Algebraic Topology I problems

Version 17 January 2014

Problems with \blacklozenge are already done, with **L** were done on the lecture, with !!! should be done next time

1) \bigstar A functor $F: C \to D$ is an equivalence iff

1. $F: Mor_C(X_1, X_2) \to Mor_D(F(X_1), F(X_2))$ is an bijection for any pair of objects $X_1, X_2 \in Ob(C)$ 2. Any object $Y \in Ob(D)$ is isomorphic to the object of the form F(X) for some $X \in Ob(C)$

Written homework: we have defined the inverse of F, called G by a choice of an isomorphism $f_Y : Y \to F(X)$. Define a transformation of functors $G \circ F \to Id_C$ and check the compatibility of the relevant diagram.

2) \bigstar [Yoneda1] Given a category C. For $X \in Ob(C)$ let $h^X(-) = Mor_C(-, X) \in Func(C^{op}, S)$. Show that $h_X : C \to Func(C, S)$ is a full embedding.

3) \bigstar [Yoneda2] Given a category C. For $X \in Ob(C)$ and $F \in Func(C^{op}, S)$. Show that the map $NatTr(h^X, F) = Mor_{Func(C^{op}, S)}(h^X, F) \to F(X)$ defined by $\Phi \mapsto \Phi(X)(id_X)$ is a bijection.

4) \bigstar A small category C in which for any pair of objects there exists at most one morphism is equivalent to the category defined by a partially ordered set.

5) If in a category every morphism is an isomorphism and every two objects are isomorphic, then this category is equivalent to the category defined by a group. (Example: the fundamental groupoid of a topological space.)

6) Show that the functor $h^X \times h^Y : C \to S$ is representable by the cartesian product (if it exists in C).

7) **L** Construct the left adjoint functor to $Hom(V, -): Vect_k \to Vect_k$ and the right adjoint if dim $V < \infty$.

8) **L** Let $F: I \to C$ be a functor from a small category I (i.e. a diagram in C). Show that $L \in Ob(C)$ is an inverse limit $\lim_{I} F$ iff the functor $X \mapsto \lim_{I} Mor_{C}(X, F(-))$ is representable by L.

9) What is an analogue of the previous statement for the direct limit $\operatorname{colim}_{I} F$?

10) \bigstar Show that if in C there exist equalizers of any pair of morphism and there exist products of any family of objects, then in C exist limits indexed by any category.

11) $\bigstar A$ functor $G : C \to D$ which is left adjoint preserves colimits. This means that for any diagram $F : I \to C$ the natural map colim_I $G \circ F \to G(\operatorname{colim}_I F)$ is an isomorphism. (see 9))

12) Consider the following obvious functors and check whether there exist right and left adjoint functors:

- a) Topological Hausdorff spaces \rightarrow Compact spaces
- b) Topological spaces \rightarrow Sets
- c) Groups \rightarrow Sets
- d) Topological groups \rightarrow Topologicals spaces
- e) Abelian groups \rightarrow Groups
- f) R-modules \rightarrow Abelian groups
- g) . . .

13) ??? Let $L: C \rightleftharpoons D: R$ be a pair of adjoint functors. By adjunction we have natural maps $\tau_X: X \to RL(X)$ for $X \in Ob(C)$ and $\sigma_Y: LR(Y) \to Y$ for $Y \in Ob(D)$ (in fact transformations of functors). Show that the composition

$$R(Y) \xrightarrow{\tau_{R(Y)}} RLR(Y) \xrightarrow{R(\sigma_Y)} R(Y)$$

is the identity. Similarly for the compositions with interchanged roles of functors (see the next exercise).

14) ??? Let $L: C \to D$ and $R: D \to C$ be two functors. Suppose that there are given transformation of functors $\sigma: LR \to Id_D$ and $\tau: Id_C \to RL$. Composing with L we define transformation of functors:

$$F * \tau : L \to LRL$$
 and $\sigma * L : LRL \to L$.

Composing with R we define transformation of functors:

$$\tau * R : R \to RLR$$
 and $R * \sigma : RLR \to R$.

Show that if

$$(\sigma * L) \circ (L * \tau) = Id_L \in NatTr(L, L)$$
 and $(R * \sigma)(\tau * R) = Id_R \in NatTr(R, R)$

then L is left adjoint to R.

15) Let R be a commutative ring. Show that there is natural isomorphism of R-modules: $(A \oplus B) \otimes C \simeq (A \otimes C) \oplus (B \otimes C)$.

