Equivariant cohomology in algebraic geometry: notes 2023

Andrzej Weber

1
1.1 Prehistory: Poincaré-Hopf theorem. Suppose M is a manifold, v a vector field with isolated zeros, then

$$
\chi(M)=\sum_{p \in \text { Zeros }} \operatorname{Ind}_{p}(v),
$$

where $\operatorname{Ind}_{p}(v)$ is the index of the vector field, i.e. the degree of the map from a small sphere around p $S(p, \epsilon)$ to the unit sphere in $T_{p} M$ given by $v(p) /\|v(p)\|$.
1.2 Suppose a circle S^{1} acts smoothly on M with isolated fixed points. Let v be the fundamental field of the action, i.e.

$$
v(x)=\frac{d}{d t}(t \cdot x)_{\mid t=0} .
$$

Then if $p \in M^{S^{1}}$ the index $\operatorname{Ind}(v)=1$. Hence

$$
\chi(M)=\left|M^{S^{1}}\right| .
$$

This statement is true in a much greater generality.
1.3 Let X be a simplicial complex (or any decent compact topological space, e.g. a manifold). Suppose p is a prime number. Let P be a p-group acting on X. Then the Euler characteristic of fixed points $\chi\left(X^{P}\right) \equiv \chi(X) \bmod p$.
Proof: We assume that P acts simplicially and the relation follows from the property of p groups acting on finite sets: $\left|X^{P}\right| \equiv|X| \bmod p$.
1.4 Exercise: give a proof for compact manifolds, not using triangulations.
[Sören Illman, Smooth equivariant triangulations of G-manifolds for G a finite group. Math. Ann.233(1978), no.3, 199-220.]
See a far-reaching generalization: Dwyer-Wilkerson Smith theory revisited. Ann. of Math. (2) 127 (1988), no. 1, 191-198.
1.5 Corollary: no decent compact contractible space admits a finite group action without fixed points.
1.6 Theorem does not hold for infinite dimensional spaces, e.g. \mathbb{Z}_{2} acts on $S^{\infty} \sim p t$ without fixed points (action via antipodism).
1.7 Theorem: Let X be a compact (decent) compact topological space (e.g. a manifold). Suppose $\mathbb{T}=\left(S^{1}\right)^{r}$ acts on X. Then $\chi(X)=\chi\left(X^{\mathbb{T}}\right)$.
Proof: $X^{S^{1}}=X^{\mathbb{Z}_{p} \infty}=X^{\mathbb{Z}_{p}{ }^{n}}$ for $n \gg 0$.

Examples of the spaces with torus action.

$1.8 X=S^{2 n+1} \subset \mathbb{C}^{n+1}$ with $S^{1} \subset \mathbb{C}$ action via scalar multiplication. (No fixed points, $\chi(X)=0$.)
1.9 The projective space $\mathbb{P}^{n}=\mathbb{C} \mathbb{P}^{n}=\mathbb{P}^{n}(\mathbb{C})=\left(\mathbb{C}^{n+1} \backslash\{0\}\right) / \mathbb{C}^{*}$ can be presented as $S^{2 n+1} / S^{1}$.
$1.10 X=S^{2 n} \subset \mathbb{C}^{n} \times \mathbb{R}$ with $S^{1} \subset \mathbb{C}$ acting on the factor $\mathbb{C}^{n} .(\chi(X)=2$, two fixed points. $)$
1.11 Projective space \mathbb{P}^{n} (in particular $\mathbb{P}^{1}=S^{2}$) admits the action of $\mathbb{T}_{\mathbb{C}}=\left(\mathbb{C}^{*}\right)^{n+1}$. There are $n+1$ fixed points. Also the small torus consisting of the sequences $\left(1, t, t^{2}, \ldots, t^{n}\right)$ has the same fixed points. We check directly that $\chi\left(\mathbb{P}^{n}\right)=n+1$.
[For holomorphic actions does not matter whether we take compact torus S^{1} or \mathbb{C}^{*}. The fixed points are the same.]

Białynicki-Birula decomposition by examples.

