
Universes for Generic Programs and Proofs
in Dependent Type Theory

Marcin Benke, Peter Dybjer, and Patrik Jansson

Department of Computing Science,
Chalmers University of Technology,

412 96 Göteborg, Sweden
{marcin,peterd,patrikj}@cs.chalmers.se

Abstract. We show how to write generic programs and proofs in Martin-
Löf type theory. To this end we consider several extensions of Martin-
Löf’s logical framework for dependent types. Each extension has a uni-
verses of codes (signatures) for inductively defined sets with generic
formation, introduction, elimination, and equality rules. These exten-
sions are modeled on Dybjer and Setzer’s finitely axiomatized theories
of inductive-recursive definitions, which also have a universe of codes for
sets, and generic formation, introduction, elimination, and equality rules.
However, here we consider several smaller universes of interest for generic
programming and universal algebra. We thus formalize one-sorted and
many-sorted term algebras, as well as iterated, parameterized, general-
ized, and indexed inductive definitions. We also show how to extend the
techniques of generic programming to these universes. Most of the def-
initions in the paper have been implemented using the proof assistant
Alfa for dependent type theory.

Introduction

The basic idea of generic functional programming is to define generic functions
by induction on the definition of a data type. A simple example of a generic func-
tion is Boolean equality: indeed, a generic equality test is provided by languages
such as SML (where it is built-in) and Haskell (where it is a derivable class).
More powerful examples include generic map combinators, and generic iteration
and recursion over inductive datatypes. Generic definitions are highly reusable
(one definition can be used at many different instances) and adaptive (chang-
ing a datatype is as easy as changing a parameter), and they are therefore well
suited for building libraries of programs, theorems and proofs. This research area
has been explored under different names by Böhm & Berarducci [BB85] (uni-
versal algebra) by Backhouse et al. [B+91] (Squiggol), by Bird et al. [BdMH96]
(generic functional programming), by Jay [Jay95,Jay01] (shape polymorphism),
by Jansson & Jeuring [JJ97,Jan00] (polytypic programming) and by Hinze &
Jeuring [HJ] (Generic Haskell).

A basic example of a dependent types is the type of vectors (lists) Vect n,
which depends on the length n of the vector. With dependent types we can also

capture more complex invariants of datastructures, for example, ordered lists,
balanced trees, AVL-trees, red-black-trees, etc. We can in fact express more or
less arbitrary properties of programs and data structures using dependent types.

Recently several authors [PR99,Ben01,AM02,Nor02] have noted that the
techniques of generic programming can profitably be expressed in dependently
typed languages such as Martin-Löf type theory, the Calculus of Constructions,
and the programming language Cayenne [Aug98]. Combining dependent types
with the idea of generic programming we can capture a class of datatypes as a
universe — a set of codes and an interpretation function — and generic functions
become functions over this universe (functions indexed by these codes).

In this paper we continue the programme of writing generic programs and
proofs in dependent type theory initiated by Pfeifer and Rueß [PR99]. Like them
we work in a total dependent type theory and use the Curry-Howard identifica-
tion of propositions and types for representing logical notions. (Although they
work in the impredicative Calculus of Constructions and we in Martin-Löf type
theory, this difference is not essential in this context.) The main contributions
of the present paper are the following:

– We introduce several universes of codes for inductively defined sets. One of
these (parameterized term algebras) coincide with Pfeifer and Rueß’ uni-
verse, but we also have universes for indexed inductive definitions (inductive
families) and generalized inductive definitions, which have not been consid-
ered before in the context of generic programming.

– We make a link with the work on extending Martin-Löf type theory with
general notions of inductive and inductive-recursive definitions. In particular
we build on the work by Dybjer and Setzer [DS99,DS01a] who obtained finite
axiomatizations of inductive-recursive definitions by introducing a universe
of codes for such definitions. In this way we get generic elimination rules for
inductively defined set which specialize to the standard elimination rules for
particular sets in Martin-Löf type theory. Our generic elimination rules are
different from the generic elimination rule used by Pfeifer and Rueß, and
perhaps easier to use.

– We give generic proofs of reflexivity and substitutivity of Boolean equality,
and thus continue the programme of demonstrating that it is possible in
practice to carry out generic proofs of properties of functions defined on
generic datatypes. (Pfeifer and Rueß already gave one example in their paper:
a generic proof that constructors are injective.)

– We give a new approach to formalizing universal algebra in dependent type
theory. We introduce universes for one- and many sorted term algebras,
parameterized term algebras, and term algebras with infinitary operations.

Plan of the paper. We introduce the logical framework in section 1. Then we in-
troduce several different universes corresponding to various interesting classes of
inductive definitions. We begin in section 2 by introducing a universe of codes for
homogeneous term algebras, that is, initial one-sorted algebras over a signature.
After this each section deals with one particular extension of the simplest case.

2

Section 3 describes iterated inductive definitions of algebraic datatypes — one
algebraic datatype can be used in the definition of another. Section 4 explores in-
finitary inductive definitions (such as the Brouwer ordinals). Section 5 discusses
the codes for parameterized datatypes. Section 6 introduces heterogeneous term
algebras, that is, initial many-sorted algebras. In Section 7 we introduce a uni-
verse for dependent datatypes (inductive families). Finally, in section 8 we briefly
introduce Dybjer and Setzer’s theory IID of indexed inductive definitions, and
conjecture that the universes in Sections 3-7 are subuniverses of the universe of
indexed inductive definitions, and that the respective theories are all subtheories
of IID.

