
Algebraic Topology I problems

Version 17 January 2014

Problems with ♠ are already done, with L were done on the lecture, with !!! should be done next time

1) ♠A functor F : C → D is an equivalence iff
1. F : MorC(X1, X2) → MorD(F (X1), F (X2)) is an bijection for any pair of objects X1, X2 ∈ Ob(C)
2. Any object Y ∈ Ob(D) is isomorphic to the object of the form F (X) for some X ∈ Ob(C)

Written homework: we have defined the inverse of F , called G by a choice of an isomorphism fY : Y → F (X).
Define a transformation of functors G ◦ F → IdC and check the compatibility of the relevant diagram.

2) ♠[Yoneda1] Given a category C. For X ∈ Ob(C) let hX(−) = MorC(−, X) ∈ Func(Cop, S).
Show that hX : C → Func(C, S) is a full embedding.

3) ♠[Yoneda2] Given a category C. For X ∈ Ob(C) and F ∈ Func(Cop, S).
Show that the map NatTr(hX , F ) = MorFunc(Cop,S)(hX , F ) → F (X) defined by Φ 7→ Φ(X)(idX) is a
bijection.

4) ♠A small category C in which for any pair of objects there exists at most one morphism is equivalent to
the category defined by a partially ordered set.

5) If in a category every morphism is an isomorphism and every two objects are isomorphic, then this category
is equivalent to the category defined by a group. (Example: the fundamental groupoid of a topological space.)

6) Show that the functor hX × hY : C → S is representable by the cartesian product (if it exists in C).

7) L Construct the left adjoint functor to Hom(V,−) : V ectk → V ectk and the right adjoint if dimV < ∞.

8) L Let F : I → C be a functor from a small category I (i.e. a diagram in C). Show that L ∈ Ob(C) is an
inverse limit limI F iff the functor X 7→ limI MorC(X, F (−)) is representable by L.

9) What is an analogue of the previous statement for the direct limit colimIF?

10) ♠Show that if in C there exist equalizers of any pair of morphism and there exist products of any family
of objects, then in C exist limits indexed by any category.

11) ♠A functor G : C → D which is left adjoint preserves colimits. This means that for any diagram
F : I → C the natural map colimIG ◦ F → G(colimIF ) is an isomorphism. (see 9))

12) Consider the following obvious functors and check whether there exist right and left adjoint functors:
a) Topological Hausdorff spaces → Compact spaces
b) Topological spaces → Sets
c) Groups → Sets
d) Topological groups → Topologicals spaces
e) Abelian groups → Groups
f) R-modules → Abelian groups
g) . . .

13) ??? Let L : C ⇀↽ D : R be a pair of adjoint functors. By adjunction we have natural maps τX : X →
RL(X) for X ∈ Ob(C) and σY : LR(Y ) → Y for Y ∈ Ob(D) (in fact transformations of functors). Show
that the composition

R(Y )
τR(Y )−→ RLR(Y )

R(σY )−→ R(Y )
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is the identity. Similarly for the compositions with interchanged roles of functors (see the next exercise).

14) ??? Let L : C → D and R : D → C be two functors. Suppose that there are given transformation of
functors σ : LR → IdD and τ : IdC → RL. Composing with L we define transformation of functors:

F ∗ τ : L → LRL and σ ∗ L : LRL → L.

Composing with R we define transformation of functors:

τ ∗R : R → RLR and R ∗ σ : RLR → R.

Show that if

(σ ∗ L) ◦ (L ∗ τ) = IdL ∈ NatTr(L,L) and (R ∗ σ)(τ ∗R) = IdR ∈ NatTr(R, R)

then L is left adjoint to R.

15) Let R be a commutative ring. Show that there is natural isomorphism of R-modules: (A ⊕ B) ⊗ C '
(A⊗ C)⊕ (B ⊗ C).

16) ♠(written) Let f : R → S be a ring homomorphism. (Then the ring S is a R-module via f .) For a
S module N define a R-module f∗N , which is equal to N as a group with multiplication r · n = f(r)n for
r ∈ R. For a R-module M define f∗M = S ⊗R M with multiplication given by s1 · (s2 ⊗m) = (s1s2)⊗m.
Show that f∗ and f∗ are adjoint. Does one have to assume that the rings are commutative?

17) (written) Let (X, A) be a pair of topological spaces. Suppose that there exist a neighbourhood U ⊃ A
and a deformation of U to A in X constant on A (i.e. a homotopy ht : U → X such that h0(u) = u,
ht(a) = a, h1(u) ∈ A for t ∈ [0, 1], u ∈ U , a ∈ A) and a continious function X → [0, 1], f−1(1) = A,
f|X−U = 0. Prove that A ↪→ X is a cofibration.

18) ♠Let C be a category. Let (A,A → A t A) be a cogroup object, (B, B × B → B) a group object.
Suppose that two group structures on MorC(A,B) have the same neutral objects. (If C has an object which
is both initial and final then this assumption is satisfied.) Prove that these structures coincide. Moreover
the common group structure is abelian.

Hint: show (a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d).

