Algebraic Topology I problems

Version 17 January 2014

Problems with $\boldsymbol{\uparrow}$ are already done, with \mathbf{L} were done on the lecture, with !!! should be done next time

1) $\boldsymbol{\wedge}$ A functor $F: C \rightarrow D$ is an equivalence iff
1. $F: \operatorname{Mor}_{C}\left(X_{1}, X_{2}\right) \rightarrow \operatorname{Mor}_{D}\left(F\left(X_{1}\right), F\left(X_{2}\right)\right)$ is an bijection for any pair of objects $X_{1}, X_{2} \in \operatorname{Ob}(C)$
2. Any object $Y \in O b(D)$ is isomorphic to the object of the form $F(X)$ for some $X \in O b(C)$

Written homework: we have defined the inverse of F, called G by a choice of an isomorphism $f_{Y}: Y \rightarrow F(X)$. Define a transformation of functors $G \circ F \rightarrow I d_{C}$ and check the compatibility of the relevant diagram.
2) $\boldsymbol{\oplus}$ [Yoneda1] Given a category C. For $X \in O b(C)$ let $h^{X}(-)=\operatorname{Mor}_{C}(-, X) \in \operatorname{Func}\left(C^{o p}, S\right)$. Show that $h_{X}: C \rightarrow \operatorname{Func}(C, S)$ is a full embedding.
3) $\boldsymbol{\oplus}\left[\right.$ Yoneda2] Given a category C. For $X \in O b(C)$ and $F \in F u n c\left(C^{o p}, S\right)$.

Show that the map $\operatorname{NatTr}\left(h^{X}, F\right)=\operatorname{Mor}_{\operatorname{Func}\left(C^{o p}, S\right)}\left(h^{X}, F\right) \rightarrow F(X)$ defined by $\Phi \mapsto \Phi(X)\left(i d_{X}\right)$ is a bijection.
4) $\boldsymbol{\$}$ A small category C in which for any pair of objects there exists at most one morphism is equivalent to the category defined by a partially ordered set.
5) If in a category every morphism is an isomorphism and every two objects are isomorphic, then this category is equivalent to the category defined by a group. (Example: the fundamental groupoid of a topological space.)
6) Show that the functor $h^{X} \times h^{Y}: C \rightarrow S$ is representable by the cartesian product (if it exists in C).
7) \mathbf{L} Construct the left adjoint functor to $\operatorname{Hom}(V,-): V e c t_{k} \rightarrow V e c t_{k}$ and the right adjoint if $\operatorname{dim} V<\infty$.
8) L Let $F: I \rightarrow C$ be a functor from a small category I (i.e. a diagram in C). Show that $L \in O b(C)$ is an inverse limit $\lim _{I} F$ iff the functor $X \mapsto \lim _{I} \operatorname{Mor}_{C}(X, F(-))$ is representable by L.
9) What is an analogue of the previous statement for the direct limit colim ${ }_{I} F$?
10) Whow that if in C there exist equalizers of any pair of morphism and there exist products of any family of objects, then in C exist limits indexed by any category.
11) A functor $G: C \rightarrow D$ which is left adjoint preserves colimits. This means that for any diagram $F: I \rightarrow C$ the natural map $\operatorname{colim}_{I} G \circ F \rightarrow G\left(\operatorname{colim}_{I} F\right)$ is an isomorphism. (see 9))
12) Consider the following obvious functors and check whether there exist right and left adjoint functors:
a) Topological Hausdorff spaces \rightarrow Compact spaces
b) Topological spaces \rightarrow Sets
c) Groups \rightarrow Sets
d) Topological groups \rightarrow Topologicals spaces
e) Abelian groups \rightarrow Groups
f) R-modules \rightarrow Abelian groups
g) \ldots
13) ??? Let $L: C \rightleftharpoons D: R$ be a pair of adjoint functors. By adjunction we have natural maps $\tau_{X}: X \rightarrow$ $R L(X)$ for $X \in O b(C)$ and $\sigma_{Y}: L R(Y) \rightarrow Y$ for $Y \in O b(D)$ (in fact transformations of functors). Show that the composition

$$
R(Y) \xrightarrow{\tau_{R(Y)}} R L R(Y) \xrightarrow{R\left(\sigma_{Y}\right)} R(Y)
$$

is the identity. Similarly for the compositions with interchanged roles of functors (see the next exercise).
14) ??? Let $L: C \rightarrow D$ and $R: D \rightarrow C$ be two functors. Suppose that there are given transformation of functors $\sigma: L R \rightarrow I d_{D}$ and $\tau: I d_{C} \rightarrow R L$. Composing with L we define transformation of functors:

$$
F * \tau: L \rightarrow L R L \quad \text { and } \quad \sigma * L: L R L \rightarrow L
$$