All the Alfa-code defining generic functions and universes in this paper is
available from www.cs.chalmers.se/~patrikj/poly/gendt/.

1 The logical framework for dependent types

Here we introduce Martin-Löf’s logical framework, extended with sum types
and finite types. It contains rules for dependent function types (x : A) → B,
dependent product types (x : A)×B, and sum types A+B. Lambda-abstraction
is written λx.e as in lambda calculus and application is mainly written fe but
sometimes arguments are put in index position fe. Pairing is written (d, e) and we
use angle brackets for pairing of functions: 〈f, g〉. Injections are written Inl, Inr.
We also have a case analysis construct for which we don’t give explicit syntax;
instead we write definition by cases using pattern matching equations. Moreover,
we include the finite sets. We write Finn for the finite set with n elements
0, . . . , n − 1, but also 0 = Fin 0 for the empty set, and 1 = Fin 1 for the one-
element set (whose unique element is denoted by ?). We write [A] for the list
type, with constructors [] and (::) for empty and non-empty lists, respectively.
We also use various common notational conventions, including superscripts and
and argument-hiding, to improve readability. As usual for logical frameworks, we
assume β and η-equality for dependent function, dependent product, and unit
types, but just β-equality for sums.

Moreover, we have the type Set containing sets in Martin-Löf’s sense, that is,
inductive data types defined by their constructors (introduction rules). Further-
more, for each set A : Set, there is the type ElA of its elements. We follow the
usual convention and just write A for El A (as in universes à la Russell [ML84]).
Set is also closed under dependent functions, dependent products, units, and
sums. El commutes with all these constructions and we will therefore use the
same notation for them on the set level as on the type level.

2 One-sorted term algebras

The simplest class of inductive types is the class of (carriers of) term algebras TΣ

for a one-sorted signature Σ. This is by no means the first formalization of one-
sorted algebras in dependent type theory. But we include it here for pedagogical

3

reasons and in order to show some interesting generic proofs in a setting where
they are reasonably easy to grasp.

A one-sorted signature is nothing but a finite list of natural numbers, repre-
senting the arities of the operations of the signature. Examples are the empty
type with Σ = [], the natural numbers with Σ = [0, 1], the Booleans with
Σ = [0, 0], lists of Booleans with Σ = [0, 1, 1], and binary trees without infor-
mation in the nodes with Σ = [0, 2]. Thus we introduce our first universe as
the set of signatures Sig = [Nat] : Set, and the decoding function T : Sig → Set,
which maps a signature to (the carrier of) its term algebra.

We also include formation, introduction, (large) elimination, and equality
rules for Nat and Sig.

2.1 Generic formation, introduction, elimination, and equality rules

These rules are best understood by recalling the initial algebra semantics of the
term algebras TΣ [GTW78]. Categorically, if F is an endofunctor (sometimes
called the “pattern functor”) on a category then an F -algebra with carrier X is
an arrow

F X
f - X

Initial algebra semantics of term algebras over a signature Σ states that the
FΣ-algebra

FΣTΣ
IntroΣ- TΣ

is initial among FΣ-algebras, that is, for any other FΣ-algebra

FΣ C
d

- C

there is a (unique) arrow iterΣ C d which makes the following diagram commute.

FΣTΣ
IntroΣ - TΣ

FΣ C

FΣ(iterΣ C d)

?

d
- C

iterΣ C d

?

The pattern functor FΣ is a functor on a category of types. It has two parts, an
object and an arrow part:

F0
Σ : Set → Set

F1
Σ : (A,B : Set) → (A → B) → F0

ΣA → F0
ΣB

4

which are defined by induction on Σ : Sig. We will often suppress the superscripts
0 and 1 and use F both for the object and the arrow part. We will also often
hide Set-arguments (in this case A and B). Informally,

F[n1,...,nm] X = Xn1 + · · ·+ Xnm

Formally, we define the object part

F0
[] X = 0

F0
n::Σ X = Xn + F0

Σ X

where X0 = 1 and Xn+1 = X ×Xn, and we define the arrow part

F1
n::Σ f (Inlx) = Inl (fn x)

F1
n::Σ f (Inrx) = Inr (F1

Σ f x)

where for f : X → Y we have

fn : Xn → Y n

f0 ? = ?

fn+1 (x, xs) = (f x, fn xs)

Note that the base case F1
[] is vacuous, since F0

[] X = 0.
Now we get generic rules of formation, introduction, and elimination for the

set TΣ for each Σ : Sig, by giving formal axioms expressing the existence of
weakly initial FΣ-algebras. As usual in type theory, inductively defined sets only
have weak (β-like) rules. Full initiality would amount to have strong (η-like)
rules as well. These rules are expressed as new constants which are added to the
logical framework from Section 1:

TΣ : Set
IntroΣ : F0

ΣTΣ → TΣ

iterΣ : (C : Set) → (F0
ΣC → C) → (TΣ → C)

Furthermore, there is the equality rule

iterΣ C d (IntroΣ x) = d (F1
Σ (iterΣ C d)x)

Note that this is iteration, rather than recursion, and that C is a set rather than
a family of sets, as in typical type-theoretic rules. In the next subsection we
define the corresponding recursor.