19) ♠Show that the functor defined by the smash product in Top∗

FY (X) := X ∧ Y = X × Y/(X × ∗ ∪ ∗ × Y )

is adjoint to MapTop∗(Y,−). (Be careful with topology, assume that Y is locally compact, Z Hausdorff.)

20) ♠Show S1 ∧ Sn ' Sn+1.

21) ♠Let X → Y be a continuous map of topological spaces which is surjective. Show that if it is open or
closed, then the topology on Y is a quotient topology. Show an example of a quotient topology which is not
open nor closed.

22) ♠Show that 1-point compactification of the Möbius strip is homeomorphic to RP2.

23) Let X be a topological space which is arc-connected. Let p and q be two points. Assume that {p} → X
and {q} → X are cofibtations. Show that (X, {p}) is homotopy equivalent to (X, {q}), i.e. an isomorphism
in hTop∗.

24) ♠Suppose A ↪→ X is a cofibration and A is contractible. Then X and X/A are homotopy equivalent.

2



25) ♠Show that the empty torus with one disc glued to the meridian (i.e S1 × S1 ∪D2 × {pt}) and S2 ∨ S1

are homotopy equivalent.

26) There exist following homotopy equivalences:
a)♠Sn/Sk ∼ Sn ∨ Sk+1

b)♠(Sn × Sm)/(Sn × {s0}) ∼ Sn+m ∨ Sm

c)!!! Σ(Sn × Sm) ∼ Sn+1 ∨ Sm+1 ∨ Sn+m+1

d)!!! ΣPg ∼ S3 ∨∨
2g S2, where Pg is a compact surface of genus g.

27) If X = A∪B where A, B closed subsets and A∩B ⊂ A is a Borsuk pair, then B ⊂ X is a Borsuk pair.

28) ♠Let f : A → X be a map and suppose that X is contractible. Then the cone of the inclusion CA∪f X
is homotopy equivalent to the suspension.

29) (written)♠Let E → B be a map and suppose that E is contractible. Then the homotopy fiber Fb :=
{(e, γ) ∈ E ×Map(I,B) : γ(0) = f(e) , γ(1) = b} is homotopy equivalent to the loop space ΩB.

30) ♠What is the homotopy cofiber of X → pt?

31) ♠What is the homotopy fiber of pt → X?

32) ♠Let f : E → B be a fibration over a path-connected space.
a) if there exists b ∈ B such that f−1(b) is path-connected, then E is path connected.
b) if E is path-connected and B simplyconnected, then the fibres are path-connected.

33) ♠Find fibrations
a) S0 ↪→ S1 →→ S1

b) S1 ↪→ S3 →→ S2

c) S3 ↪→ S7 →→ S4

d) S7 ↪→ S15 →→ S8

34) ♠
a) Find a fibration E −→ B such that B ∼ RP∞, E ∼ S1, and the fiber is homotopy equivallent to S1.
b) Find a fibration E −→ B such that B ∼ CP∞, E ∼ S2, and the fiber is homotopy equivallent to S3.
c) Find a fibration E −→ B such that B ∼ HP∞, E ∼ S4, and the fiber is homotopy equivallent to S7.

35) ♠Show that a locally trivial fibration is a fibration (in the sense of Hurewicz). (Assume e.g. that the
base is paracompact).

36) ♠Find the homtopy fiber of the map CP∞ ∨CP∞ → CP∞ identifying two copies of CP∞.

37) Show that the homotopy fiber of X ∨X → X is ΣΩX.
(Technical step: Let f : P → X be a map from a contractible space. Then the push-out of mapping cylinders


P → Z(f)
↓

Z(f)


 is homotopy equivalent to X ∨X.)

38) ? What is the relation of the fiber inclusion map ΣΩX ↪→ X ∨ X →→ X with the map ΣΩX → X
adjoint to two natura maps id, inverse : ΩX → ΩX.

39) ♠Suppose that in the commutative diagram

A
g−→ B

i ↓ ↓j

X
f−→ Y
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i , j are cofibrations, f and g are homotopy equivalences. Show that (f, g) is a homotopy equivalence of pairs.

40) If p : E → B is a fibration, then for any locally compact space X the natural map Map(X, E) →
Map(X,B) is a fibration. What can you say about the map Map(B,X) → Map(E, X)?

41) ♠Is the following statement true? Suppose that E1 → B and E2 → B are fibrations and E1 is homotopy
equivalent to E2. Then there exist a fiberwise homotopy equivalence

∼
E1 −→ E2

↘ ↙
B

42) The homotpy coequalizer of two maps f, g : X → Y is defined as the push-out

f∨g

X ∨X −→ Y
↓ ↓

X ∧ I+ −→ hcoeq(f, g).

Dually the homotopy equalizer is defined by the pull-back

f×g

Y × Y ←− X
↑ ↑

P (X) ←− heq(f, g).

Consider the circle S1 as the unit complex numbers. Let f, g : S1 → S1, f = id, g(z) = z. Describe the
homotopy coequalizer of f and g. What is the homotopy type of the homotopy equalizer? (??)