Composing with R we define transformation of functors:

$$
\tau * R: R \rightarrow R L R \quad \text { and } \quad R * \sigma: R L R \rightarrow R .
$$

Show that if

$$
(\sigma * L) \circ(L * \tau)=I d_{L} \in \operatorname{NatTr}(L, L) \quad \text { and } \quad(R * \sigma)(\tau * R)=I d_{R} \in \operatorname{NatTr}(R, R)
$$

then L is left adjoint to R.
15) Let R be a commutative ring. Show that there is natural isomorphism of R-modules: $(A \oplus B) \otimes C \simeq$ $(A \otimes C) \oplus(B \otimes C)$.
16) (written) Let $f: R \rightarrow S$ be a ring homomorphism. (Then the ring S is a R-module via f.) For a S module N define a R-module $f^{*} N$, which is equal to N as a group with multiplication $r \cdot n=f(r) n$ for $r \in R$. For a R-module M define $f_{*} M=S \otimes_{R} M$ with multiplication given by $s_{1} \cdot\left(s_{2} \otimes m\right)=\left(s_{1} s_{2}\right) \otimes m$. Show that f_{*} and f^{*} are adjoint. Does one have to assume that the rings are commutative?
17) (written) Let (X, A) be a pair of topological spaces. Suppose that there exist a neighbourhood $U \supset A$ and a deformation of U to A in X constant on A (i.e. a homotopy $h_{t}: U \rightarrow X$ such that $h_{0}(u)=u$, $h_{t}(a)=a, h_{1}(u) \in A$ for $\left.t \in[0,1], u \in U, a \in A\right)$ and a continious function $X \rightarrow[0,1], f^{-1}(1)=A$, $f_{\mid X-U}=0$. Prove that $A \hookrightarrow X$ is a cofibration.
18) $\boldsymbol{\sim}$ Let C be a category. Let $(A, A \rightarrow A \sqcup A)$ be a cogroup object, $(B, B \times B \rightarrow B)$ a group object. Suppose that two group structures on $\operatorname{Mor}_{C}(A, B)$ have the same neutral objects. (If C has an object which is both initial and final then this assumption is satisfied.) Prove that these structures coincide. Moreover the common group structure is abelian.

Hint: show $(a * b) \circ(c * d)=(a \circ c) *(b \circ d)$.
19) Show that the functor defined by the smash product in $T o p_{*}$

