with an arbitrary Haskell expression) that diverges.

1Inspired by a similar example in [16]
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2.1.6. Translating Fixpoint to FOL

Part of the LiquidHaskell package is the fixpoint tool which is responsible for solving con-
straints described in a Fixpoint file.

Constraint solving

The aim of type inference procedure is to replace every liquid variable with a concrete re-
finement in such a way that all well-formedness and subtyping constraints hold. To generate
refinements, fixpoint uses a fixed set of qualifiers.

Definition 2.1.1. A qualifier is a logical expression, possibly with some free variables re-
placed by a placeholder variable *. When qualifier is used as part of a refinement this
placeholder variable is in turn replaced by a variable from the environment.

fixpoint first initializes all liquid variables with conjunction of all possible instances of
all qualifiers, that is, qualifiers with * replaced by variables present in the environment. Of
those instances, the ones that are not well-formed get discarded.

In the next step, the tool iteratively weakens the refinements just created. It picks any
unsatisfied subtyping constraint such that the refinement of the supertype is represented by
a liquid variable. The refinement assigned to that liquid variable is then weakened until the
constraint is satisfied, i.e. until refinement of the subtype implies refinement of the supertype.
This procedure is repeated until all the constraints are satisfied.

If at any point an unsatisfied subtyping constraint is found with a pre-set refinement of
the supertype (as opposed to it being represented by a liquid variable), it means that the set
of constraints cannot be satisfied and fixpoint reports failure.

Qualifiers to be used when constructing refinements might come from three sources:

• Several of them are built in or, more precisely, included in a small library of specification
files that comes with LiquidHaskell and beside qualifiers, contains also refined types of
several built-in Haskell functions.

• Whenever a user provides a concrete refinement, the formula is turned into a qualifier to
be tried with other expressions, by replacing all free variables with placeholder variables.

• A user might explicitly provide some qualifiers using the qualif keyword.

The actual translation

Once all liquid variables have been instantiated with some well-formed concrete refinements,
fixpoint needs to verify that several implications hold. Specifically, for every subtyping con-
straint of the form:

{ v:sort | refinement1 } <: { v:sort | refinement2 }

fixpoint has to verify that refinement1 implies refinement2 (in the environment in which
the constraint is set). To this end, it translates all such implications with corresponding
environments to the SMT 2.0 format ([2]). The resulting file is in turn verified by the Z3
([4]) SMT prover.

The prover is executed only once, on a SMT file that contains all possible solutions to
the constraints set (mappings of liquid variables to concrete refinements). The push and pop

SMT instructions are used extensively to separate possible solutions from each other and
denote them all as targets to be checked.
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2.1.7. The resulting SMT files

While both HCC and LiquidHaskell are capable of using SMT 2.0 as the back-end format,
the files they produce are very different.

The theories and SMT files produced by HCC closely resemble structure of the input pro-
gram. With a bit of experience, one can rewrite the original program based solely on the SMT
file produced by HCC. LiquidHaskell, on the other hand, produces files that provide no hints
as to the structure of the original program. This is partially due to the fact that information
about program structure is dropped during translation to Fixpoint, and partially because the
need to describe all possible constraint solutions makes the output files significantly bigger
than the input program.

There are also some differences between type theories employed in resulting files. The
FOL theories produced by HCC are unsorted. Even the True and False values are treated as
ordinary constants (or rather ordinary applications of data constructors to empty argument
lists). LiquidHaskell, however, takes full advantage of the built-in sorts Int and Bool, and
defines its own sort Set.

In addition, LiquidHaskell makes extensive use of uninterpreted function symbols, which
represent abstract refinements and data constructors. HCC, on the other hand, provides
concrete definitions of virtually all function symbols.

2.2. Expressiveness

Having understood the basics of methods employed by HCC and LiquidHaskell, it is possible
to analyze expressiveness of both systems and differences between them in this regard. The
following section first discusses which of HCC constructs may be expressed and verified using
LiquidHaskell. Then a similar comparison is performed, expressing LiquidHaskell constructs
with HCC.

2.2.1. Expressing HCC primitives in LiquidHaskell

HCC syntax can be conveniently thought of as consisting of two layers, the topmost layer
being statements, which in turn consist of other statements and the lower layer constructs:
contracts. The following analysis of expressiveness is therefore split in two parts, following
that structure.

Statements

The compliance with a contract statement (:::) can be trivially expressed in LiquidHaskell
by declaring a refined type for a value. That is, a HCC statement:

e ::: contract

is roughly equivalent to LiquidHaskell declaration:

{-@ name :: rtype @-}

name = e

where name is an arbitrary identifier, rtype is a translation of contract and e is an arbitrary
Haskell expression.

However, while it is possible to specify several contracts for a value in HCC, LiquidHaskell
allows every value to have only one refined type. It is, of course, possible to declare more
refined types by defining values that are in fact aliases:
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{-@ name :: rtype1 @-}

name = ... -- definition

{-@ name ’ :: rtype2 @-}

name ’ = name

This approach, however, poses two problems:

• It obscures the code, which increases the risk of programmers’ errors and the mainte-
nance cost.

• When proving a refinement of an expression that uses name, only one of the name’s
refinements will be used. As a result, a programmer needs to understand the refined
types inference procedure and deliberately choose one of the name versions every time
it is used in the code.

This issue is somewhat, but not fully, addressed by LiquidHaskell’s abstract refinements.
In LiquidHaskell, this kind of statement is a topmost construct. That is, a refined type

declaration for a specific value cannot be used in another construct introduced by Liquid-
Haskell. For this reason neither implication (:=>) statement nor universal quantification
statement (All) have equivalents in LiquidHaskell.

Contracts

• There is no equivalent for the crash-freedom contract (CF) in LiquidHaskell. However,
similar functionality can be achieved by:

– Passing --totality option to LiquidHaskell to find all non-exhaustive pattern
matches, and

– refining the type of error function in the following way:

{-@ assume Prelude.error :: {v:[Char] | false} -> b @-}

That is, error may not be applied to any argument (because for no argument will
the false predicate be true) and so can never be called.

• There is also no equivalent for the Pred e contract, that is: a contract that uses
an arbitrary boolean-valued Haskell expression. Such a construct cannot be found or
introduced to LiquidHaskell because its predicate language, by design, is not Turing-
complete.

• The arrow contract (:->) can be trivially translated to LiquidHaskell by naming argu-
ments in refined type declaration of a function. That is, a HCC contract:

contract1 :-> (\x -> contract2)

is roughly equivalent to refined type:

x:rtype1 -> rtype2

where rtype1 and rtype2 are translations of contract1 and contract2 respectively,
and both contract2 and rtype2 might use x as a free variable.

As a result, the simplified arrow contract --> (which is a special case of :->) can be
also easily translated to LiquidHaskell.

• The conjunction contract (:&:) can be easily translated to LiquidHaskell which allows
for using conjunction operator (&&) in its predicate language.
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2.2.2. Expressing LiquidHaskell primitives in HCC

Unlike HCC, LiquidHaskell syntax does not appear to have clear structure. For this reason,
the following description simply enumerates most of LiquidHaskell primitives in an arbitrary
order.

Refined type declarations

Refined type declaration can be trivially translated as a statement of compliance with a
contract (:::).

Concrete refinements

Concrete refinements can be easily translated as boolean-valued Haskell expressions to for-
mulate a contract using the Pred construct.

Function types

Function types are equivalent to arrow contracts (:-> and -->). There is, however, certain
check performed by LiquidHaskell that HCC does not provide. Whenever a function with a
refined type is being called anywhere in the program, LiquidHaskell verifies that the argu-
ments have appropriate refined types, otherwise an error is produced. This behaviour allows
to limit functions domains and statically enforce those limits.

It is quite different from HCC semantics. As mentioned in section 1.1.2, HCC does not
provide any guarantees for a function when the arguments passed to it do not comply with
their contracts. There is no way to limit functions domains using HCC.

Measures and predicates

Measures and predicates can be translated simply as Haskell functions.

Invariants

Invariants can be expressed using the universal quantification. The invariant:

{-@ invariant { v:sort | formula } @-}

can be translated as:

inv_statement = All (\v -> v ::: contract)

where contract is translation of formula and both contract and formula might use v as a
free variable.