1.12 Let $X=\mathbb{P}^{n}$,

$$
T=\left\{\left(1, t, t^{2}, \ldots, t^{n}\right) \in \mathbb{T}_{\mathbb{C}} \mid t \in \mathbb{C}^{*}\right\}
$$

acting as above. For $p \in X^{T}$ let

$$
X_{p}^{+}=\left\{z \in X \mid \lim _{t \rightarrow 0} t \cdot z=p\right\}
$$

The sets $X_{p}^{ \pm}$are homeomorphic (isomorphic as algebraic varieties) with affine spaces. We obtain the well known decomposition of the projective space

$$
\begin{gathered}
\mathbb{P}^{n}=\mathbb{C}^{n} \sqcup \mathbb{C}^{n-1} \sqcup \mathbb{C}^{n-2} \sqcup \cdots \sqcup \mathbb{C}^{0} . \\
X_{[0: 0: \cdots: 1: 0: \cdots: 0]}^{+}=\left\{z_{k} \neq 0, z_{\ell}=0 \text { for } \ell<k\right\} \simeq \mathbb{C}^{n-k}
\end{gathered}
$$

1.13 The quadric $z_{0} z_{3}-z_{1} z_{2}=0$ in \mathbb{P}^{3} with the $T=\mathbb{C}^{*}$ action as above.

$$
\begin{gathered}
Q_{[1,0,0,0]}=\left\{\left[1: z_{1}: z_{2}: z_{1} z_{2}\right] \mid z_{1}, z_{2} \in \mathbb{C}\right\} \simeq \mathbb{C}^{2} \\
Q_{[0,1,0,0]}=\left\{\left[0: 1: 0: z_{3}\right] \mid z_{3} \in \mathbb{C}\right\} \simeq \mathbb{C} \\
Q_{[0,0,1,0]}=\left\{\left[0: 0: 1: z_{3}\right] \mid z_{3} \in \mathbb{C}\right\} \simeq \mathbb{C} \\
Q_{[0,0,0,1]}=\{[0: 0: 0: 1]\} \simeq p t
\end{gathered}
$$

1.14 Theorem [Białynicki-Birula 1973] Let X be a complex projective algebraic variety with algebraic $T=\mathbb{C}^{*}$ action. For a component $F \subset X^{T}$ let

$$
X_{p}^{+}=\left\{z \in X \mid \lim _{t \rightarrow 0} t \cdot z \in F\right\}
$$

(1) Then

$$
X=\bigsqcup_{F} X_{F}^{+}
$$

(the sum over connected components) is a decomposition into locally closed algebraic subsets.
(2) The limit map

$$
p_{F}=\lim _{t \rightarrow 0}: X_{F}^{+} \rightarrow F
$$

is an algebraic map. If X is smooth then p_{F} is a Zariski-locally trivial fibration with the fiber isomorphic to $\mathbb{C}^{n_{F}}$.
(3) The number n_{F} is the rank of $\nu_{F}^{+} \subset \nu_{F}$, the subbundle of the normal bundle on which T acts with positive weights.

- The field \mathbb{C} can be replaced by any algebraically closed field.
1.15 Note that existence of the limit $\lim _{t \rightarrow 0} t \cdot z$ follows from the fact that the closure of the orbit is an algebraic curve. The map

$$
\begin{aligned}
& \alpha_{z}: \mathbb{C}^{*} \\
& \rightarrow \mathbb{P}^{1} \times X \\
& t \mapsto(t, t \cdot z)
\end{aligned}
$$

extends to a map from \mathbb{P}^{1}. To see that one can note that the image of \mathbb{C}^{*} is a constructible algebraic set (by Tarski-Seidenberg theorem), hence the closure is an algebraic curve, dominated by \mathbb{P}^{1}. Hence we have a unique extension of α_{z}

$$
\bar{\alpha}_{z}: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times X \xrightarrow{\pi} X
$$

and

$$
\lim _{t \rightarrow 0} t \cdot z:=\pi\left(\bar{\alpha}_{z}(0)\right)
$$

- If the action is not algebraic, the above argument does not work: \mathbb{C}^{*} acts transitively on any elliptic curve, there are no fixed points.