We can also use large elimination, so that C can be a large type, for example,
the type Set of sets, but we do not write this rule down formally.

2.2 Generic induction schema

The elimination rule obtained directly from the above initial algebra diagram
only captures definition by iteration. We would like a more general Martin-Löf

5

style generic elimination rule, which captures proof by induction and definition
by primitive (or structural) recursion. To do this we use the following instance
of the initial algebra diagram (see Coquand & Paulin [CP90], Dybjer & Set-
zer [DS99,DS00]):

FΣTΣ
IntroΣ - TΣ

FΣ((x : TΣ)× C x)

FΣ〈id , recΣ C d〉

?

∼=
- (y : FΣ TΣ)× FIH

Σ C y
e
-

f -

(x : TΣ)× C x

〈id , recΣ C d〉

?

where

e(y, z) = (IntroΣ y, d y z)
fy = (y, Fmap

Σ C (recΣ C d) y)

In order to get the usual shape of the elimination rule, we have introduced the
auxiliary constructions

FIH
Σ : (TΣ → Set) → (FΣ TΣ → Set)

FIH
[n0,...,ni]

C (Ini (x1, . . . , xni
)) = C x1 × · · · × C xni

and

Fmap
Σ : (C : TΣ → Set) → ((x : TΣ) → C x) → ((y : FΣ TΣ) → FIH

Σ C y)

Fmap
[n0,...,ni]

C h (Ini (x1, . . . , xni
)) = (h x1, . . . , h xn)

as in Dybjer & Setzer.
Hence the elimination rule is

recΣ : (C : TΣ → Set) → ((y : FΣ TΣ) → FIH
Σ C y → C (IntroΣ y)) → (x : TΣ) → C x

The equality rule is

recΣ C d (IntroΣ y) = d y (Fmap
Σ C (recΣ C d) y)

As before we may use a large version of this elimination too, where C can be an
arbitrary family of types, not just a family of sets.

2.3 Examples

Generic size. A special case of the initial algebra diagram. Let Σ = [n1, . . . , nm].

Tn1
Σ + · · ·+ Tnm

Σ

IntroΣ - TΣ

Natn1 + · · ·+ Natnm

sizen1
Σ + · · ·+ sizenm

Σ

?

sizestepΣ

- Nat

sizeΣ

?

6

In our implementation, it becomes

sizeΣ = iterΣ sizestepΣ

sizestepn::Σ (Inlxs) = 1 + sumn xs

sizestepn::Σ (Inr y) = sizestepΣ y

where
sum : (n : Nat) → Natn → Nat

is a function summing the elements of a vector of natural numbers.

Generic destructor. We can also define the generic destructor

outΣ : TΣ → FΣTΣ

outΣ x = recΣ (λx.FΣTΣ) (λyz.y)

In effect, the destructor gives us pattern matching on IntroΣ as we can see by
specializing the equality rule for recΣ :

outΣ (IntroΣ x) = x

Generic equality.

Tn1
Σ + · · ·+ Tnm

Σ

IntroΣ - TΣ

(TΣ → Bool)n1 + · · ·+ (TΣ → Bool)nm

eqn1
Σ + · · ·+ eqnm

Σ

?

eqstepΣ

- TΣ → Bool

eqΣ

?

where informally

eqstepΣ (Ini (p1, . . . , pni)) (Intro (Ini (y1, . . . , yni))) = p1 y1 ∧ · · · ∧ pniyni

and for i 6= j

eqstepΣ (Ini (p1, . . . , pni)) (Intro (Inj (y1, . . . , ynj))) = False

Formally,

eqstepΣ : FΣ(TΣ → Bool) → (TΣ → Bool)
eqstepΣ y x = eqstep′Σ TΣ y (outΣ x)

eqstep′Σ : (Y : Set) → FΣ(Y → Bool) → FΣY → Bool
eqstep′n::Σ Y (Inl f0) (Inl x0) = eqstep arn Y f0 x0

eqstep′n::Σ Y (Inl f0) (Inrx1) = False
eqstep′n::Σ Y (Inr f1) (Inl x0) = False
eqstep′n::Σ Y (Inr f1) (Inrx1) = eqstep′Σ Y f1 x1

7

eqstep arn : (Y : Set) → (Y → Bool)n → Y n → Bool

eqstep ar0 Y ? ? = True
eqstep arm+1 Y 〈f1, f2〉 〈x1, x2〉 = (f1 x1) ∧ eqstep arm Y f2 x2

The case of Σ = [] is, again, vacuous.

2.4 Generic proof of reflexivity of equality

To state the reflexivity we need to convert booleans truth values to propositional
truth values. This can also be seen as a universe construction — the booleans
are codes for (just) the two types 0 and 1:

| · | : Bool → Set
|False| = 0

|True| = 1

Boolean “and” can be lifted to the type level: (only this one case is inhabited)

liftAnd : (a, b : Bool) → |a| → |b| → |a ∧ b|
liftAnd True True ? ? = ?