Abstract refinements

Abstract refinements can also be expressed using universal quantification.
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Example 2.2.1 (Translating abstract refinements to HCC). The refined type declaration
in:

data Nat = Z | S Nat

(>) :: Nat -> Nat -> Bool

Z > _ = False

_ > Z = True

(S x) > (S y) = x > y

{-@ max :: forall < p :: Nat -> Prop > .

Nat <p> -> Nat <p> -> Nat <p> @-}

max :: Nat -> Nat -> Nat

max x y = if x > y then x else y

can be translated to HCC as the following statement:

max_quantif = All (\p ->

max ::: CF :&: (Pred p)

--> CF :&: (Pred p)

--> CF :&: (Pred p) )

It is worth noting that while this statement is an equivalent of the refined type above,
HCC is unable to verify it within 1 hour timelimit on a modern PC. What is more, it is quite
hard to write quantification such as the one above without the risk of their verification being
affected by a HCC bug discussed in section 3.2.1.

Data Abstract Refinements

Data abstract refinements do not increase system expressiveness, but rather are a way to
work around limits of LiquidHaskell’s syntax. For this reason there is no need to seek their
equivalent in HCC. Expressing predicates on any algebraic data type in the latter is trivial,
since it uses Haskell for its predicate language.

Existential quantification

HCC does not explicitly introduce existential quantification and so there is no equivalent of
the exists keyword in the syntax. However, the implication and universal quantification
constructs allow for expressing existential quantification.

Do define one, user might first define a statement that is false:

false_stmt = True ::: (Pred $ const False)

the statement above is false because no non-divergent value may comply with a false contract.
Any non-divergent value other than True might have been used to define such statement.

Then one might use the implication constructor (:=>) to define not operator for state-
ments:

not_stmt s = s :=> false_stmt
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Finally, one might negate universal quantification constructor (All) and the corresponding
statement to obtain existential quantification:

exists f = not_stmt $ All not_f

where

not_f x = not_stmt $ f x

Example 2.2.2 (Existential quantification in HCC).

two_exists = exists $ \x -> ((x == two) ::: CF :&: (Pred id))

The statement above asserts that there exists such x that when compared to two, the
comparison does not crash and is true. The sample above omits definitions of two and
the equality comparison function (==).

While the construction above is quite straight-forward, it does not behave as might be
expected, due to a bug within HCC design itself, as explained in section 3.2.1. With some
non-intuitive modifications, however, it can be fixed.

Termination

Unlike LiquidHaskell, HCC syntax does not include explicit constructs to verify program
termination and reasoning about termination might seem impossible in HCC. Especially
that, as mentioned in section 2.1.5, every divergent value is considered compliant with every
contract. In fact, this behaviour can be used to specify divergence since only divergent
values comply with the false contract CF :&: (Pred $ const False). Using the not_stmt

operator from the previous subsection, one can formulate a statement asserting that a given
function does not comply with the false contract and thus either crashes or terminates.
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Example 2.2.3 (Reasoning about termination).

inf :: Nat -> Nat

inf x = inf (S x)

half :: Nat -> Nat

half (S (S x)) = S (half x)

half _ = Z

inf_divergent = inf ::: CF --> (CF :&: (Pred $ const False ))

inf_ends_broken = not_stmt inf_divergent

half_divergent_broken =

half ::: CF --> (CF :&: (Pred $ const False))

half_ends = not_stmt half_divergent_broken

In this sample, inf always diverges and half always terminates. HCC is able to
successfully verify that both inf_divergent and half_ends statements are true, as ex-
pected.

2.2.3. Conclusions

All the primitives of LiquidHaskell language can be also expressed in HCC syntax. The
reverse is not true: There are some primitives in HCC that cannot be fully expressed in
LiquidHaskell. Those include implication and universal quantification. This is because in
LiquidHaskell refined type declaration is the topmost construct, whereas in HCC equivalent
of such declaration can be used as part of a more complex statement.

Another HCC primitive not expressible in Liquid Haskell Pred, the predicate contract.
HCC allows for any boolean-valued function to be used as a contract, which obviously intro-
duces undecidability. LiquidHaskell, on the other hand, uses a predicate language that is not
Turing-complete, sacrificing expressiveness.

However, a significant difference in semantics must be noted: LiquidHaskell enforces that
for any function, refined types of its arguments are respected at all call sites. HCC makes
no such checks. For this reason, HCC cannot be considered strictly more expressive than
LiquidHaskell. It is also worth noting that while all the LiquidHaskell constructs can be
expressed with HCC syntax, using the latter for purposes it was not designed for requires
good understanding of HCC semantics, especially when reasoning about termination.

It appears that HCC might be better suited for reasoning about partial correctness and
complex properties of Haskell functions in isolation. In contrast, LiquidHaskell is capable
of expressing termination and properties of functions in a broader context, although the
properties themselves are limited by the LiquidHaskell predicate language.

2.3. Performance

The following section presents enormous differences between HCC and LiquidHaskell in regard
to their efficiency, verification time and decidability.
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2.3.1. HCC

HCC source code repository2 contains a collection of samples with over 340 statements for
testing purposes, most of which are very simple (e.g., stating only that a function is crash-free
or that it retains length of a list passed to it as an argument). Examples of the most complex
ones are presented below. All of those statements have been checked with Z3 and CVC4 ([1])
SMT provers for this thesis.

The tool can use either SMT 2.0 or TPTP format as a back-end and so any other prover
supporting one of these could be used to verify statements. In fact, the authors have tested
Z3 along with several other provers but the results they published in [16] suggest that Z3
shows significantly better performance than any other prover they tried. They have not,
however, tested with CVC4.

Both provers were given 60 seconds to check each of theories corresponding to one of the
statements3. In practice, however, they always either exceeded this timelimit or produced the
answer instantly. This behaviour, albeit surprising, seems to be consistent with the results
reported in [16].

More specifically, out of 454 tests (i.e., FOL theories produced by HCC), Z3 successfully
checked 327 of them. All of the successful checks were done in less than 0.01s. CVC4
successfully checked 326 out of 454 tested. All of the successful checks were done in less than
0.2s and almost all of those (319) were done in less than 0.015s.

It appears that HCC can only verify statements that are rather simple and could be easily
proven by human. In addition, the tool is unpredictable in what it can and cannot verify.
The two samples below illustrate this. Both are extracts from the project testsuite.

2https://github.com/danr/contracts.git
3Actually, some statements may be represented by more than one theory. Specifically, statements about

recursive values, which are split to be proven by induction.
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Example 2.3.1 (Commutativity).

(*) ‘commutativeOver ‘ (===) =

(*) ::: CF :-> \x ->

CF :-> \y ->

CF :&: Pred (=== (y * x))

data Nat = S Nat | Z

(+) :: Nat -> Nat -> Nat

Z + y = y

S x + y = S (x + y)

max :: Nat -> Nat -> Nat

max Z y = y

max x Z = x

max (S x) (S y) = S (max x y)

plus_comm = (+) ‘commutativeOver ‘ (==) ‘Using ‘ eq_refl

max_comm_broken = max ‘commutativeOver ‘ (==)

max_comm = max ‘commutativeOver ‘ (==) ‘Using ‘ eq_refl

Presented above is an extract from module Nat.hs, defining some operations on nat-
ural numbers. The obvious definition of (==) operator has been omitted. Each of the
last three lines defines a statement but only the last one (i.e., max_comm) is successfully
verified. It asserts that the max operator is commutative and hints the tool to use the
reflexivity of equality operator (the eq_relf statement, also omitted from the extract)
in the proof.

A similar statement without any hints as to the proof structure (max_comm_broken)
could not be checked by either Z3 nor CVC4. A similar statement for the (+) operator
could also not be verified, even with the hint.

The latter could not be proven by HCC even when provided with a broad collection
of hints, namely:

• Reflexivity, symmetry and transitivity of (==) operator.

• For all natural numbers n: n + Z == n.

• For all natural numbers n and m: n + (S m) == S (n + m).