2 Basics about actions of compact groups

2.1 Let $\mathbb{T}=\left(S^{1}\right)^{r} \subset \mathbb{C}^{r}$ and $\mathfrak{t}=i \mathbb{R}^{r} \subset \mathbb{C}^{r}$. The map exp coordinatewise induces the exact sequence

$$
0 \longrightarrow \mathfrak{t}_{\mathbb{Z}} \longrightarrow \mathfrak{t} \xrightarrow{\exp } \mathbb{T} \longrightarrow 0
$$

where $\mathfrak{t}_{\mathbb{Z}}=2 \pi i \mathbb{Z}^{r} \subset i \mathbb{R}^{r}=\mathfrak{t}$ is the kernel, also denoted by N
2.2 Weights and characters. See [Anderson-Fulton, Ch. 3,§1]

- Homomorphisms $\operatorname{Hom}\left(\mathbb{T}, S^{1}\right)$ are called ,,characters". This set is a group with respect to multiplication pointwise. It is isomorphic to \mathbb{Z}^{r}. In toric geometry denoted by M.
- any character in coordinates is of the form

$$
\left(t_{1}, t_{2}, \ldots, t_{r}\right) \mapsto t_{1}^{w_{1}} t_{2}^{w_{1}} \ldots t_{r}^{w_{r}} \quad \text { denoted by } t^{w}
$$

- the sequence $\left(w_{1}, w_{2}, \ldots, w_{r}\right) \in \mathbb{Z}^{r}$ is the called weight.
2.3 Without coordinates:

$$
\text { Weights }=\operatorname{Hom}(N, \mathbb{Z})
$$

In toric geometry $\operatorname{Hom}(N, \mathbb{Z})$ is denoted by M, in representation theory $\mathfrak{t}_{\mathbb{Z}}^{*}$.

For a weight $w \in \mathfrak{t}_{\mathbb{Z}}$ the corresponding character is denoted by e^{w}.
2.4 For the complex torus $\mathbb{T}_{\mathbb{C}} \simeq\left(\mathbb{C}^{*}\right)^{r}$ any polynomial map is determined by the values on $\mathbb{T} \simeq\left(S^{1}\right)^{r}$

$$
\operatorname{Hom}_{a l g}\left(\mathbb{T}_{\mathbb{C}}, \mathbb{C}^{*}\right)=\operatorname{Hom}\left(\mathbb{T}, S^{1}\right)
$$

2.5 Linear actions of \mathbb{T} one a vector space \mathbb{C}^{n} can be diagonalized (Commuting linear maps of finite order have a common diagonalization.)
2.6 Exercise: for any field $\mathbb{F}=\overline{\mathbb{F}}$ any linear action of $\mathbb{T}_{\mathbb{F}}=\left(\mathbb{F}^{*}\right)^{r}$ on \mathbb{F}^{n} can be diagonalized.
2.7 Up to an isomorphism any linear action of \mathbb{T} on a complex vector space is determined by the multi-set of weights.

- Let \mathbb{C}_{w} be equal to \mathbb{C} as a vector space with the action of \mathbb{T} via $e^{w}: \mathbb{T} \rightarrow S^{1} \subset \mathbb{C}^{*}=\mathrm{GL}_{1}(\mathbb{C})$
- If \mathbb{T} has fixed coordinates, i.e. it is identified with $\left(S^{1}\right)^{r}$ and $w=\left(w_{1}, w_{2}, \ldots, w_{r}\right)$ then for $t \in \mathbb{T}$ the linear map $e^{w}(t): \mathbb{C}_{w} \rightarrow \mathbb{C}_{w}$ is the multiplication by $t_{1}^{w_{1}} t_{2}^{w_{2}} \ldots t_{r}^{w_{r}}$.
- We have a canonical decomposition

$$
V=\bigoplus_{w \in M} V_{w}
$$

where $V_{w}=\left\{v \in V \mid \forall t \in \mathbb{T} t \cdot v=e^{w}(t) v\right\} \simeq \operatorname{Hom}_{\mathbb{T}}\left(\mathbb{C}_{w}, V\right)$ is the eigenspace (called weight space) corresponding to the weight w.