When this lemma is used, the first two parameters will be omitted for brevity.
Now we define reflexivity and local reflexivity:

rel : Set → Set
rel X = X → X → Bool

reflexive : (X : Set) → (r : relX) → Set

reflexive A r = (x : X) → |r x x|
lref : (X : Set) → (r : relX) → (x : X) → Set
lref X x = |r x x|

As the definition of equality used some auxiliary definitions, we begin by
proving lemmas about properties of these definitions:
ref eqstep arn : (X : Set) → (e : relX) → (x : Xn) →

(lref e)n x → |eqstep arn X (en x) x|
ref eqstep ar0 X e ? ? = ?
ref eqstep arm+1 X e 〈x1, x2〉 〈ih1, ih2〉 = liftAnd ih1(ref eqstep arm X ex2 ih2)

ref eqstep′Σ : (X : Set) → (e : rel X) → (x : FΣ X) →
FIH

Σ,X(lref e)x → |eqstep′Σ X (F 1
Σ e x)x|

ref eqstep′n::Σ X e (Inlx0) = ref eqstep arn X ex0

ref eqstep′n::Σ X e (Inrx1) = ref eqstep′Σ X ex1

ref eqstepΣ : (e : rel TΣ) → (x : FΣ TΣ) →
FIH

Σ (lref e) x → |eqstepΣ (F 1
Σ e x) (Introx)|

ref eqstepΣ e = ref eqstep′Σ TΣ e

8

Finally, we wrap up the proof using the recursor:
ref eqΣ : reflexive(eqΣ)
ref eqΣ = recΣ(lref eqΣ) (ref eqstepΣ eqΣ)

The proof of substitutivity (that equal element can not be separated by any
predicate) follows exactly the same pattern and can be found on this paper’s
homepage.

3 Iterated induction

The one-sorted term algebras provide a quite limited class of inductive datatypes
for programming. A first generalization is to admit iterated induction, that is, in
an introduction rule (typing rule for a constructor) we can refer to a previously
defined datatype. For example, to define the set of lists of natural numbers
ListNat, we refer to the set of natural numbers:

Nil : ListNat
Cons : Nat → ListNat → ListNat

To obtain this class of iterated inductive definitions, we redefine the type of
signatures

Sig = [Arity]

where an arity now is defined by the following inductive definition:

Zero : Arity
Rec : Arity → Arity

NonRec : Sig → Arity → Arity

(As always, we include elimination and equality rules for arities and signatures
here too.)

Note that for one-sorted term algebras, an arity was just a natural number,
that is, essentially something generated by Zero and Rec. Here we have added a
new constructor NonRec for a non-recursive argument of a constructor. (A non-
recursive argument is often called a side-condition.) If NonRec is applied to a
signature Σ it means that the non-recursive argument ranges over the previously
defined type TΣ .

For example, lists of natural numbers have a signature

ΣListNat = [Zero,NonRec ΣNat (Rec Zero)]

where ΣNat = [Zero,Rec Zero].
The generic type-theoretic rules for iterated induction are the same as before,

except that we need to extend the definitions of the pattern functor to the case
of NonRec:

F[α1,...,αn] X = Far
α1

X + . . . + Far
αn

X

9

Far
Nil X = 1

Far
Rec α X = X × Fα X

Far
NonRec Σ α X = TΣ × Fα X

We can now define generic size and equality functions for all sets defined by the
class of iterated inductive definitions given in this section.

The Alfa-code for iterated inductive definitions including definitions of size
and equality is available on the paper’s homepage.

Remark. Note that ListNat was the type of signatures for one-sorted algebras in
the previous section. So having extended the notion of signatures we can define
the family of term algebras TΣ for Σ : Sig as an internal family in the extended
theory. Even more, we can (maybe using extensional equality) derive the rules
for one-sorted term algebras from the rules for iterated inductive definitions.

4 Generalized induction

So far we have considered ordinary (or finitary) inductive definitions, that is,
we have only considered finite arities. We can consider a notion of one-sorted
algebras which allows infinitary operations, by changing the notion of a signa-
ture from a list of natural numbers to a list of sets. (Grätzer’s book “Universal
Algebra” [Grä79] is in fact about universal algebras with infinitary operations,
although working in classical set theory, his arities are possibly infinite ordinal
numbers.)

So we let1

Sig = [Set] : Type

and modify the pattern functor:

F[I1,...,Im] X = (I1 → X) + · · ·+ (Im → X)

For example the signatures for the empty type, the unit type, natural num-
bers, and the Brouwer ordinals O can be expressed as follows

Σ0 = []
Σ1 = [0]

ΣNat = [0,1]
ΣO = [0,1,TΣNat]

The Brouwer ordinals are sometimes called the second number class. We can
define the third number class by having an operation with arity O, and so on
for the all the higher number classes.

1 since we allow the arities to be arbitrary elements of Set, the signatures are no longer
elements of Set, but of the second universe: Type is a universe such that Set : Type.

