Sztuczna Inteligencja i Systemy Doradcze
Egzamin 06.09.2005

Zadanie 1
Wykonaj algorytm minimax z odcieniem $\alpha - \beta$ na podanym drzewie gry przechodząc je w kolejności podanej na rysunku. Podaj wartość minimax w każdym węźle drzewa oraz wartości α i β dla wszystkich węzłów:

- przy pierwszym odwiedzeniu danego węzła wartości α, β wpisz po lewej stronie węzła,
- po odwiedzeniu każdej gałęzi węzła wartości α, β wpisz po prawej stronie tej gałęzi.

Węzły nieodwiedzone skreśl krzyżykiem X. Zaznacz ścieżkę od korzenia do liścia odpowiadającą optymalnej strategii gry.

Zadanie 2
Posługując się metodą rezolucji wykaż, że formula

$\exists x(P(x) \land \forall y(R(y) \Rightarrow L(x, y))) \land \forall x \forall y (P(x) \land Z(y) \Rightarrow \neg L(x, y)) \Rightarrow \forall x (R(x) \Rightarrow \neg Z(x))$

jest tautologią.
Zadanie 3

Czy podana funkcja heurystyczna jest: a) dopuszczalna? b) spójna?

Zadanie 4

Dany jest zbiór przykładów treningowych, z atrybutem decyzyjnym Skazany:

<table>
<thead>
<tr>
<th>Niekarany</th>
<th>Niebezpieczny</th>
<th>Polityk</th>
<th>Skazany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Narysuj deterministyczne drzewo decyzyjne indukowane z powyższego zbioru przykładów z wyborem podziałów w poszczególnych węzłach drzewa optymalizującym miarę zysku DiscernibilityGain i podaj wartość tej miary w każdym wewnętrznym węźle drzewa.

Dla danego podziału obiektów P_1, P_2 ($P_1 \cup P_2 = P, P_1 \cap P_2 = \emptyset$):

$$DiscernibilityGain(P_1, P_2) = |\{ (x, y) \in P_1 \times P_2 : Skazany(x) \neq Skazany(y) \}|$$