- For a vector bundle $E \rightarrow B$, with torus action such that \mathbb{T} acts on B trivially and on the fiber the action is linear we have a decomposition into a direct sum of subbundles $E=\bigoplus_{w} E_{w}$.
- The decomposition into weight subspaces can be noncannonically refined

$$
V=\bigoplus_{k=1}^{\operatorname{dim} V} \mathbb{C}_{w_{k}}
$$

(Note: If we have fixed coordinates of \mathbb{T}, then each w_{k} is a sequence of numbers $\left(w_{k, 1}, w_{k, 2}, \ldots, w_{k, r}\right)$.)

- The element

$$
e(V)=\prod_{k=1}^{\operatorname{dim} V} w_{k}=\prod_{w} w^{\operatorname{dim} V_{w}} \in S y m^{\operatorname{dim} V}\left(\mathfrak{t}_{\mathbb{Z}}^{*}\right)
$$

does not depend on the above decomposition and it is called the Euler class of the representation.

- The product

$$
c(V)=\prod_{k=1}^{\operatorname{dim} V}\left(1+w_{k}\right)=\prod_{w}(1+w)^{\operatorname{dim} V_{w}} \in \operatorname{Sym}\left(\mathfrak{t}_{\mathbb{Z}}^{*}\right)
$$

is also well defined. It is called the Chern class of the representation

- After tensoring with $\mathbb{R}($ or $\mathbb{Q})$ we can identify $\operatorname{Sym}\left(\mathfrak{t}_{\mathbb{Z}}^{*}\right) \otimes \mathbb{R}$ with polynomial functions on \mathfrak{t}.
2.8 Exercise: for a representation V of \mathbb{T} consider an action of $\tilde{T}=\mathbb{T} \times S^{1}$ on $\tilde{V}=V$, where S^{1} acts by the scalar multiplication. Denote by \hbar the weight corresponding to the character $\tilde{T} \rightarrow S^{1}$, which is the projection. Show that

$$
c(V)=e(\tilde{V})_{\mid \hbar=1}
$$

Action of a compact group (in particular torus) on a manifold

2.9 Exercise: (algebraic geometry) Let A be an algebra over a field \mathbb{F} and $X=\operatorname{Spec}(A)$. Defining an action of $\mathbb{G}_{m}=\operatorname{Spec}\left(\mathbb{F}\left[t, t^{-1}\right]\right)$ on X is equivalent to defining a \mathbb{Z}-gradation of A. Prove this correspondence and generalize it to an action of the algebraic torus \mathbb{G}_{m}^{r}.
2.10 Let X be a manifold with a smooth action of \mathbb{T}. Suppose $x \in X^{\mathbb{T}}$ is a fixed point. Then \mathbb{T} acts on $T_{x} X$. If x is an isolated fixed point, then the weight space $\left(T_{x} X\right)_{0}$ corresponding to the weight $w=0$ is trivial.
2.11 Proposition. There exists a neighbourhood $x \in U \subset T_{x} X$ and an equivariant map $f: U \rightarrow X$, which is an isomorphism on the image.
Proof: Fix an S^{1} invariant metric, take U to be the ball of a sufficiently small radius, $f=\exp$ in the sense of the differential geometry.
2.12 Reminder: Orbit, stabilizer(=isotopy group): Suppose a group G acts on $X, x \in X$

- the stabilizer $=G_{x}=\{g \in G \mid g x=x\}$.
- if $y=g x$ then $G_{y}=g G_{x} g^{-1}$
- the orbit $=G \cdot x \simeq G / G_{x}$.
- the isotropy group G_{x} acts on the tangent space $T_{x} X$ and the fiber of the normal bundle $\left(\nu_{G \cdot x}\right)_{x}$
2.13 Construction of the associated bundle: Suppose V be a representation of a group H, and suppose P be a H-principal bundle. Let us define

$$
P \times^{H} V=P \times V /\{(p h, v) \sim(p, h v)\}
$$

The projection $P \times{ }^{H} V \rightarrow P / H=Y$ is a vector bundle.
For the definition and basic facts about principal bundles [Anderson-Fulton, Ch.2.1]
2.14 Slice theorem for manifolds: Assume that X is a smooth manifold, G a compact Lie group (can assume a torus) acting smoothly. Let $V=\left(\nu_{G \cdot x}\right)_{x}$. There exist an equivariant neighbourhood of $0 \in S \subset V$, such that the map $G \times{ }^{G_{x}} S \rightarrow X$ induced by $\exp : G \times{ }^{G_{x}} V \rightarrow X$ is an equivariant diffeomorphism onto the image. This image is a neighbourhood of $G \times{ }^{G_{x}}\{0\} \simeq G \cdot x$. The set S or its image is called the slice, whole neighbourhood is called the tube. See [Anderson-Fulton, Ch. 5 Th.1.4].