With the help of Coq proof assistant ([8]) those lemmas were identified as sufficient
to make the proof of plus_comm statement feasible. Despite that, HCC was unable to
produce theory that could be verified by any of the tested provers.
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Example 2.3.2 (Risers).

import Nat

risers :: [Nat] -> [[Nat]]

risers [] = []

risers [x] = [[x]]

risers (x:y:xs) = case risers (y:xs) of

s:ss | x <= y -> (x:s):ss

| otherwise -> [x]:(s:ss)

[] -> error "internal error"

risers_cf = risers

::: CF :&: Pred (not . null)

--> CF :&: Pred (not . null)

‘Using ‘ le_cf

risersBy :: (a -> a -> Bool) -> [a] -> [[a]]

risersBy (<) [] = []

risersBy (<) [x] = [[x]]

risersBy (<) (x:y:xs) = case risersBy (<) (y:xs) of

s:ss | x < y -> (x:s):ss

| otherwise -> [x]:(s:ss)

[] -> error "internal error"

risersBy_cf =

risersBy ::: (CF --> CF --> CF)

--> CF :&: Pred (not . null)

--> CF :&: Pred (not . null)

Presented above are definitions of two functions that divide the argument list into
sublists, all of which are rising. Function risers operates on natural numbers and
risersBy is its generalization: It accepts any list of any data type and a comparison
function as an argument.

There are statements for both functions that assert their crash-freedom and non-
emptiness of results, provided that the input lists are not empty. risers_cf statement
could not be verified by either of the provers, even though it includes a hint to use crash-
freedom of the (<=) operator. The risersBy_cf got successfully verified by CVC4 but
not by Z3.

2.3.2. LiquidHaskell

LiquidHaskell repository4 contains several benchmarks which are annotated (and possibly
slightly modified) popular Haskell modules and libraries used in real world applications. The

4https://github.com/ucsd-progsys/liquidhaskell/tree/liquidHaskell-0.1
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most notable are:

• Data.Map.Base module.

The module introduces Map data structure and several operations. It provides function-
ality of a dictionary and is implemented as a balanced binary search tree. It is widely
used in Haskell projects.

Introduced refinements mostly state that:

1. all the exported functions accept only maps with BST ordering as arguments, and

2. the ones that produce maps as results preserve this ordering.

In addition, all the exported functions are verified to terminate.

• Data.ByteString library.

The library provides some functionalities of efficient byte arrays known from imperative
languages. To this end, it makes extensive use of basic pointer operations by means of
Foreign Function Interface.

Introduced refinements mostly enforce that exported functions produce ByteStrings of
correct lengths. In addition, some internal functions are refined with predicates related
to pointer arithmetic. To make the latter possible, dummy definitions of some foreign
functions have been introduced into the source code to allow for reasoning about their
behaviour. For example5:

-- LIQUID foreign import ccall unsafe "string.h memcpy"

c_memcpy

-- LIQUID :: Ptr Word8 -> Ptr Word8 -> CSize -> IO (Ptr

Word8)

{-@ memcpy :: dst:(PtrV Word8)

-> src:(PtrV Word8)

-> size: {v:CSize| (v <= (plen src) && v <= (

plen dst))}

-> IO ()

@-}

memcpy :: Ptr Word8 -> Ptr Word8 -> CSize -> IO ()

memcpy p q s = undefined

Most of the functions are, again, verified to terminate.

• Data.Text library.

The library is used for fast and efficient manipulation on Unicode texts. It somewhat
resembles Data.ByteString in its use of array-type data structures.

The refinements mostly enforce correct lengths of texts provided to and produced by
the functions. In addition, they also put bounds on numerical representation of single
characters.

Again, most functions are verified to be terminating.
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File Time (seconds)

Data/Map/Base.hs 345.7

Data/ByteString.split.0.T.hs 118.9
Data/ByteString.split.0.hs 115.8
Data/ByteString.split.1.T.hs 113.7
Data/ByteString.split.1.hs 108.2
Data/ByteString/Char8.hs 26.9
Data/ByteString/Fusion.hs 63.2
Data/ByteString/Lazy.hs 575.6
Data/ByteString/Unsafe.hs 4.7
Data/ByteString/Fusion.T.hs 74.4
Data/ByteString/Internal.hs 18.1
Data/ByteString/LazyZip.hs 440.8
Data/ByteString/Lazy/Internal.hs 2.5
Data/ByteString/Lazy/Char8.hs 26.8
Total for the library 1690.0

Data/Text.hs 304.0
Data/Text/Internal.hs 6.4
Data/Text/Unsafe.hs 7.5
Data/Text/Search.hs 24.3
Data/Text/UnsafeChar.hs 5.5
Data/Text/Encoding.hs 908.9
Data/Text/Foreign.hs 7.8
Data/Text/Fusion.hs 125.3
Data/Text/Private.hs 2.6
Data/Text/Array.hs 9.3
Data/Text/Lazy.hs 283.7
Data/Text/Fusion/Size.hs 8.5
Data/Text/Lazy/Encoding.hs 15.2
Data/Text/Lazy/Fusion.hs 14.1
Data/Text/Lazy/Builder.hs 40.2
Data/Text/Lazy/Internal.hs 4.7
Data/Text/Lazy/Search.hs 230.0
Total for the library 1998.6

Figure 2.3: LiquidHaskell benchmark results
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For the sake of verification process, definitions of many functions were modified. It is
hard to estimate, however, how serious those modifications were.

Verification time of those benchmark components on a modern PC was measured for this
thesis. Figure 2.3 shows the results. Verification time of a single module can be anything
from few seconds to over 10 minutes. Both the Data.ByteString and Data.Text libraries
took about half an hour to verify in total.

On top of that, LiquidHaskell has limited support for incremental verification. That is,
it can verify only the parts of source code that have been modified since the last verification.
This feature, however, is not further discussed or analyzed, since it is poorly documented and
appears to be immature at the current state and require further work.

2.3.3. Conclusions

It appears that HCC is far from having practical applications. It fails to prove non-trivial
properties, and may even have difficulties proving the trivial ones. What makes the matter
worse, is it does not scale. Providing more resources (CPU time) does not affect performance.

On the other hand, LiquidHaskell appears to be efficient enough for development of real-
world projects. If not as a part of standard build procedure, it can be run periodically,
e.g. during nightly builds. Benchmarks available in the repository show that the tool is
capable of verifying useful refinements within reasonable time constraints for complex software
components.

2.4. Case study

The following section aims to provide better intuitive understanding of differences between
HCC and LiquidHaskell and their limitations, by describing efforts to verify some operations
on popular data structures.

2.4.1. Ordering of maps

Among many tests that come with LiquidHaskell source code, there is an implementation of
balanced, ordered functional maps6. The following analysis first presents that implementation
and concrete refinements being verified, then describes an attempt to verify similar properties
in HCC.

LiquidHaskell implementation

Presented below is an extract of the original implementation:

{-@

data Map [mlen] k a < l :: root:k -> k -> Prop

, r :: root:k -> k -> Prop >

= Tip

| Bin (sz :: Size)

(key :: k)

(value :: a)

5Source: https://github.com/ucsd-progsys/liquidhaskell/blob/liquidHaskell-0.1/benchmarks/

bytestring-0.9.2.1/Data/ByteString/Internal.hs
6Source: https://github.com/ucsd-progsys/liquidhaskell/blob/liquidHaskell-0.1/tests/pos/

Map.hs
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(left :: Map <l, r> (k <l key >) a)

(right :: Map <l, r> (k <r key >) a)

@-}

{-@ type OMap k a = Map <{\root v -> v < root}

,{\root v -> v > root}> k a @-}

data Map k a = Tip

| Bin Size k a (Map k a) (Map k a)

type Size = Int

{-@ singleton :: k -> a -> OMap k a @-}

singleton :: k -> a -> Map k a

singleton k x

= Bin 1 k x Tip Tip

{-@ insert :: Ord k => k -> a -> OMap k a -> OMap k a @-}

insert :: Ord k => k -> a -> Map k a -> Map k a

insert kx x t

= ...

It defines a refined type OMap that represents any map in BST order. The refinements
state that:

• singleton produces an ordered map, and

• insert may accept only an ordered map as an argument, and

• insert produces an ordered map.

No further refinements or annotations are necessary. For this particular implementation,
LiquidHaskell infers refined types for all subexpressions, including internal functions, e.g. the
ones responsible for keeping the tree balanced.

In addition, a similar refinement for delete function is provided in the file.

HCC implementation

For this thesis, parts of this file have been also checked with HCC. However, to make it
possible, the data structure was modified to use algebraic natural numbers as keys and size
representation:

import Nat

data Map a = Tip

| Bin Size Nat a (Map a) (Map a)

type Size = Nat

This was necessary because HCC does not support typeclasses (and original implementa-
tion uses Ord typeclass) or non-algebraic types (e.g. Int).