$$
F_{Y}(X):=X \wedge Y=X \times Y /(X \times * \cup * \times Y)
$$

is adjoint to $\operatorname{Map}_{\text {Top* }}(Y,-)$. (Be careful with topology, assume that Y is locally compact, Z Hausdorff.)
20) \uparrow Show $S^{1} \wedge S^{n} \simeq S^{n+1}$.
21) $\boldsymbol{\sim}$ Let $X \rightarrow Y$ be a continuous map of topological spaces which is surjective. Show that if it is open or closed, then the topology on Y is a quotient topology. Show an example of a quotient topology which is not open nor closed.
22) $\boldsymbol{4}$ Show that 1-point compactification of the Möbius strip is homeomorphic to $\mathbf{R P}^{2}$.
23) Let X be a topological space which is arc-connected. Let p and q be two points. Assume that $\{p\} \rightarrow X$ and $\{q\} \rightarrow X$ are cofibtations. Show that $(X,\{p\})$ is homotopy equivalent to $(X,\{q\})$, i.e. an isomorphism in $h T o p_{*}$.
24) \uparrow Suppose $A \hookrightarrow X$ is a cofibration and A is contractible. Then X and X / A are homotopy equivalent.
25) ¢Show that the empty torus with one disc glued to the meridian (i.e $S^{1} \times S^{1} \cup D^{2} \times\{p t\}$) and $S^{2} \vee S^{1}$ are homotopy equivalent.
26) There exist following homotopy equivalences:
a) $S^{n} / S^{k} \sim S^{n} \vee S^{k+1}$
b) $\left(S^{n} \times S^{m}\right) /\left(S^{n} \times\left\{s_{0}\right\}\right) \sim S^{n+m} \vee S^{m}$
c)!!! $\Sigma\left(S^{n} \times S^{m}\right) \sim S^{n+1} \vee S^{m+1} \vee S^{n+m+1}$
d)!!! $\Sigma P_{g} \sim S^{3} \vee \bigvee_{2 g} S^{2}$, where P_{g} is a compact surface of genus g.
27) If $X=A \cup B$ where A, B closed subsets and $A \cap B \subset A$ is a Borsuk pair, then $B \subset X$ is a Borsuk pair.
28) $\boldsymbol{4}$ Let $f: A \rightarrow X$ be a map and suppose that X is contractible. Then the cone of the inclusion $C A \cup_{f} X$ is homotopy equivalent to the suspension.
29) (written) Let $E \rightarrow B$ be a map and suppose that E is contractible. Then the homotopy fiber $F_{b}:=$ $\{(e, \gamma) \in E \times \operatorname{Map}(I, B): \gamma(0)=f(e), \gamma(1)=b\}$ is homotopy equivalent to the loop space ΩB.
30) \uparrow What is the homotopy cofiber of $X \rightarrow p t$?
31) $\boldsymbol{\$}$ What is the homotopy fiber of $p t \rightarrow X$?
32) Let $f: E \rightarrow B$ be a fibration over a path-connected space.
a) if there exists $b \in B$ such that $f^{-1}(b)$ is path-connected, then E is path connected.
b) if E is path-connected and B simplyconnected, then the fibres are path-connected.
33) $\boldsymbol{\oplus}$ Find fibrations
a) $S^{0} \hookrightarrow S^{1} \rightarrow S^{1}$
b) $S^{1} \hookrightarrow S^{3} \rightarrow S^{2}$
c) $S^{3} \hookrightarrow S^{7} \rightarrow S^{4}$
d) $S^{7} \hookrightarrow S^{15} \rightarrow S^{8}$
34)
a) Find a fibration $E \longrightarrow B$ such that $B \sim \mathbf{R} \mathbf{P}^{\infty}, E \sim S^{1}$, and the fiber is homotopy equivallent to S^{1}.
b) Find a fibration $E \longrightarrow B$ such that $B \sim \mathbf{C P}{ }^{\infty}, E \sim S^{2}$, and the fiber is homotopy equivallent to S^{3}.
c) Find a fibration $E \longrightarrow B$ such that $B \sim \mathbf{H} \mathbf{P}^{\infty}, E \sim S^{4}$, and the fiber is homotopy equivallent to S^{7}.
35) ©Show that a locally trivial fibration is a fibration (in the sense of Hurewicz). (Assume e.g. that the base is paracompact).
36) © Find the homtopy fiber of the map $\mathbf{C P}{ }^{\infty} \vee \mathbf{C} \mathbf{P}^{\infty} \rightarrow \mathbf{C} \mathbf{P}^{\infty}$ identifying two copies of $\mathbf{C} \mathbf{P}^{\infty}$.
37) Show that the homotopy fiber of $X \vee X \rightarrow X$ is $\Sigma \Omega X$.
(Technical step: Let $f: P \rightarrow X$ be a map from a contractible space. Then the push-out of mapping cylinders $\left(\begin{array}{ccc}P & \rightarrow & Z(f) \\ \downarrow & & \\ Z(f) & & \end{array}\right)$ is homotopy equivalent to $X \vee X$.)
38)? What is the relation of the fiber inclusion map $\Sigma \Omega X \hookrightarrow X \vee X \rightarrow X$ with the map $\Sigma \Omega X \rightarrow X$ adjoint to two natura maps id, inverse $: \Omega X \rightarrow \Omega X$.
39) $\boldsymbol{\$}$ Suppose that in the commutative diagram

i, j are cofibrations, f and g are homotopy equivalences. Show that (f, g) is a homotopy equivalence of pairs.
40) If $p: E \rightarrow B$ is a fibration, then for any locally compact space X the natural map $\operatorname{Map}(X, E) \rightarrow$ $\operatorname{Map}(X, B)$ is a fibration. What can you say about the map $\operatorname{Map}(B, X) \rightarrow \operatorname{Map}(E, X) ?$
41) © Is the following statement true? Suppose that $E_{1} \rightarrow B$ and $E_{2} \rightarrow B$ are fibrations and E_{1} is homotopy equivalent to E_{2}. Then there exist a fiberwise homotopy equivalence