43) Let f : X → Y be a map of pointed spaces. Compare C(Sf) with S(Cf) and the dual objects involving
homotopy fiber and loop spaces.

44) ♠Compute homotopy groups of surfaces of positive genus.

45) Compute πn(Sn) (♠),
♠(written) π3(S2), show πn(S3) ' πn(S2) for n > 2. What are consequences for homotopy groups from
Problem 33?

46) ♠Compute homotopy groups of RP∞ and CP∞. What do you know about πi(HP∞)?

47) ♠If the homotopy groups of the basis and the fiber are finite, then the homotopy groups of the total
space of the fibration are also finite.

48) ♠If the fibration has a section, then πn(E) ' πn(B)⊕ πn(F ). (Assumption: F connected, n > 1)

49) ♠If the fiber contracts to a point in E, then πn(B) ' πn(E)⊕ πn−1(F ). (Assumption: n > 1. )

50) ♠Compute homotopy groups πi of the Stiefel manifold Vk(Rn) for i ≤ n− k. (Assumption: n > 1. )

51) Whitehead product:
♠naturality with respect to maps and the action of the fundamental groupoid
♠[a, b] = (−1)pq[b, a]
♠[a, γ] = a− [hγ(a)] for γ ∈ π1(X)
*** show the Jacobi rule:

(−1)pq[[a, b], c] + (−1)qr[[b, c], a] + (−1)rp[[c, a], b] = 0 .
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52) ♠If A is a retract of X, then πn(X) ' πn(A)⊕ πn(X, A)

53) ♠If A is contractible in X then πn(X,A) ' πn(X)⊕ πn−1(A)

54) ♠πn(X ∨ Y ) ' πn(X)⊕ πn(Y )⊕ πn+1(X × Y,X ∨ Y )

55) ♠Decompose into cells the projective spaces RPn, CPn, HPn

56) !!! Decompose the lens space L(n; k) = CP2/Zn (action of the generator of Zn: [z1, z2] 7→ [ξz1, ξ
kz2],

where (n, k) = 1, ξ is an n-th primitive root of 1.

57) !!! Prove that any finite CW-complex can be embedded into an Euclidian space.

58) !!! HELP
A) Let Y ⊂ Z be a cofibration. Show that two conditions are equivalent:

a) πn(Z, Y ) = 0
b) given a map f : Dn → Z and a homotopy ht : Sn−1 → Z such that h0 = f|Sn−1 and h1(Sn−1) ⊂ Y ;

it is possible to extend the homotopy to Ht : Dn → Z in a way that H0 = f and H1(Dn) ⊂ Y .
B) Generalize the statement for any map Y → Z instead of an inclusion.
C) Replace the pair (Dn, Sn−1) by any cofibration (X, A), the condition a) by ,,Y → Z is an n-equivalence”
and show a) ⇒ b).

59) Whitehead theorem
A)♠Assume that Y → Z is an n-equivalence. Show that for a CW-complex X of dimension ≤ n the map
[X,Y ] → [X, Z] is surjective. (Use HELP with A = ∅.)
B) For dim U < n the map [U, Y ] → [U,Z] is injective. (In HELP take X = U × I, A = U × {0, 1}, f =
homotopy between maps U → Z, ht = h0.)

60) *** Show that any Lie group G (e.g. G = U(n) or SO(n) if you are not familiar with a general theory)
we have π2(G) = 0. Hint: assume that G is compact and simply connected and consider the maximal torus
T and the exact sequence

0 → π2(G) → π2(G/T ) → π1(T ) → 0.

61) *** Let (X,A) be a relative CW-complex obtained from A by adding one n-cell. Show, that πn(X, A, a0)
is a free π1(A, a0)-module on one generator. (Here a0 is a distinguished point in A.)

62) ♠Let X = {(z1, z2, . . . , zn) ∈ Cn : zi 6= zj for i 6= j}. Compute πk(X) for k > 1. Do you know π1(X)?
puorg diarb erup

63) !!! (compare Problem 49) For n > 1 we have πn(S4) ' πn(S7) ⊕ πn−1(S3) and πn(8) ' πn(S15) ⊕
πn−1(S7).

64) !!! Let Pn be the space of complex polynomials od degree n without multiple roots. Compute πi(Pn) for
i ≥ 0.

65) !!! Suppose that X is a CW complex of dimension ≤ 2n + 2 for some n ≥ 0. Prove that the diagonal
map d : X → X ×X is homotopic to a map d′ such that d′(X) ⊂ (X ×Xn) ∪ (Xn ×X), where Xn is the
n-th skeleton of X.

66) !!! If X is a CW-complex of type K(π, n) for n > 1 and Y is an arbitrary CW-complex, then πn(X∨Y ) '
πn(Y )⊕⊕

λ∈π1(Y ) πλ where πλ = π for each λ.

67) (written homework) Given a sequence of groups {πq}q>0 with πq abelian for q > 1, and given an
action of π1 as a group of operators on each πq for q > 1, prove that there is a space Y which realizes this
sequence (that is πq(Y ) ' πq and πl(Y )-actinon on πq(Y ) corresponds to the action of π1 on πq).
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