Then a predicate was written in Haskell that is true iff a map is ordered:
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ordered :: Map a -> Bool

ordered = ordered_go Nothing Nothing

ordered_go :: Maybe Nat -> Maybe Nat -> Map t -> Bool

ordered_go _ _ Tip = True

ordered_go bLower bUpper (Bin _ k x l r) =

(checkBounds bLower bUpper k)

&& (ordered_go bLower (Just k) l)

&& (ordered_go (Just k) bUpper r)

checkBounds :: Maybe Nat -> Maybe Nat -> Nat -> Bool

checkBounds (Just kl) (Just ku) k = kl < k && k < ku

checkBounds (Just kl) Nothing k = kl < k

checkBounds Nothing (Just ku) k = k < ku

checkBounds Nothing Nothing k = True

The ordered_go predicate accepts not only map, but also optional bounds. If these are
provided, the predicate verifies not only that the map is ordered, but also that all of its keys
lie in between those bounds.

Several statements were formed to verify that the predicates are crash-free:

ordered_cf = ordered ::: CF --> CF

‘Using ‘ ordered_go_cf

ordered_go_cf = ordered_go ::: CF --> CF --> CF --> CF

‘Using ‘ checkBounds_cf

checkBounds_cf = checkBounds ::: CF --> CF --> CF --> CF

‘Using ‘ lt_cf

Several functions were adjusted to the modified definition of Map data type. Particularly
interesting ones are singleton, singleL and singleR. The latter two define tree rotations
(preserving the order) that are used to keep the tree balanced. They use a helper function
bin that simply glues two subtrees and a key-value pair into a new tree.

singleton :: Nat -> a -> Map a

singleton k x = Bin (S Z) k x Tip Tip

singleL :: Nat -> b -> Map b -> Map b -> Map b

singleL k1 x1 t1 (Bin _ k2 x2 t2 t3) =

bin k2 x2 (bin k1 x1 t1 t2) t3

singleL _ _ _ Tip =

error "sinlgeL Tip"

singleR :: Nat -> b -> Map b -> Map b -> Map b

singleR k1 x1 (Bin _ k2 x2 t1 t2) t3 =

bin k2 x2 t1 (bin k1 x1 t2 t3)

singleR _ _ Tip _ =

error "sinlgeR Tip"

bin :: Nat -> a -> Map a -> Map a -> Map a
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bin k x l r = Bin (size l + size r + (S Z)) k x l r

Again, several statements were formed, this time asserting not only crash-freedom, but
also ordering of the resulting map:

singleton_cf = singleton ::: CF

--> CF

--> CF :&: (Pred ordered)

‘Using ‘ ordered_cf

singleL_cf = singleL ::: CF

:-> (\k -> CF

--> CF :&: Pred (ordered_go Nothing (Just k))

--> CF :&: Pred (not . empty)

:&: Pred (ordered_go (Just k) Nothing)

--> CF :&: Pred ordered)

‘Using ‘ ordered_go_cf

singleR_cf = singleR ::: CF

:-> (\k -> CF

--> CF :&: Pred (not . empty)

:&: Pred (ordered_go Nothing (Just k))

--> CF :&: Pred (ordered_go (Just k) Nothing)

--> CF :&: Pred ordered)

‘Using ‘ ordered_go_cf

The contracts for singleL and singleR functions might look quite complicated. singleL_cf
states that as long as

• the first map argument to singleL is ordered and all its keys are smaller than k, and

• the second map argument is ordered and all its keys are greater than k, and

• the second map argument is not empty, and

• all the arguments are crash-free

the result is crash-free and ordered.
The contract for singleR is similar, only non-emptiness requirement is put on the first,

not the second map arguments.
As to the helper bin function, two contracts were tried:

bin_cf = bin ::: CF

--> CF

--> CF

--> CF

--> CF

‘Using ‘ plus_cf

bin_ord = bin ::: CF

:-> (\k -> CF

--> CF :&: Pred (ordered_go Nothing (Just k))

--> CF :&: Pred (ordered_go (Just k) Nothing)
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Statement Z3 CVC4

ordered_cf 3 3

ordered_go_cf 3 3

checkBounds_cf 3 5

singleton_cf 3 5

bin_cf 3 3

bin_ord 3 5

singleL_cf ‘Using‘ bin_cf 3 5

singleR_cf ‘Using‘ bin_cf 5 5

singleL_cf ‘Using‘ bin_ord 5 5

singleR_cf ‘Using‘ bin_ord 5 5

Figure 2.4: Statements for Map module. 3 means that statement was successfully verified,
5 means that the prover exceeded time limit

--> CF :&: Pred ordered)

‘Using ‘ plus_cf

‘Using ‘ ordered_go_cf

‘Using ‘ ordered_cf

bin_cf simply states crash-freedom. bin_ord additionally speaks about ordering and is sim-
ilar in that regard to singleL_cf or singleR_cf, only with the non-emptiness requirement
dropped. In different runs, statements for singleL and singleR were provided with hints to
use either bin_cf or bin_ord in the proof.

Results

LiquidHaskell managed to verify that refinements for singleton, insert and delete func-
tions are correct. In several runs, the verification was consistently performed in about 30
seconds in total. The tool inferred refined types for all the internal functions relied upon.
For example, the following refined type was inferred for the original singleL function:

{-@ singleL :: forall a b.

k1:a

-> b

-> OMap {VV : a | (VV < k1)} b

-> OMap {VV : a | (VV > k1)} b

-> OMap a b

@-}

singleL :: a -> b -> Map a b -> Map a b -> Map a b

singleL k1 x1 t1 (Bin _ k2 x2 t2 t3)

= bin k2 x2 (bin k1 x1 t1 t2) t3

singleL _ _ _ Tip

= error "sinlgeL Tip"

As could be expected, HCC managed to verify only some of the statements. Figure 2.4
shows the results with Z3 and CVC4 used as the back-end theorem provers.

Using CVC4 prover, HCC was unable to prove even that singleton produces an ordered
map. The results were slightly better when using Z3. Interestingly, correctness could be
proven for singleL but not for singleR even though function definitions and corresponding

49



contracts are symmetrical. HCC was unable to prove correctness of any of those when hinted
to use bin_ord statement and not bin_cf.

2.4.2. List concatenation

Consider a simple module defining List data structure and concatenation operation (append):

data List a = Nil | Cons a (List a)

deriving (Eq)

append :: forall a. List a -> List a -> List a

append (Nil) xs = xs

append (Cons x xs) ys = Cons x (xs ‘append ‘ ys)

Some simple function operating on List were additionally defined for this thesis and
verified using both tools. Presented below are those definitions, specification and verification
results.

LiquidHaskell version

Several basic functions were defined together with concrete LiquidHaskell refined type spec-
ifications for testing purposes:

{-@ id0 :: x:(List a) -> {v:(List a) | x=v} @-}

id0 :: List a -> List a

id0 l = l

{-@ id1 :: x:(List a) -> {v:(List a) | x=v} @-}

id1 :: List a -> List a

id1 Nil = Nil

id1 (Cons x xs) = Cons x xs

{-@ id2 :: x:(List a) -> {v:(List a) | x=v} @-}

id2 :: List a -> List a

id2 Nil = Nil

id2 (Cons x xs) = Cons x (id2 xs)

{-@ addEmpty :: x:(List a) -> {v:(List a) | x=v} @-}

addEmpty x = x ‘append ‘ Nil

{-@ emptyAdd :: x:(List a) -> {v:(List a) | x=v} @-}

emptyAdd x = Nil ‘append ‘ x

Definitions of id0, id1 and id2 are increasingly complex but they are in fact identity
functions. addEmpty and emptyAdd are also identity functions since they concatenate the
argument with an empty list from the right and left side respectively.

id0 is easily verified without any modification to the original code. id1 and id2, however,
need the following concrete refinements to be provided for data constructors:

{-@ Cons :: x:a

-> xs:(List a)

-> {v:(List a) | (v = (Cons x xs))} @-}

{-@ Nil :: {v:(List a)| v = Nil} @-}
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Those make it possible to verify id1 and id2 but refinements for addEmpty and emptyAdd

still produce errors. To deal with that, the following refinement for append is needed:

{-@ append :: x:(List a)

-> y:(List a)

-> {v:(List a) | (((y=Nil) => (v=x))

&& ((x=Nil) => (v=y)))} @-}

which in turn requires refinement for Cons data constructor to be strengthened by explic-
itly stating that a value created with Cons may not at the same time be a Nil:

{-@ Cons :: x:a

-> xs:(List a)

-> {v:(List a)| ((v = (Cons x xs))

&& (not (v = Nil )))} @-}

HCC version

Since HCC does not support typeclasses, data type again had to be adjusted:

data List = Nil | Cons Nat List

Otherwise, reasoning about equality of polymorphic lists would require relying on the Eq

typeclass. Function definitions were adjusted accordingly. Equality for lists was defined:

(===) :: List -> List -> Bool

Nil === Nil = True

(Cons x xs) === (Cons y ys) = (x == y)

&& (xs === ys)

Several statements were formed to express that list equality is crash-free and that the
functions mentioned above are identities. To this end, a helper isIdentity function was
defined which for a given function f produces a statement: f is an identity.

leq_cf = (===) ::: CF

--> CF

--> CF

‘Using ‘ eq_cf

isIdentity f = f ::: CF

:-> (\x -> CF :&: Pred (=== x))

‘Using ‘ leq_cf

id0_id = isIdentity id0

id1_id = isIdentity id1

id2_id = isIdentity id2

addEmpty_id = isIdentity addEmpty

emptyAdd_id = isIdentity emptyAdd

None of these statements could be verified using either Z3 or CVC4. While some of them
might seem trivial, it is important to note that for HCC the equality operator (===) is just
an arbitrary function. For this reason, more statements were added for the operator. Figure
2.5 shows results after hinting the tool to use reflexivity7 of equality:

7Definition of reflexive comes from testsuite provided with HCC
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Statement Z3 CVC4

addEmpty_id 5 3

emptyAdd_id 3 3

id0_id 3 3

id1_id 3 3

id2_id 5 3

leq_cf 5 5

leq_refl 5 5

With symmetry:
addEmpty_id 3 5

emptyAdd_id 3 3

id0_id 3 3

id1_id 3 3

id2_id 3 3

leq_cf 5 5

leq_refl 5 5

leq_symm 5 5

Figure 2.5: Proving identity for lists with HCC. 3 denotes success, 5 denotes exceeding the
time limit

reflexive (~~) =

All (\x -> x ::: CF :=> x ~~ x ::: CF :&: Pred id)

leq_refl = reflexive (===)

isIdentity f = f ::: CF

:-> (\x -> CF :&: Pred (=== x))

‘Using ‘ leq_cf

‘Using ‘ leq_refl

Even though reflexivity itself could not be proven, relying on it allowed CVC4 to prove that
all of the functions are identities. There was also significant improvement for Z3. Similar
statement was introduced that spoke about symmetry of (===). As figure 2.5 shows, it
allowed Z3 to succeed with all the functions. Surprisingly, though, CVC4 was unable to
finish proof for addEmpty with addition of that hint.

Associativity

HCC testsuite contains a general statement expressing associativity for any operation and
over any relation:

(*) ‘associativeOver ‘ (===) = All $ \z -> z ::: CF :=>

(*) ::: CF :-> \x

-> CF :-> \y

-> CF :&: Pred (\r -> (r * z) === (x * (y * z)))

This can be used to express in HCC associativity of list concatenation:

append_comm = append ‘associativeOver ‘ (===)

‘Using ‘ leq_cf
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‘Using ‘ leq_refl

‘Using ‘ leq_symm

Again, the relationship between provided hints and the ability to prove this statements
seems complicated. When using only leq_cf and leq_symm, CVC4 successfully proves it.
Adding reflexivity (leq_refl) to dependency hints causes it to time out. No set of depen-
dency hints was found that would allow Z3 to successfully prove this statement.

Expressiveness of LiquidHaskell is weaker than that of HCC and thus it is hard to express
associativity. There are, however, some hacks possible. One of the ways is defining a function
that produces a pair, and annotating it with a refinement stating that the components of the
pair are equal:

{-@ associative :: x:(List a)

-> y:(List a)

-> z:(List a)

-> (List a, List a)<{\a b -> a=b}> @-}

associative x y z = ( (x ‘append ‘ y) ‘append ‘ z

, x ‘append ‘ (y ‘append ‘ z) )

The three arguments to associative effectively act as universal quantification over pos-
sible lists. append is associative iff the function associative is of the refined type above.
However, the issue of proving this refinement remains. In fact, this attempt at working
around LiquidHaskell weakness does not come close to solving the problem. It merely del-
egates it somewhere else. To the best of author’s knowledge it is impossible to express and
prove associativity of append in LiquidHaskell.

2.5. Summary

Neither of the systems can be said to have expressiveness strictly stronger than the other.
Nevertheless, informally, it appears that HCC allows for expressing significantly more complex
partial correctness properties of a Haskell program than LiquidHaskell. It is of little use,
however, since only simple properties seem to be verifiable in practice. What is more, it does
not offer any method of dividing proof goal into subgoals that would be sufficient to overcome
this limitation. While the achievement of translating Haskell programs to FOL is remarkable
and might be a breakthrough in the field of automated verification, it does not seem to have
any practical applications at the moment of writing this thesis.

In certain aspects LiquidHaskell seems to be the opposite of HCC. It is fast, predictable
and the verification procedure is decidable. Alas, the differences are not limited just to HCC’s
drawbacks. Expressiveness of LiquidHaskell, unlike that of HCC, is severely limited. The
properties it can express, while useful, are quite simple. Describing relationships between
different functions (like that between insert and lookup in Data.Map) seems to be beyond
its abilities. Despite those limitations, however, it might be beneficial to incorporate it in
development of real-world Haskell programs.

2.5.1. Use in teaching

In addition to software development, another potential use for both systems worth discussing
is didactics, especially courses in programming languages, functional programming or software
verification.

It is difficult, however, to come up with a reasonable way to incorporate HCC in either of
those. In its present state, the tool is unpredictable, capable of proving only simple statements
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and often can fail even with those. When that happens, it is virtually impossible to identify
reason of failure and work around it. Thus, introducing HCC would steepen the learning
curve, while providing little to no value. Courses not focusing exclusively on verification can
probably benefit more from introducing testing tools such as those mentioned in section 1.3.3,
which come with a specification language similar to that of HCC.

LiquidHaskell does not have this issue but there is another problem instead: since its
expressiveness is quite limited, it would be a small enhancement of the original course. Thus
it is probably best used in the context of various possible type systems, as an interesting
working example among others, rather than as a verification tool.
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Chapter 3

Verification bugs

At present, usability of both systems is hindered by bugs, some of which are design errors.
The following chapter first presents problems found within LiquidHaskell. Then a thorough
explanation of a HCC bug follows. It is the bug mentioned in the previous chapter.

3.1. LiquidHaskell

Three kinds of errors have been identified within the LiquidHaskell tool. They are described
below, ordered by their significance, starting with the most serious one.

3.1.1. Strict vs. lazy evaluation

LiquidHaskell is based on a similar project for OCaml. While there are many similarities
between Haskell and OCaml and programmers proficient with one of those are usually able
to quickly learn the other, one difference has a great impact on the project correctness:
laziness.

Unlike Haskell, OCaml is strictly evaluated. For this reason refined type inference proce-
dure that works for OCaml programs might provide incorrect results for Haskell.

Example 3.1.1 (Error caused by lazy evaluation). This example has been first published
on the LiquidHaskell blog1. Consider the following definitions:

{-@ divide :: n:Int -> d:{v:Int | v /= 0} -> Int @-}

divide n 0 = error "division by 0"

divide n d = n ‘div ‘ d

explode = let z = 0

in (\x -> (2013 ‘divide ‘ z)) (foo z)

explode evaluates to 2013 ‘divide‘ 0 and so it crashes. Since Haskell is lazy, the
x argument and foo function will not be evaluated in runtime. LiquidHaskell, however,
does not take that into consideration. Instead, it infers their refined types and allows
them to affect the refined type of explode.

Now, consider the following definition of foo:
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{-@ foo :: n:Int -> {v:Int | 0 <= v && v < n} @-}

foo n | n > 0 = n - 1

| otherwise = foo n

LiquidHaskell verifies that foo is of the specified refined type, because that is true
whenever foo successfully evaluates (as opposed to diverging).

LiquidHaskell further infers that x in definition of explode is of refined type:

{ v:Int | 0 <= v && v < z }

from which follows that 0 < z and so the expression 2013 ‘divide‘ z successfully
evaluates2.

At the time of writing this thesis, LiquidHaskell authors are working to overcome this
issue. Their results, however, have not yet been published.