42) The homotpy coequalizer of two maps $f, g: X \rightarrow Y$ is defined as the push-out

Dually the homotopy equalizer is defined by the pull-back

$$
\begin{array}{ccc}
& f \times g & \\
Y \times Y & \longleftarrow & X \\
\uparrow & & \uparrow \\
P(X) & \longleftarrow & \operatorname{heq}(f, g) .
\end{array}
$$

Consider the circle S^{1} as the unit complex numbers. Let $f, g: S^{1} \rightarrow S^{1}, f=i d, g(z)=\bar{z}$. Describe the homotopy coequalizer of f and g. What is the homotopy type of the homotopy equalizer? (??)
43) Let $f: X \rightarrow Y$ be a map of pointed spaces. Compare $C(S f)$ with $S(C f)$ and the dual objects involving homotopy fiber and loop spaces.
44) Compute homotopy groups of surfaces of positive genus.
45) Compute $\pi_{n}\left(S^{n}\right)(\boldsymbol{\oplus})$,
$\boldsymbol{\oplus}\left(\right.$ written) $\pi_{3}\left(S^{2}\right)$, show $\pi_{n}\left(S^{3}\right) \simeq \pi_{n}\left(S^{2}\right)$ for $n>2$. What are consequences for homotopy groups from Problem 33?
46) © Compute homotopy groups of $\mathbf{R} \mathbf{P}^{\infty}$ and $\mathbf{C} \mathbf{P}^{\infty}$. What do you know about $\pi_{i}\left(\mathbf{H P}^{\infty}\right)$?
47) 円If the homotopy groups of the basis and the fiber are finite, then the homotopy groups of the total space of the fibration are also finite.
48) © If the fibration has a section, then $\pi_{n}(E) \simeq \pi_{n}(B) \oplus \pi_{n}(F)$. (Assumption: F connected, $n>1$)
49) 円If the fiber contracts to a point in E, then $\pi_{n}(B) \simeq \pi_{n}(E) \oplus \pi_{n-1}(F)$. (Assumption: $n>1$.)
50) (Compute homotopy groups π_{i} of the Stiefel manifold $V_{k}\left(\mathbf{R}^{n}\right)$ for $i \leq n-k$. (Assumption: $n>1$.)
51) Whitehead product:
©naturality with respect to maps and the action of the fundamental groupoid
$\boldsymbol{\phi}[a, b]=(-1)^{p q}[b, a]$
$\boldsymbol{\oplus}[a, \gamma]=a-\left[h_{\gamma}(a)\right]$ for $\gamma \in \pi_{1}(X)$
*** show the Jacobi rule:

$$
(-1)^{p q}[[a, b], c]+(-1)^{q r}[[b, c], a]+(-1)^{r p}[[c, a], b]=0 .
$$

52) \uparrow If A is a retract of X, then $\pi_{n}(X) \simeq \pi_{n}(A) \oplus \pi_{n}(X, A)$
53) $\boldsymbol{\sim}$ If A is contractible in X then $\pi_{n}(X, A) \simeq \pi_{n}(X) \oplus \pi_{n-1}(A)$
54) $\pi_{n}(X \vee Y) \simeq \pi_{n}(X) \oplus \pi_{n}(Y) \oplus \pi_{n+1}(X \times Y, X \vee Y)$
55) ゆDecompose into cells the projective spaces $\mathbf{R P}^{n}, \mathbf{C P}^{n}, \mathbf{H P}^{n}$
56) !!! Decompose the lens space $L(n ; k)=\mathbf{C P}^{2} / \mathbf{Z}_{n}$ (action of the generator of $\mathbf{Z}_{n}:\left[z_{1}, z_{2}\right] \mapsto\left[\xi z_{1}, \xi^{k} z_{2}\right]$, where $(n, k)=1, \xi$ is an n-th primitive root of 1 .
57) !!! Prove that any finite CW-complex can be embedded into an Euclidian space.
58) !!! HELP
A) Let $Y \subset Z$ be a cofibration. Show that two conditions are equivalent:
a) $\pi_{n}(Z, Y)=0$
b) given a map $f: D^{n} \rightarrow Z$ and a homotopy $h_{t}: S^{n-1} \rightarrow Z$ such that $h_{0}=f_{\mid S^{n-1}}$ and $h_{1}\left(S^{n-1}\right) \subset Y$; it is possible to extend the homotopy to $H_{t}: D^{n} \rightarrow Z$ in a way that $H_{0}=f$ and $H_{1}\left(D^{n}\right) \subset Y$.
B) Generalize the statement for any map $Y \rightarrow Z$ instead of an inclusion.
C) Replace the pair $\left(D^{n}, S^{n-1}\right)$ by any cofibration (X, A), the condition a) by ,, $Y \rightarrow Z$ is an n-equivalence" and show a) $\Rightarrow b$).
59) Whitehead theorem
A) Assume that $Y \rightarrow Z$ is an n-equivalence. Show that for a CW-complex X of dimension $\leq n$ the map $[X, Y] \rightarrow[X, Z]$ is surjective. (Use HELP with $A=\emptyset$.)
B) For $\operatorname{dim} U<n$ the map $[U, Y] \rightarrow[U, Z]$ is injective. (In HELP take $X=U \times I, A=U \times\{0,1\}, f=$ homotopy between maps $U \rightarrow Z, h_{t}=h_{0}$.)
60) ${ }^{* * *}$ Show that any Lie group G (e.g. $G=U(n)$ or $S O(n)$ if you are not familiar with a general theory) we have $\pi_{2}(G)=0$. Hint: assume that G is compact and simply connected and consider the maximal torus T and the exact sequence

$$
0 \rightarrow \pi_{2}(G) \rightarrow \pi_{2}(G / T) \rightarrow \pi_{1}(T) \rightarrow 0
$$

$61)^{* * *}$ Let (X, A) be a relative CW-complex obtained from A by adding one n-cell. Show, that $\pi_{n}\left(X, A, a_{0}\right)$ is a free $\pi_{1}\left(A, a_{0}\right)$-module on one generator. (Here a_{0} is a distinguished point in A.)
62) ゆLet $X=\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbf{C}^{n}: z_{i} \neq z_{j}\right.$ for $\left.i \neq j\right\}$. Compute $\pi_{k}(X)$ for $k>1$. Do you know $\pi_{1}(X)$? puorg diarb erup
63) !!! (compare Problem 49) For $n>1$ we have $\pi_{n}\left(S^{4}\right) \simeq \pi_{n}\left(S^{7}\right) \oplus \pi_{n-1}\left(S^{3}\right)$ and $\pi_{n}(8) \simeq \pi_{n}\left(S^{15}\right) \oplus$ $\pi_{n-1}\left(S^{7}\right)$.
$64)!!!$ Let P_{n} be the space of complex polynomials od degree n without multiple roots. Compute $\pi_{i}\left(P_{n}\right)$ for $i \geq 0$.
65) !!! Suppose that X is a CW complex of dimension $\leq 2 n+2$ for some $n \geq 0$. Prove that the diagonal map $d: X \rightarrow X \times X$ is homotopic to a map d^{\prime} such that $d^{\prime}(X) \subset\left(X \times X^{n}\right) \cup\left(X^{n} \times X\right)$, where X^{n} is the n-th skeleton of X.
$66)$!!! If X is a CW-complex of type $K(\pi, n)$ for $n>1$ and Y is an arbitrary CW-complex, then $\pi_{n}(X \vee Y) \simeq$ $\pi_{n}(Y) \oplus \bigoplus_{\lambda \in \pi_{1}(Y)} \pi_{\lambda}$ where $\pi_{\lambda}=\pi$ for each λ.
67) (written homework) Given a sequence of groups $\left\{\pi_{q}\right\}_{q>0}$ with π_{q} abelian for $q>1$, and given an action of π_{1} as a group of operators on each π_{q} for $q>1$, prove that there is a space Y which realizes this sequence (that is $\pi_{q}(Y) \simeq \pi_{q}$ and $\pi_{l}(Y)$-actinon on $\pi_{q}(Y)$ corresponds to the action of π_{1} on π_{q}).