16) \bigstar (written) Let $f: R \to S$ be a ring homomorphism. (Then the ring S is a R-module via f.) For a S module N define a R-module f^*N , which is equal to N as a group with multiplication $r \cdot n = f(r)n$ for $r \in R$. For a R-module M define $f_*M = S \otimes_R M$ with multiplication given by $s_1 \cdot (s_2 \otimes m) = (s_1s_2) \otimes m$. Show that f_* and f^* are adjoint. Does one have to assume that the rings are commutative?

17) (written) Let (X, A) be a pair of topological spaces. Suppose that there exist a neighbourhood $U \supset A$ and a deformation of U to A in X constant on A (i.e. a homotopy $h_t : U \to X$ such that $h_0(u) = u$, $h_t(a) = a, h_1(u) \in A$ for $t \in [0, 1], u \in U, a \in A$) and a continious function $X \to [0, 1], f^{-1}(1) = A$, $f_{|X-U} = 0$. Prove that $A \hookrightarrow X$ is a cofibration.

18) \bigstar Let C be a category. Let $(A, A \to A \sqcup A)$ be a cogroup object, $(B, B \times B \to B)$ a group object. Suppose that two group structures on $Mor_C(A, B)$ have the same neutral objects. (If C has an object which is both initial and final then this assumption is satisfied.) Prove that these structures coincide. Moreover the common group structure is abelian.

Hint: show $(a * b) \circ (c * d) = (a \circ c) * (b \circ d)$.

19) \blacklozenge Show that the functor defined by the smash product in Top_*

$$F_Y(X) := X \land Y = X \times Y / (X \times * \cup * \times Y)$$

is adjoint to $\operatorname{Map}_{Top_{*}}(Y, -)$. (Be careful with topology, assume that Y is locally compact, Z Hausdorff.)

20) \bigstar Show $S^1 \wedge S^n \simeq S^{n+1}$.

21) \bigstar Let $X \to Y$ be a continuous map of topological spaces which is surjective. Show that if it is open or closed, then the topology on Y is a quotient topology. Show an example of a quotient topology which is not open nor closed.

22) \clubsuit Show that 1-point compactification of the Möbius strip is homeomorphic to \mathbb{RP}^2 .

23) Let X be a topological space which is arc-connected. Let p and q be two points. Assume that $\{p\} \to X$ and $\{q\} \to X$ are cofibtations. Show that $(X, \{p\})$ is homotopy equivalent to $(X, \{q\})$, i.e. an isomorphism in $hTop_*$.

24) $A \subseteq X$ is a cofibration and A is contractible. Then X and X/A are homotopy equivalent.

25) \bigstar Show that the empty torus with one disc glued to the meridian (i.e $S^1 \times S^1 \cup D^2 \times \{pt\}$) and $S^2 \vee S^1$ are homotopy equivalent.

26) There exist following homotopy equivalences:

a) $A S^n / S^k \sim S^n \vee S^{k+1}$ b) $A (S^n \times S^m) / (S^n \times \{s_0\}) \sim S^{n+m} \vee S^m$ c)!!! $\Sigma (S^n \times S^m) \sim S^{n+1} \vee S^{m+1} \vee S^{n+m+1}$ d)!!! $\Sigma P_g \sim S^3 \vee \bigvee_{2g} S^2$, where P_g is a compact surface of genus g.

27) If $X = A \cup B$ where A, B closed subsets and $A \cap B \subset A$ is a Borsuk pair, then $B \subset X$ is a Borsuk pair.

28) \bigstar Let $f : A \to X$ be a map and suppose that X is contractible. Then the cone of the inclusion $CA \cup_f X$ is homotopy equivalent to the suspension.

29) (written) $A Let E \to B$ be a map and suppose that E is contractible. Then the homotopy fiber $F_b := \{(e, \gamma) \in E \times Map(I, B) : \gamma(0) = f(e), \gamma(1) = b\}$ is homotopy equivalent to the loop space ΩB .

30) \bigstar What is the homotopy cofiber of $X \to pt$?

31) \blacklozenge What is the homotopy fiber of $pt \to X$?

32) \bigstar Let $f: E \to B$ be a fibration over a path-connected space.

a) if there exists $b \in B$ such that $f^{-1}(b)$ is path-connected, then E is path connected.

b) if E is path-connected and B simply connected, then the fibres are path-connected.

33) \bigstar Find fibrations a) $S^0 \hookrightarrow S^1 \longrightarrow S^1$ b) $S^1 \hookrightarrow S^3 \longrightarrow S^2$ c) $S^3 \hookrightarrow S^7 \longrightarrow S^4$

d) $S^7 \hookrightarrow S^{15} \longrightarrow S^8$

34)

a) Find a fibration $E \longrightarrow B$ such that $B \sim \mathbf{RP}^{\infty}$, $E \sim S^1$, and the fiber is homotopy equivalent to S^1 .

b) Find a fibration $E \longrightarrow B$ such that $B \sim \mathbb{CP}^{\infty}$, $E \sim S^2$, and the fiber is homotopy equivalent to S^3 .

c) Find a fibration $E \longrightarrow B$ such that $B \sim \mathbf{HP}^{\infty}$, $E \sim S^4$, and the fiber is homotopy equivalent to S^7 .