3.1.2. Bounded integer arithmetic

LiquidHaskell formulae language includes basic arithmetic operators which allow for reasoning
about integer values. It does not, however, take into consideration bounds of some types,
most notably Int. Consider the following code sample:

{-@ addOne :: x:Int -> { v:Int | v > x } @-}

addOne :: Int -> Int

addOne x = x + 1

While at first sight it might appear that addOne indeed always produces an integer greater
than the argument, it is important to keep in mind that Int is a bounded type, represented
by a 32-bit or 64-bit word, depending on the architecture. maxBound is the maximum possible
value and, as could be expected, addOne maxBound produces a negative value, even though
maxBound is positive. Yet, LiquidHaskell incorrectly states that addOne is of the refined type
provided above.

3.1.3. Minor bugs

There are several minor bugs in LiquidHaskell, mostly dealing with parsing. For example,
Nat and List seem to be treated as reserved keywords, yet when the user tries to use one of
them as an identifier for a custom value or data type, LiquidHaskell either provides no error
messages or they are confusing and misleading. Such minor problems are to be expected,
since there is no formal description of the specification language.

3.2. Haskell Contracts Checker

One might get the impression that there has been more deliberate thought and research put
into HCC, compared to LiquidHaskell. And yet, it also did not avoid hidden problems within
its verification procedure. Presented below is a concrete example of such problem, followed
by a brief analysis of its generalization.

1http://goto.ucsd.edu/~rjhala/liquid/haskell/blog/blog/2013/11/23/telling_lies.lhs/
2This explanation is somewhat simplified but true in essence.
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3.2.1. Transitivity

One might notice that in section 2.4.2 list equality operator was explicitly specified as being
reflexive and symmetrical, but not transitive, and for a reason: HCC is unable to prove its
transitivity. In fact, HCC is unable to prove transitivity of any non-total relation. Consider
the following transitivity definition included in HCC testsuite1:

transitive (~~) = (All $ \x -> All $ \y -> All $ \z ->

x ::: CF :=> y ::: CF :=> z ::: CF :=>

x ~~ y ::: CF :&: Pred id :=>

y ~~ z ::: CF :&: Pred id :=>

x ~~ z ::: CF :&: Pred id)

It is simply a function that, when provided with a binary relation, produces a statement
that the relation is transitive (as long as the relation and arguments passed to it are crash-
free). Now let’s consider this function applied to the list equality operator (definition of which
is obvious) and the following two lists:

emptyList = Nil

singletonList = Cons Z Nil

Those two obviously are not equal. Let them replace x and z variables in transitivity
definition above. We thus obtain the following statement:

All $ \y ->

y ::: CF :=>

emptyList === y ::: CF :&: Pred id :=>

y === singletonList ::: CF :&: Pred id :=>

emptyList === singletonList ::: CF :&: Pred id)

It reads: For all crash-free values y, if equality of y to both emptyList and singletonList

is crash-free and true, then equality of emptyList and singletonList is also crash-free and
true. Note that the conclusion is within the scope of universal quantification. This statement
might appear correct until we recall from section 2.1.5 the purpose and semantics of unr
constant in translation to FOL.

Let empty and singleton be the FOL translations of emptyList and singletonList

respectively, and listEq be the FOL translation of the (===) operator. Let further the y

variable assume value unr. Then the expression:

emptyList === y

will be translated as:

listEq(empty, unr)

and

y === singletonList

will be translated as:

listEq(unr, singleton)

Both those terms (listEq(empty, unr) and listEq(unr, singleton)) are equal to unr be-
cause they rely on the unr constant (passed to them as an argument). But the unr constant,
by definition, meets every contract.

That is, with unr substituted for y, a SMT prover will verify that the statements:

1https://github.com/danr/contracts/blob/master/testsuite/Properties.hs
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emptyList === y ::: CF :&: Pred id

and

y === singletonList ::: CF :&: Pred id

are both true. This, according to the transitivity definition above, implies that
emptyList === singletonList, which obviously is not correct.

3.2.2. Working transitivity definition

The transitivity definition above may be modified to behave as expected:

transitive ’ (~~) = (All $ \x -> All $ \y -> All $ \z ->

x ::: CF :=> y ::: CF :=> z ::: CF :=>

not_stmt (unr (x ~~ y)) :=>

not_stmt (unr (y ~~ z)) :=>

x ~~ y ::: CF :&: Pred id :=>

y ~~ z ::: CF :&: Pred id :=>

x ~~ z ::: CF :&: Pred id)

where statement of the form:

not_stmt (unr e)

asserts that translation of the expression e is not equal to unr. The unr function can be
defined as:

unr :: u -> Statement u

unr e = e ::: (Pred $ const False)

It works because the only object that meets false contract is unr. The not_stmt can be then
defined similarly to how it was defined in section 2.2.2:

false_stmt = unr True

not_stmt s = s :=> false_stmt

Transitivity defined in such way indeed can be proven true for list equality. It can also
be proven false for non-transitive relations. However, the definition of transitive’ is non-
intuitive.

3.2.3. Complex statements

In general, that kind of error may be introduced by using complex statement constructs:
implication (:=>) and universal quantification (All). A programmer using one of those needs
to be familiar with HCC’s internal workings and take them into consideration. For this
reason, at the current state complex statements are probably best avoided, since they can be
thought of as expressing properties of a language that has different semantics from Haskell.
Using only the basic contract compliance statement (:::) allows to avoid such difficulties.
This, however, significantly reduces expressiveness of the system.

The cause of this error is clear once one recalls how HCC translates programs into FOL.
Most importantly, how it drops type information and represents any ill-typed expression with
the unr constant, which in turn by definition complies with every contract. The FOL formula
representing statement expression e complies with contract c is therefore true not only when e
indeed complies with c, but also when e is ill-typed. The reason it does not cause errors when
using the compliance with a contract statement (:::), is because Haskell type checker would
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let through only well-typed expressions. When one explicitly uses implication and universal
quantification, however, the antecedent is in virtually all cases weaker than it appears.

In general the behaviour and semantics of complex statement constructs are very hard to
understand The proof of translation soundness in [16] is limited to contract constructs and
the basic, compliance with a contract statement.
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Chapter 4

Possible improvements

The following chapter presents possible improvements to both the system. First three im-
provements expanding LiquidHaskell’s functionality are proposed. Then potential ways to
work around HCC’s bug and poor performance are suggested.

4.1. LiquidHaskell

Of the three enhancements proposed in this section, the first two increase LiquidHaskell’s
expressiveness. The last one introduces simple notation for what can already be achieved,
but with an unnecessarily complex structure.

4.1.1. Termination checking

In the recent years, significant research has been conducted in the field of automatic verifi-
cation of functional programs termination, detailed summary of which can be found in [12].
Little has been done, however, for lazy higher-order languages such as Haskell. Laziness in
particular poses some unique problems, such as infinite data structures.

As mentioned in section 1.2.2, LiquidHaskell has a limited capability of proving program
termination. Specifically, it is able to do so for a recursive function that has a specific
numeric (or measurable) argument decreasing with each recursive call. Obviously, there are
many cases not covered by this functionality. They fall into one or both of the following
categories:

• Mutually recursive functions.

• Functions that always terminate, yet don’t have single argument that would decrease
with each call. For example, the Ackermann function:

ackermann :: Integer -> Integer -> Integer

ackermann 0 n = n +1

ackermann m 0 = ackermann (m-1) 1

ackermann m n = ackermann (m-1) (ackermann m (n-1))

Both could be addressed by introducing potential functions. I.e., a measure defined not
for a data structure, but for a function application. It must be noted that integer-valued
measures might not be sufficient for all cases. For example, the Ackermann function presented
above requires a pair of integers with lexicographic ordering. That is, potential of the call
ackermann m n would be the tuple (m, n). A set of mutually recursive functions would
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require a separate measure for each of the functions. All of the measures for such set would
need to have the same result type.

It appears that LiquidHaskell team is working on a similar functionality at the time of
writing this thesis. Yet no solutions have been published so far, neither in a peer-reviewed
paper nor in an informal channel.

4.1.2. Abstract refinements within concrete refinements

Whenever verification of map data structure was mentioned in this thesis, it only dealt with
ordering. However, to have confidence in the implementation, one must be certain not only
that all the operations preserve BST ordering, but also that once a value is inserted at a
given key, it can be successfully looked up at that very key, until it is deleted. Given current
expressiveness of LiquidHaskell, it is impossible to express and therefore also verify such
property. One way to change that, is to allow for using abstract refinements (described in
section 1.2.2) from within concrete refinements.