10

We cannot define decidable equality over the class of generalized inductive
definitions. However, we have the following generic definition of a propositional
extensional equality:

eqΣ : TΣ → TΣ → Set
eqΣ = iterΣ eqstepΣ

eqstepΣ : FΣ(TΣ → Set) → TΣ → Set
eqstepΣ ps x = eqstep′Σ TΣ ps (outΣ x)

where
eqstep′Σ : (Y : Type) → FΣ (Y → Set) → FΣ Y → Set

eqstep′I::Σ Y (Inl f) (Inl x) = (i : I) → f i (x i)
eqstep′I::Σ Y (Inl f) (Inr y) = 0

eqstep′I::Σ Y (Inr g) (Inlx) = 0

eqstep′I::Σ Y (Inr g) (Inr y) = eqstep′Σ Y g y

We can also combine generalized and iterated induction. In particular we can
consider signatures where branchings range over previously defined inductive
types, leading to the following notion of signature:

Sig = [Sig] : Set

that is, arities and signatures are mutually defined. If we present this definition
with constructors we get

Nil : Sig
Rec : Sig → Sig → Sig

The pattern functor is (using list notation):

F[Σ1,...,Σm] X = (TΣ1 → X) + · · ·+ (TΣm
→ X)

In this setting we have

Σ0 = []
Σ1 = [Σ0] = [[]]

ΣNat = [Σ0, Σ1] = [[] , [[]]]
ΣO = [Σ0, Σ1, ΣNat] = [[] , [[]], [[] , [[]]]]

5 Parameterized term algebras

So far we have only considered constant term algebras, that is, TΣ is a constant
set. However, many interesting generic functions range over parameterized types.
We therefore extend our notion of signature to account for parameters, and

11

the decoding function now takes a signature and returns a parameterized term
algebra, that is, it is a function

T : Sig → (Set → Set)

The universe of parameterized term algebras is the introduced by Pfeifer &
Rueß [PR99], and if we also add iterated induction we obtain the case considered
in Jansson & Jeuring [JJ97].

Parameterized term algebras are term algebras which depend on one or sev-
eral parameter types. We consider here the case of one parameter for simplicity.
Examples of parameterized term algebras are the type [A] of lists of parameter
type A with constructors

Nil : (A : Set) → [A]
Cons : (A : Set) → A → [A] → [A]

We therefore add a new constructor, Par, for arities2 (compared with the homo-
geneous case)

Nil : Arity
Rec : Arity → Arity
Par : Arity → Arity

The signature for parametric lists [A] is then

[Zero,Par (Rec Zero)]

The initial algebra diagram for iteration now needs to take parameters into
account:

FΣ A (TΣ A)
IntroΣ A - TΣ A

FΣ A C

FΣ A (iterΣ A C d)

?

d
- C

iterΣ A C d

?

We need to extend the definition of the pattern functor to the case of parameters:

Far
Par α A X = A× Far

α A X

2 This gives us a notion of unary parameterized term algebra; it is straightforward to
generalize this to n-ary parameterized algebras by instead having

Par : (n : Nat) → Fin n → Arity → Arity

12

The diagram for induction:

FΣ A (TΣ A)
IntroΣ - TΣ A

FΣ A ((x : TΣ)× C x)

FΣ A 〈1, recΣ A C d〉

? ∼=- (y : FΣ A (TΣ A))× FIH
Σ A C y -

-

(x : TΣ)× C x

〈1, recΣ A C d〉

?

As already mentioned, parameterized term algebras, are almost as powerful
as the universe used in PolyP [JJ97]. In fact, it is sufficiently close to PolyP that
the majority of the polytypic library functions [JJ98] carry over immediately.

When we consider a universe with parameterized types, many natural generic
definitions share a common pattern: they lift a function from the parameter level
to the parameterized type level. To show this pattern we introduce a few type
synonyms and use these in the type signatures for (generic) size, equality, map
and zip. (Here A,B,C : Set and Σ : Sig.)

Size A = A → Nat
Eq A = A → A → Bool
Map A B = A → B
Zip A B C = A → B → Maybe C

The set Maybe A has constructors Nothing : Maybe A and Just : A → Maybe A
for each A : Set.

sizeByΣ : (A : Set) → Size A → Size (TΣ A)
eqByΣ : (A : Set) → Eq A → Eq (TΣ A)
mapΣ : (A,B : Set) → Map A B → Map (TΣ A) (TΣ B)

zipWithΣ : (A,B,C : Set) → Zip A B C → Zip (TΣ A) (TΣ B) (TΣ C)

All these functions are straightforward to implement over this universe, see the
code on the paper’s homepage.

The application zipWithΣ op x y compares x and y and succeeds iff they share
the same structure, and all element comparisons (using op) succeed. The result
shares the same structure as x and y and contains the results from the successful
applications of op. With Bool ' Maybe1 the equality test eqByΣ can be seen
as a special case of zipWithΣ :

EqA = A → A → Bool ' A → A → Maybe1 = ZipA A1

eqByΣ A op x y = forgetTΣ 1 (zipWithΣ A A1 op x y)

where forget : (X : Set) → Maybe X → Bool. The familiar zip function from
generic functional programming is also an instance:

zipΣ A B = zipWithΣ A B (A,B) (λx y.Just (x, y))

13

6 Many-sorted term algebras

We shall now consider many-sorted term algebras, giving rise to a simple class
of mutually inductive definitions, see also Capretta [Cap99]. This is the main
class of term algebras considered in algebraic specification theory, following the
work by the ADJ-group [GTW78].

For simplicity we consider many-sorted algebras with finitely many sorts, and
no parameters. It is easy to add parameters. Note also that the iterated inductive
definitions in section 3 are subsumed by the mutual inductive definitions here.