35) \bigstar Show that a locally trivial fibration is a fibration (in the sense of Hurewicz). (Assume e.g. that the base is paracompact).

36) \bigstar Find the homtopy fiber of the map $\mathbf{CP}^{\infty} \vee \mathbf{CP}^{\infty} \to \mathbf{CP}^{\infty}$ identifying two copies of \mathbf{CP}^{∞} .

37) Show that the homotopy fiber of $X \vee X \to X$ is $\Sigma \Omega X$.

(*Technical step*: Let $f: P \to X$ be a map from a contractible space. Then the push-out of mapping cylinders $\begin{pmatrix} P & \to & Z(f) \end{pmatrix}$

$$\begin{pmatrix} \downarrow & & \\ Z(f) & & \end{pmatrix}$$
 is homotopy equivalent to $X \lor X$.)

38) ? What is the relation of the fiber inclusion map $\Sigma \Omega X \hookrightarrow X \vee X \longrightarrow X$ with the map $\Sigma \Omega X \to X$ adjoint to two natura maps $id, inverse : \Omega X \to \Omega X$.

39) \blacklozenge Suppose that in the commutative diagram

$$\begin{array}{cccc} A & \stackrel{g}{\longrightarrow} & B \\ {}_{i} \downarrow & & \downarrow_{j} \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

i, j are cofibrations, f and g are homotopy equivalences. Show that (f, g) is a homotopy equivalence of pairs.

40) If $p: E \to B$ is a fibration, then for any locally compact space X the natural map $Map(X, E) \to Map(X, B)$ is a fibration. What can you say about the map $Map(B, X) \to Map(E, X)$?

41) \bigstar Is the following statement true? Suppose that $E_1 \to B$ and $E_2 \to B$ are fibrations and E_1 is homotopy equivalent to E_2 . Then there exist a fiberwise homotopy equivalence

$$\begin{array}{ccc} E_1 & \stackrel{\sim}{\longrightarrow} & E_2 \\ & \searrow \swarrow & \\ & B \end{array}$$

42) The homotpy coequalizer of two maps $f, g: X \to Y$ is defined as the push-out

$$\begin{array}{cccc} X \lor X & \stackrel{f \lor g}{\longrightarrow} & Y \\ \downarrow & & \downarrow \\ X \land I^+ & \longrightarrow & hcoeq(f,g). \end{array}$$

Dually the homotopy equalizer is defined by the pull-back

Consider the circle S^1 as the unit complex numbers. Let $f, g: S^1 \to S^1$, f = id, $g(z) = \overline{z}$. Describe the homotopy coequalizer of f and g. What is the homotopy type of the homotopy equalizer? (??)

43) Let $f: X \to Y$ be a map of pointed spaces. Compare C(Sf) with S(Cf) and the dual objects involving homotopy fiber and loop spaces.

44) Compute homotopy groups of surfaces of positive genus.

45) Compute $\pi_n(S^n)$ (\bigstar), \bigstar (written) $\pi_3(S^2)$, show $\pi_n(S^3) \simeq \pi_n(S^2)$ for n > 2. What are consequences for homotopy groups from Problem 33?

46) \blacklozenge Compute homotopy groups of \mathbb{RP}^{∞} and \mathbb{CP}^{∞} . What do you know about $\pi_i(\mathbb{HP}^{\infty})$?

47) \bigstar If the homotopy groups of the basis and the fiber are finite, then the homotopy groups of the total space of the fibration are also finite.

48) \bigstar If the fibration has a section, then $\pi_n(E) \simeq \pi_n(B) \oplus \pi_n(F)$. (Assumption: F connected, n > 1)

49) \bigstar If the fiber contracts to a point in E, then $\pi_n(B) \simeq \pi_n(E) \oplus \pi_{n-1}(F)$. (Assumption: n > 1.)

50) Compute homotopy groups π_i of the Stiefel manifold $V_k(\mathbf{R}^n)$ for $i \leq n-k$. (Assumption: n > 1.)