Example 4.1.1 (Map specification with enhanced abstract refinements). Consider the
following refined definition of Map data structure:

{-@

data Map [mlen] k a < l :: root:k -> k -> Prop

, r :: root:k -> k -> Prop

, assoc :: k -> a -> Prop >

= Tip

| Bin (sz :: Size)

(key :: k)

(value :: (a<assoc key >))

(left :: Map <l, r, assoc > (k <l key >) a)

(right :: Map <l, r, assoc > (k <r key >) a)

@-}

In addition to the abstract refinements used in previous Map definitions, there is assoc.
The intention behind it is following: assoc k v is true only if k is a key present in the
map and v is the value associated with it.

Using it, one might refine insert operation as follows:

{-@ insert :: forall k a < assoc :: k -> a -> Prop > . Ord k =>

ik:k ->

iv:a ->

Map < {\root v -> v < root }

, {\root v -> v > root }

, assoc >

k a @-}

Map < {\root v -> v < root }

, {\root v -> v > root }

, {\key val -> ((key==ik) => (val==iv)

&& (key/=ik) => (assoc key val ))} >

k a @-}
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The first two refinements of the resulting map simply assert its BST order. The last
one asserts that the newly inserted key and value are indeed associated with each other,
and that associations of all the other keys are intact.

Such a complex refinement might force user to further provide concrete refinements
for functions used by insert. For example the singleL function, previously introduced
in section 2.4.1 and used for balancing a tree, might be refined as follows:

{-@ singleL :: forall < assocL :: a -> b -> Prop

, assocR :: a -> b -> Prop > .

ik:a ->

iv:b ->

Map < {\root v -> v < root}

, {\root v -> v > root}

, assocL >

{ v:a | v < ik} b ->

Map < {\root v -> v < root}

, {\root v -> v > root}

, assocR >

{ v:a | v > ik} b ->

Map < {\root v -> v < root }

, {\root v -> v > root}

, {\k v -> (assocL k v)

|| (assocR k v)

|| (ik==k && iv==v)} >

a b @-}

singleL k1 x1 t1 (Bin _ k2 x2 t2 t3) =

bin k2 x2 (bin k1 x1 t1 t2) t3

Refinements such as the one above might appear to put too big a burden on the
programmer. However, the certainty and level of trust they provide might be well worth
the cost in some applications.

At the current state, refinements such as those in the example are not permitted in
LiquidHaskell because they call an abstract refinement from within a concrete refinement,
for example towards the end of specification for singleL:

{\k v -> (assocL k v)

|| (assocR k v)

|| (ik==k && iv==v)}

Those, in turn, are not allowed because they would require the fixpoint tool to support liquid
variables (see section 2.1.4) used within concrete refinements.

But there is no reason not to allow that, other than the effort required to enhance Liquid-
Haskell and the fixpoint tool. In fact, LiquidHaskell team is planning to add this capability
at some point in the future.

4.1.3. Multiple refinements for a single value

As mentioned in section 2.2.1, LiquidHaskell allows for specifying only one refined type for
each value, unlike HCC, which allows unlimited number of statements to be expressed about
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single entity. Removing this limitation would allow for a more thorough and readable doc-
umentation. It is also possible to easily enhance LiquidHaskell in such manner, since this
functionality can be already emulated, as described below. Obviously, all refined types of a
single value must share a common underlying sort. This suggestion is thus quite similar to
intersection types presented in [6].

Let us assume that the following definition is present in the program:

f :: A -> B -> ... -> T

f a b ... = e

where e is an expression of type T that might be using a, b and other arguments as free
variables.

Let there be two concrete refinements that a user wants to specify for function f:

{-@ f :: a:{ v:A | (P1 v) }

-> b:{ v:B | (Q1 a v) }

-> ...

-> { v:T | (R1 a b ... v) } @-}

{-@ f :: a:{ v:A | (P2 v) }

-> b:{ v:B | (Q2 a v) }

-> ...

-> { v:T | (R2 a b ... v) } @-}

where P1, P2, ... are some concrete predicates.
The user must then force LiquidHaskell to ensure two things:

1. That the function definition belongs to both the refined types.

2. That at each call site at least one of the refined types is respected.

Doing the former is straight-forward. It suffices to give the same definition to another
function and then provide each of the copies with only one of the above refinements:

{-@ f :: a:{ v:A | (P1 v) }

-> b:{ v:B | (Q1 a v) }

-> ...

-> { v:T | (R1 a b ... v) } @-}

f a b ... = e

{-@ g :: a:{ v:A | (P2 v) }

-> b:{ v:B | (Q2 a v) }

-> ...

-> { v:T | (R2 a b ... v) } @-}

g a b ... = e

Enforcing correct behaviour at call sites is slightly more complicated. A new refinement
needs to be formulated, that combines the two refinements desired by the user:

{-@ f :: a:{ v:A | (P1 v) || (P2 v) }

-> b:{ v:B | ((P1 a) && (Q1 a v))

|| ((P2 a) && (Q2 a v)) }

-> ...

-> { v:T | ((P1 a) && (Q1 a v) && ... && (R1 a b ... v))

|| ((P2 a) && (Q2 a v) && ... && (R2 a b ... v)) }
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In short, the resulting predicate refining any argument states: Among the desired re-
finements there is at least one that is true for the current argument and all the previous
arguments.

The above method can be trivially generalized to any number of desired refinements.
While conducting this task by hand would be burdensome, it can be easily automated. Most
importantly, this functionality can be introduced on the parsing level, and thus does not
require (possibly complex) adjustments to the verification procedure.

4.2. HCC

Presented below are three possible improvements to HCC. The first one is a suggestion of
limitations which, when introduced, make it possible to avoid the verification bug. Following
that are briefly described proposals to deal with HCC unpredictability.

4.2.1. Eliminating the verification bug

As explained in section 3.2.1, contract compliance statement (:::) in combination with im-
plication (:=>) and universal quantification might lead to erroneous behaviour of the contract
checker. Presented in this section is a possible way of fixing that problem.

Recall from the section 2.1.5 that a statement of the form:

e ::: c

is true in any of the three cases:

• when the contract c is true for expression e.

• when translation of expression e is equal to unr. That is, e either diverges or is ill-typed.

• when translation of contract c is equal to unr.

The second provision is necessary for arrow contracts (i.e., contracts describing functions),
since every arrow contract introduces an implicit universal quantification over all possible
arguments. It is not needed, however, for values which are not functions.

Eliminating arrow contracts

Arrow contracts are not necessary element of the syntax. I.e., they can be eliminated without
limiting expressiveness of the system. This observation will be used later in this subsection
to avoid the verification bug.

65



Example 4.2.1 (Eliminating arrow contracts). Consider a function of type:

f :: a -> b -> c

for some types a, b and c. Further consider a statement expressing compliance of that
function with a contract of the form:

f ::: c1 --> c2 --> c3

for some contracts c1, c2 and c3. The above statement could be also expressed as:

All $ \x -> All $ \y ->

x ::: c1 :=>

y ::: c2 :=>

(f x y) ::: c3

That is: for any two arguments that meet their respective contracts, function f applied to
those arguments also meets its contract.

For the sake of clarity, the above example used non-dependent arrow contract and a fixed
number of arguments. However, the transformation can be easily generalized to dependent
arrow contracts (:->) and functions of arbitrary arity. In case of higher-order functions (with
nested arrow contracts), the above transformation may be applied iteratively until all such
contracts are replaced with equivalent statements.

Transforming arbitrary statements

A compliance with a contract statement is true if the expression or the contract translates to
unr. Presented below is a way of generalizing this interpretation to any statement. In this
new interpretation, an expression translating to unr also causes statement to be true, but
appropriate checks are separated form the compliance statement (:::).

For readability, several new constructs are introduced. None of them increases expres-
siveness of the system, but they make the following description more easier to follow.

1. Statement conjunction (:&&:) and disjunction (:||:) operators.

2. A strict compliance with a contract statement, denoted by :::: operator. A statement
of the form:

e :::: c

is true iff the contract c is true for expression e (and both e and c successfully evaluate).

3. An is unreachable statement, denoted by UNR(*) symbol, applicable to expressions. A
statement of the form:

UNR(e)

is true iff translation of e is equal to unr.