The type of signatures for n-sorted algebras is now

Sign = Finn → [Arityn], where Arityn = [Finn]

That is, a signature consists of n lists of arities, one for each sort. An arity is a
list of numbers < n, denoting the sorts of the arguments of an operation.

As a simple example, consider the following mutual definition of the even
and odd numbers:

SuccEven : Even → Odd
Zero : Even

SuccOdd : Odd → Even

The many-sorted signature is

Σ 0 = [[1]]
Σ 1 = [[], [0]]

Other examples include trees and forests. More generally, abstract syntax trees
for context-free grammars are also many-sorted algebras. The diagram for initial
n-sorted algebras is

FΣ TΣ i
IntroΣ i- TΣ i

FΣ C i

FΣ (iterΣ d i)

?

d i
- C i

iterΣ d i

?

where i : Finn.
We do not have room either for displaying the diagram for the full elimination

(induction) rule, nor for the definition of generic size and equality. However,
as many-sorted algebras can be viewed as a special case of inductive families,
appropriate definitions can be obtained by specializing the definitions found in
Section 7.

14

7 Finitary indexed induction

In this section we consider a general class of finitary indexed inductive definitions.
To define a family indexed by some set I, we first define the universe SigI :

Nil : SigI

NonRec : (A : Set) → (A → SigI) → SigI

Rec : I → SigI → SigI

Here Nil represents the base case — an inductive definition with no premise;
NonRec represents the non-recursive case — adding a side condition a : A; and
Rec represents the recursive case — adding a recursive premise. The pattern
functor Fγ is defined by induction on γ : Sig I:

Fγ : (I → Set) → Set
FNil X = 1

FNonRec A φ X = (x : A)× Fφ x X

FRec i Σ X = (X i)× FΣ X

Further, for every Σ : I → SigI we have

TI,Σ : I → Set
IntroI,Σ : (i : I) → FΣ i TI,Σ → TI,Σ i

There is also an elimination and an equality rule. Note that many-sorted algebras
are a special case. We get n-sorted algebras if I = Finn, if arities are only built
up by Zero and Rec, and where the only use of NonRec is for building up lists
of arities.

The initial algebra diagram looks the same as in the many-sorted case. The
type-theoretic rules for are:

TΣ : I → Set
IntroΣ : (i : I) → FΣTΣi → TΣi

iterΣ : (C : I → Set) → ((i : I) → FΣ TΣ i → C i) → (i : I) → TΣ i → C i

recΣ : (C : (i : I) → TI,Σ i → Type)
→ ((i : I) → (y : FΣ i TI,Σ) → FIH

Σ i TI,Σ C y → C i (IntroΣ i y))
→ (i : I) → (x : TI,Σ i) → C i x

There is also equality rules that we do not display here.
An example of an inductive family (Agda-style) is the family of binary search

trees, indexed by pairs of natural numbers (the lower and upper bound):

BST : Nat×Nat → Set

15

The introduction rules are

C0 : (lb, ub : Nat) → (lb < ub) → BST (lb, ub)
C1 : (lb, ub, root : Nat) → (lb < root) → (root < ub) →

→ BST (lb, root) → BST (root, ub) → BST (lb, ub)

Written as “arities” they become

arity (lb, ub) 0 = NonRec (lb < ub) (λp.Nil)
arity (lb, ub) 1 = NonRec Nat

(λroot.NonRec(lb < root)(λh.NonRec(root < ub)
(λh′.(Rec (lb, r)(Rec (r, ub) Nil)))))

Thus the signature for the family BST becomes

Σ (lb, ub) = NonRec (Fin 2) (arity (lb, ub))

We can now write generic size function over this universe

sizeI,Σ : (i : I) → TI,Σ i → Nat

However, to define equality

eqI,Σ : (i : I) → TI,Σ i → TI,Σ i → Bool

we need to restrict NonRec by allowing it to range only over sets with decidable
equality (so called datoids):

NonRec : (D : Datoid) → (|D| → SigI) → SigI

where |D| is the carrier of the datoid D.
We have also added parameters to our universe for finitary indexed inductive

definitions and thus equipped written zipWithI,Σ from section 5. We refer to the
Alfa-implementation for details.

8 The theory of indexed inductive definitions

In each of sections 3-7 we have presented a universe consisting of a set Sig of
signatures and a family of sets TΣ for each Σ : Sig. The formation, introduction,
elimination, and equality rules for Sig (and in some cases for Arity) and the
generic introduction, elimination, and equality rules for TΣ defines an extension
of the logical framework from section 2. Thus in each section we define a version
of Martin-Löf type theory with a different collection of inductive definitions. In
each of these theories we can write generic programs and proofs by induction on
the signature. The idea is to choose a universe of signatures which is appropriate
for a particular application.

16

However, each time we change universe we also change theory. This is of
course unsatisfactory - we would like to be able to do generic programming over
different universes in one theory. So we would like to have an all encompassing
theory which can swallow all of the previous theories. For this purpose we could
use the the theory of indexed inductive-recursive definitions IIRext (with exten-
sional equality) given by Dybjer and Setzer [DS01a]. In this theory all of our
universes can be defined but to actually work out these embeddings in detail is
a task outside the scope of this paper.

In fact, since induction-recursion does not play a role in this paper, it would
suffice with the theory of indexed inductive definitions IID (with extensionality).
This is a natural upper bound of the theories presented in section 3-7. We present
it here briefly.