51) Whitehead product:

$$(-1)^{pq}[[a,b],c] + (-1)^{qr}[[b,c],a] + (-1)^{rp}[[c,a],b] = 0.$$

52) \bigstar If A is a retract of X, then $\pi_n(X) \simeq \pi_n(A) \oplus \pi_n(X, A)$

53) \blacklozenge If A is contractible in X then $\pi_n(X, A) \simeq \pi_n(X) \oplus \pi_{n-1}(A)$

54) $\mathbf{A}\pi_n(X \lor Y) \simeq \pi_n(X) \oplus \pi_n(Y) \oplus \pi_{n+1}(X \times Y, X \lor Y)$

55) \blacklozenge Decompose into cells the projective spaces \mathbb{RP}^n , \mathbb{CP}^n , \mathbb{HP}^n

56) !!! Decompose the lens space $L(n;k) = \mathbf{CP}^2/\mathbf{Z}_n$ (action of the generator of \mathbf{Z}_n : $[z_1, z_2] \mapsto [\xi z_1, \xi^k z_2]$, where $(n,k) = 1, \xi$ is an *n*-th primitive root of 1.

57) !!! Prove that any finite CW-complex can be embedded into an Euclidian space.

58) !!! HELP

A) Let $Y \subset Z$ be a cofibration. Show that two conditions are equivalent:

a) $\pi_n(Z,Y) = 0$

b) given a map $f: D^n \to Z$ and a homotopy $h_t: S^{n-1} \to Z$ such that $h_0 = f_{|S^{n-1}}$ and $h_1(S^{n-1}) \subset Y$; it is possible to extend the homotopy to $H_t: D^n \to Z$ in a way that $H_0 = f$ and $H_1(D^n) \subset Y$.

B) Generalize the statement for any map $Y \to Z$ instead of an inclusion.

C) Replace the pair (D^n, S^{n-1}) by any cofibration (X, A), the condition a) by $,, Y \to Z$ is an *n*-equivalence" and show a) \Rightarrow b).

59) Whitehead theorem

A) Assume that $Y \to Z$ is an *n*-equivalence. Show that for a CW-complex X of dimension $\leq n$ the map $[X, Y] \to [X, Z]$ is surjective. (Use HELP with $A = \emptyset$.)

B) For dim U < n the map $[U, Y] \rightarrow [U, Z]$ is injective. (In HELP take $X = U \times I$, $A = U \times \{0, 1\}$, f = homotopy between maps $U \rightarrow Z$, $h_t = h_0$.)

60) *** Show that any Lie group G (e.g. G = U(n) or SO(n) if you are not familiar with a general theory) we have $\pi_2(G) = 0$. Hint: assume that G is compact and simply connected and consider the maximal torus T and the exact sequence

$$0 \to \pi_2(G) \to \pi_2(G/T) \to \pi_1(T) \to 0.$$

61) *** Let (X, A) be a relative CW-complex obtained from A by adding one *n*-cell. Show, that $\pi_n(X, A, a_0)$ is a free $\pi_1(A, a_0)$ -module on one generator. (Here a_0 is a distinguished point in A.)

62) \bigstar Let $X = \{(z_1, z_2, \dots, z_n) \in \mathbb{C}^n : z_i \neq z_j \text{ for } i \neq j\}$. Compute $\pi_k(X)$ for k > 1. Do you know $\pi_1(X)$? puorg diarb erup

63) !!! (compare Problem 49) For n > 1 we have $\pi_n(S^4) \simeq \pi_n(S^7) \oplus \pi_{n-1}(S^3)$ and $\pi_n(8) \simeq \pi_n(S^{15}) \oplus \pi_{n-1}(S^7)$.

64) !!! Let P_n be the space of complex polynomials of degree n without multiple roots. Compute $\pi_i(P_n)$ for $i \ge 0$.

65) !!! Suppose that X is a CW complex of dimension $\leq 2n + 2$ for some $n \geq 0$. Prove that the diagonal map $d: X \to X \times X$ is homotopic to a map d' such that $d'(X) \subset (X \times X^n) \cup (X^n \times X)$, where X^n is the *n*-th skeleton of X.

66) !!! If X is a CW-complex of type $K(\pi, n)$ for n > 1 and Y is an arbitrary CW-complex, then $\pi_n(X \lor Y) \simeq \pi_n(Y) \oplus \bigoplus_{\lambda \in \pi_1(Y)} \pi_\lambda$ where $\pi_\lambda = \pi$ for each λ .

67) (written homework) Given a sequence of groups $\{\pi_q\}_{q>0}$ with π_q abelian for q > 1, and given an action of π_1 as a group of operators on each π_q for q > 1, prove that there is a space Y which realizes this sequence (that is $\pi_q(Y) \simeq \pi_q$ and $\pi_l(Y)$ -actinon on $\pi_q(Y)$ corresponds to the action of π_1 on π_q).