Now let s be any statement. Consider the following transformation of s:

1. Eliminate all arrow contracts, transforming them as explained above.
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2. Assuming there are no quantifiers in implication antecedents, transform the statement
to prenex normal form.

3. Maintain set E of potentially unreachable expressions and initialize it to ∅.

4. For any compliance with a contract statement of the form e ::: c, present within
statement s:

(a) Replace e ::: c with the strict compliance statement e :::: c.

(b) Add e to E .

(c) For any predicate contract of the form Pred p present within contract c, add
p (e) to E .

5. Let f be the quantifier-free part of the transformed statement s. Replace it with:

UNR(e_1) :||: UNR(e_2) :||: ... :||: UNR(e_n) :||: (f)

where e_1, e_2, ... e_n are all members of the E set.

Example 4.2.2 (Transforming the transitive statement). Recall the transitivity defini-
tion of any binary relation (~~):

All $ \x -> All $ \y -> All $ \z ->

x ::: CF :=> y ::: CF :=> z ::: CF :=>

x ~~ y ::: CF :&: Pred id :=>

y ~~ z ::: CF :&: Pred id :=>

x ~~ z ::: CF :&: Pred id

This definition does not contain any arrow contracts and is already in prenex normal
form.

After processing all compliance statements, and transforming the quantifier-free part
of the statement, the final transitive statement would look as follows:

All $ \x -> All $ \y -> All $ \z ->

UNR(x) :||: UNR(y) :||: UNR(z) :||:

UNR(x ~~ y) :||: UNR(y ~~ z) :||: UNR(x ~~ z) :||:

UNR(id (x ~~ y)) :||:

UNR(id (y ~~ z)) :||:

UNR(id (x ~~ z)) :||:

( x :::: CF :=> y :::: CF :=> z :::: CF :=>

x ~~ y :::: CF :&: Pred id :=>

y ~~ z :::: CF :&: Pred id :=>

x ~~ z :::: CF :&: Pred id )

Statements thus transformed explicitly express that the user-provided formula needs to
be true only when none of the expressions and contracts translates to unr.

67



Limitation

Alas, the above transformation limits system expressiveness. No existential quantification
may be allowed in the final statements, as it would be always trivially true (due to presence
of the unr constant). For this reason, universal quantifiers cannot be allowed in implication
antecedents. Unfortunately, if this restriction is to be posed on all statements, it would
severely undermine HCC’s usability. Specifically, the tool could be no longer used for verifying
higher-order functions.

Consider the following statement for the standard map function:

map_cf = map ::: (CF --> CF) --> CF --> CF

The first iteration of eliminating arrow contracts would result in:

map_cf = All $ \f -> All $ \xs ->

f ::: CF --> CF :=>

xs ::: CF :=>

(map f xs) ::: CF

The second iteration, performed to eliminate the single remaining arrow contract would result
in:

map_cf = All $ \f -> All $ \xs ->

( All $ \x ->

x ::: CF :=> (f x) ::: CF

) :=>

xs ::: CF :=>

(map f xs) ::: CF

thus placing a universal quantifier in an implication antecedent.
This issue can be overcome to some extent by transforming statements selectively: There

is no need to transform statements that do not use explicit quantification or implication, as
the checker can verify them correctly. The transformation need only be performed for more
complex statements. Banning existential quantification indeed limits their expressiveness,
but in practice it is rarely needed.

Limitations imposed on statements might be also considered an advantage of the presented
method, since they are explicit. Refusing to verify a statement is a safer behaviour than
accepting it, silently modifying its semantics and producing potentially erroneous result.

It would be beneficial to formally prove soundness of this modification. Even without
the proof, however, the method might be considered improvement, since the system already
contains unproven and even error-inducing elements, i.e., the implication and universal quan-
tification constructs.

4.2.2. Equality operator

In previous examples of HCC statements often some kind of equality relation was involved
(e.g., operator (==) in example 2.3.1 or operator (===) in section 2.4.2). Theories generated
for such statements were hard to prove for both Z3 and CVC4, since the relation was treated
by the tools as an arbitrary Haskell function.

All the theories produced by HCC use standard equality (t1 = t2). In virtually all cases
equality relations defined in Haskell programs, when translated, are identical with this FOL
equality, restricted to objects representing appropriate type.

Take, for example, equality operator (==) defined for type Nat:

68



data Nat = S Nat | Z

Z == Z = True

(S x) == (S y) = x == y

_ == _ = False

For any two values a and b of type Nat, if a == b, then their translations a and b are
terms that are equal: a = b. Similarly, for any two terms t1 and t2, if they represent values
t1 and t2 that are of type Nat, then t1 == t2.

It might be thus beneficial to introduce a new contract constructor:

:=: :: a -> a -> Contract a

that expresses equality restricted to a type. There are two arguments supporting this idea:

• Attempts to prove using Coq some of the examples with custom equality relations show
that the proof difficulty decreases significantly when using standard equality instead
of a custom relation. It is reasonable to assume that SMT provers will show better
performance when dealing with ordinary equality that they have been optimized for
and equipped with useful lemmas concerning it.

• Such contract would allow for verifying program components by implementing their
functionality twice independently, and then stating that both implementations produce
the same results. It would also allow for safe program optimization, since programmer
might state and verify that the optimized version produces the same results as the
original one.

4.2.3. Coq back-end

One of the major difficulties with HCC is the tool’s unpredictability. Even though the syntax
allows for using lemmas (the Using keyword), it is hard to guess what lemmas are needed
and at which point provers get stuck. A solution to that might be producing theories not
only in SMT 2.0 and TPTP formats, but also in Coq language. With such functionality,
whenever all automatic provers fail to prove a theory produced by HCC, users may conduct
the proof themselves using Coq to enforce its correctness, or use the proof assistant to identify
difficulties, provide more lemmas and re-run HCC with automatic provers. Such functionality
has been successfully included in Why3 ([5]), another verification tool.

Another benefit would be identifying obstacles in further HCC development. Experience
with proving HCC-produced theories in Coq might provide hints as to which parts of transla-
tion engine need more attention or optimization, in order to generate theories that are easier
to prove.

69





Chapter 5

Conclusions

5.1. Summary

In this thesis two tools for verification of Haskell programs have been introduced - Haskell
Contracts Checker and LiquidHaskell, both recently published. They have been compared
against each other, in regard to their expressiveness and performance. Based on that, their
usability in software development and in didactics was assessed.

In its current state, HCC appears to provide little value in both fields. Among its short-
comings, the most important one is unpredictability. The tool often fails to prove even simple
statements and reasons for that are unclear.

LiquidHaskell, on the other hand, might be a useful utility in software development.
While it cannot be used to fully verify (partial) correctness of a program, due to limited
expressiveness, it is capable of identifying some programming errors. It might be also useful
in teaching, as an interesting working example of a type system.

There are, however, serious design flaws in both tools, leading to erroneous behaviour.
Those bugs have been described, along with an explanation of how they got overlooked.
Following that, possible improvements to both systems have been proposed. Suggestions
for LiquidHaskell focus on extending its expressiveness and functionality. Suggestions for
HCC include enforcing new limitations to avoid the aforementioned bug, and also possible
approaches to deal with or work around HCC’s unpredictability.

5.2. Comments

It might be disappointing that neither of the tools can be used as a robust, formal verification
platform for real-world programs. However, it appears that it’s not what their designers had
in mind.

LiquidHaskell is an attempt to slightly, yet noticeably strengthen Haskell type system. It
succeeds at that, except for the issues with laziness, which are being worked on at the time of
writing this thesis. If several minor bugs are dealt with and the syntax is properly documented
and further integrated with that of Haskell, it might prove to be valuable addition to the type
system. One that provides useful guarantees while putting almost no burden on the user.

HCC developers, on the other hand, appear to have intended their project to be a proof-of-
concept, rather than a final product. In addition, it might serve and served as a framework for
testing various concepts in Haskell verification, especially various algorithms and strategies of
translating Haskell to FOL. Developing a Coq back-end, one of the suggestions from chapter
4, might help HCC serve that purpose, since it would allow to better understand difficulties,
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inefficiencies and stumbling blocks within generated theories. It would also allow for proving
program correctness interactively.

Lastly, bugs within both projects show importance of basing any verification tools on
formal soundness proofs, and also regularly reviewing those proofs whenever new features are
added or underlying semantics are changed.
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