IID has a universe OPI of codes for sets, where I is a previously constructed
set. The pattern functor Fγ is defined by induction on OPI where OPI is induc-
tively defined by the following constructors:

Nil : OPI

NonRec : (A : Set) → (A → OPI) → OPI

Rec : (A : Set) → (A → I) → OPI → OPI

Here Nil represents the base case - an inductive definition with no premise;
NonRec represents the non-recursive case - adding a side condition a : A; and
Rec represents the recursive case - adding a recursive premise. (Note that we
have generalized inductive definitions, that is, there is an A-indexed family of
recursive premises. This is the only difference between IID and the theory of
finitary indexed inductive definitions in the previous section.)

Fγ is defined by induction on γ : OPI , where

FNil X = 1

FNonRec A φ X = (x : A)× Fφ x X

FRec A i γ X = ((x : A) → X (i x))× Fγ X

We refer to [DS01a,DS01b] for a full explanation of the theory IIR (and thus
implicitly of IID).

IID is a suitable general framework for generic programming, since we con-
jecture that the theories in Sections 3-7 are definable in IID in the following
senses. (We have however not yet given a a rigorous proof of this conjecture.)
Firstly, the sets Sig of signatures for one-sorted algebras (possibly with iterated
induction) has a code in OP1 and is thus definable in IID. Moreover, each code
in Sig can be mapped to a code in OP1 and the decoding function can be ob-
tained by composing the decoding function for OP1 with this map. Furthermore
the signature Sig for parameterized term algebras also has a code in OP1. Here
a code in Sig can be mapped to a function Set → OP1, and the decoding for
Sig can again be obtained by composing the decoding function for OP1 with
this map. The family Sign is also definable in IID and each code in Sig n can
be mapped to a code in OPFin n, and again decoding of Sig n can be obtained

17

from decoding of OPFin n. The situation with generalized induction in section 7
is similar to the situation with one-sorted algebras, except that as it stands Sig
is here a “large” inductive definition, that is, it is a type rather than a set. This
size problem can be solved if we replace the current large inductive definitions
with an analogous small one. There is a similar size problem which prevents us
from defining OPI in section 8 as a set in IID.

9 Related work

PolyP and Generic Haskell PolyP [JJ97] as in “polytypic” (= generic) program-
ming, is an extension of Haskell. Polytypic functions are defined by induction
on a universe of codes for “regular datastructures” (roughly the universe of our
section 5).

In Generic Haskell [HJ] (the successor of PolyP) the universe is generalized
to include mutually recursive, higher order kinded and nested datatypes. This
allows the full class of Haskell datatypes to be expressed but also restricts the
set of definable generic functions.

Many datatypes with invariants can be simulated in Haskell using nested and
higher-order kinded datatypes, but these types can be more directly expressed
using dependent types.

Combining dependent types and generic programming. The research on this topic
goes in two different directions. On the one hand Altenkirch and McBride [AM02]
and Norell [Nor02] show how to encode Generic Haskell-style programming us-
ing dependent types. Here the setting is that of general recursive functional
programming where the class of recursive datatypes includes for example nested
datatypes.

On the other hand the work of Pfeifer and Rueß [PR99] and Benke [Ben01] are
about extending the technique of generic programming to “total” type theories
such as the Calculus of Construction and the Alfa proof assistant respectively.
The idea here is to stay within a logical system based on the Curry-Howard
isomorphism and therefore the type system ensures that all programs terminate
by only allowing restricted forms of recursion. In this setting we can both write
generic programs and write generic proofs of properties of those programs. In
fact, experiments of one of the authors [Ben02] show that generic proofs of
equality properties, such as equivalence, decidability and substitutivity can be
actually simpler than the corresponding non-generic proofs.

The present paper continues the programme set out by Pfeifer and Rueß.
Firstly, we introduce several universes of codes for inductive datatypes of in-
terest for generic programming and universal algebra. One of them is Pfeifer
and Rueß’ universe parameterized term algebras. Others include universes for
infinitary (generalized) inductive types and inductively defined families, neither
of which have been considered for generic programming before. Furthermore,
Pfeifer and Rueß only had one generic proof about a datatype: a proof that
constructors are injective. Here we give some more examples: proofs of reflexiv-
ity and substitutivity of generic equality. As the reader will see, these proofs are

18

non-trivial! To facilitate generic proofs we provide an elimination constant which
captures primitive recursion rather than iteration (as in Pfeifer and Rueß).

Inductive definitions in dependent type theory We also connect work on induc-
tive definitions in type theory with work on generic programming. Although the
papers by Dybjer and Setzer [DS99,DS00,DS01b] contain related ideas, and in
particular give generic formation, introduction, elimination, and equality rules
for inductive-recursive definitions, they do not discuss the connection with prac-
tical generic programming – the generic programs and proofs in the paper have
metatheoretic rather than practical interest. Furthermore, for the purpose of
practical generic programming the universe of inductive-recursive definitions is
too large. This is the reason why we introduce several smaller subuniverses of
inductive types.

Universal algebra in dependent type theory. Bayley [Bay98] and Ruys [Ruy99]
formalized one-sorted term algebras in dependent type theory. Capretta [Cap99]
proposed several ways to formalizing many-sorted term algebras, including using
Petersson-Synek trees [PS89] and extending dependent type theory with so called
recursive families of inductive types.

References

[AM02] T. Altenkirch and C. McBride. Generic programming within dependently
typed programming. In J. Gibbons and J. Jeuring, editors, Pre-Proc.
WCGP’02, 2002. (Final proc. to be published by Kluwer Acad. Publ.).

[Aug98] L. Augustsson. Cayenne — a language with dependent types. In Proc.
ICFP’98. ACM Press, September 1998.

[B+91] R.C. Backhouse et al. Relational catamorphisms. In B. Möller, editor,
Constructing Programs from Specifications, pages 287–318. North-Holland,
1991.

[Bay98] A. Bayley. The Machine-Checked Literate Formalisation of Algebra in Type
Theory. PhD thesis, University of Manchester, 1998.

[BB85] C. Böhm and A. Berarducci. Automatic synthesis of typed Λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

[BdMH96] R. Bird, O. de Moor, and P. Hoogendijk. Generic functional programming
with types and relations. J. of Func. Prog., 6(1):1–28, 1996.

[Ben01] M. Benke. Some tools for computer-assisted theorem proving in Martin-
Löf type theory. In R. J. Boulton and P. B. Jackson, editors, TPHOLs —
Supplemental Proceedings. University of Edinburgh, 2001.

[Ben02] M. Benke. Towards generic programming in type theory. Pre-
sentation at Annual ESPRIT BRA TYPES Meeting, Berg en Dal.
Submitted for publication, available from http://www.cs.chalmers.se/

~marcin/Papers/Notes/nijmegen.ps.gz, April 2002.
[Cap99] V. Capretta. Universal algebra in type theory. In Y. Bertot et al., editors,

Proc. TPHOLs ’99, volume 1690 of LNCS, pages 131–148. Springer-Verlag,
1999.

[Cap02] V. Capretta. Abstraction and Computation. PhD thesis, Univ. of Nijmegen,
the Netherlands, April 2002.

19

[CP90] T. Coquand and C. Paulin. Inductively defined types, preliminary version.
In COLOG ’88, International Conference on Computer Logic, volume 417
of LNCS. Springer-Verlag, 1990.

[DS99] P. Dybjer and A. Setzer. A finite axiomatization of inductive-recursive
definitions. In J.-Y. Girard, editor, Proc. TLCA’99, volume 1581 of LNCS,
pages 129–146. Springer-Verlag, Berlin, 1999.

[DS00] P. Dybjer and A. Setzer. Induction-recursion and initial algebras. Annals
of Pure and Applied Logic, 2000. To appear.

[DS01a] P. Dybjer and A. Setzer. Indexed induction-recursion. In R. Kahle et al,
editor, Proof Theory in Computer Science, volume 2183 of LNCS, pages
93–113. Springer Verlag, October 2001.

[DS01b] P. Dybjer and A. Setzer. Indexed induction-recursion. long version, submit-
ted for publication, available from http://www.cs.chalmers.se/~peterd/,
2001.

[Grä79] G. Grätzer. Universal Algebra. Springer-Verlag, second edition, 1979.
[GTW78] J. Goguen, J. Thatcher, and E. Wagner. An initial algebra approach to

the specification, correctness, and implementation of abstract data types.
In R. Yeh, editor, Current Trends in Programming Methodology, volume 4,
pages 80–149. Prentice-Hall, 1978.

[HJ] R. Hinze and J. Jeuring. Generic Haskell: Practice and theory. To appear
in the lecture notes of the Summer School on Generic Programming, LNCS
Springer-Verlag, 2002/2003.

[Jan00] P. Jansson. Functional Polytypic Programming. PhD thesis, Computing
Science, Chalmers Univ. of Tech. and Göteborg Univ., Sweden, May 2000.

[Jay95] C.B. Jay. A semantics for shape. Science of Computer Programming, 25:251–
283, 1995.

[Jay01] C.B. Jay. Distinguishing data structures and functions: The constructor cal-
culus and functorial types. In S. Abramsky, editor, Proc. TLCA’01, volume
2044 of LNCS, pages 217–239. Springer-Verlag, Berlin, 2001.

[JJ97] P. Jansson and J. Jeuring. PolyP — a polytypic programming language
extension. In Proc. POPL’97, pages 470–482. ACM Press, 1997.

[JJ98] P. Jansson and J. Jeuring. PolyLib – a polytypic function library. Workshop
on Generic Programming, Marstrand, June 1998.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[Nor02] U. Norell. Functional generic programming and type theory. Master’s thesis,

Computing Science, Chalmers University of Technology, 2002. Available
from http://www.cs.chalmers.se/~ulfn.

[PR99] H. Pfeifer and H. Rueß. Polytypic proof construction. In Y. Bertot, editor,
Proc. TPHOLs’99, volume 1690 of LNCS, pages 55–72. Springer-Verlag,
1999.

[PS89] K. Petersson and D. Synek. A set constructor for inductive sets in Martin-
Löf’s type theory. In Category Theory and Computer Science, pages 128–
140. Springer-Verlag, LNCS 389, 1989.

[Ruy99] M. Ruys. Studies in Mechanical Verification of Mathematical Proofs. PhD
thesis, Katholieke Universiteit Nijmegen, 1999.

20