- In other words: any orbit has a neighbourhood isomorphic to the disk bundle of the associated vector bundle over the orbit.
- Proof. The map exp : $\mathbb{T} \times V \rightarrow X$ induces

$$
(g, v) \mapsto g \cdot \exp (v)
$$

Exp is G_{x}-invariant, i.e. $\exp (g \cdot v)=g \cdot \exp (v)$ for $g \in G_{x}$. Hence the above map factorizes $G \times{ }^{G_{x}} V \rightarrow X$.

- Exercise: Show that the above map is well defined.
2.15 Exercise: Let G be a group, H a subgroup, $E \rightarrow G / H$ be a vector bundle with G-action, such that for any $g \in G, x \in G / H$ the map $g: E_{x} \rightarrow E_{g x}$ is linear. Show that $E \simeq G \times{ }^{H} E_{[e]}$. Here [e] denotes the coset $e H$.
2.16 There is a more general theorem for topological spaces:
- If X is a topological space (completely regular), G a compact Lie group, then a slice V is a certain subspace of X, invariant with respect to G_{x}. [Bredon, Introduction to Compact Transformation Groups. Section II.5]
- In algebraic geometry [Luna slice theorem] we assume that G is reductive $\left(\left(\mathbb{C}^{*}\right)^{r}\right.$ is fine, $\mathrm{GL}_{n}(\mathbb{C})$ too) X is an affine variety, and the orbit is closed. The neighbourhood is in the étal topology. [Luna, Domingo (1973), Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire, vol. 33]

3 Classifying spaces

3.1 It is convenient to introduce a notion of G-CW-complex. By definition, we assume that X admits a filtration

$$
X_{-1}=\emptyset \subset X_{0} \subset X_{1} \subset \cdots \subset X_{N}
$$

such that

$$
X_{i}=X_{i-1} \cup_{\phi}\left(G \times^{H} D^{n_{i}}\right)
$$

where $D^{n_{i}}$ is the unit disk of a linear orthogonal representation of $H \rightarrow \operatorname{Aut}\left(\mathbb{R}^{n_{i}}\right)$,

$$
\phi: G \times^{H} S^{n_{i}-1} \rightarrow X_{i-1} .
$$

(with weak topology.)
3.2 Any smooth action of a compact Lie group G on a compact manifold admits a G-CW-decomposition.
3.3 Example: S^{2} with the standard S^{1} action has 3 cells $0, \infty$ and $S^{1} \times D^{1}$.
3.4 Exercise: find a CW-decomposition of \mathbb{P}^{n} with the standard action of $\left(S^{1}\right)^{n+1}$
3.5 The topological spaces we study will be assumed to admit a G-CW-decomposition

3.6 Equivariant cohomology of a G space:

- topological model $H_{G}^{*}(X)=H^{*}\left(E G \times^{G} X\right)$, where $E G$ is a contractible free G-space (unfortunately in almost all cases $E G$ is of infinite dimension)
- differential model if X is a G-manifold $H_{G, d R}^{*}(X)=H^{*}\left(\Omega^{*}(X, G)\right)$
- de Rham theorem $H_{G}^{*}(X ; \mathbb{R}) \simeq H_{G, d R}^{*}(X)$
3.7 We will assume, that G is compact (or linear algebraic reductive, e.g. $\left.\left(\mathbb{C}^{*}\right)^{r}\right)$.
3.8 A G bundle $P \rightarrow B=E / G$ is universal if for any G bundle $P^{\prime} \rightarrow B^{\prime}$ there exist a map $f: B^{\prime} \rightarrow B$ such that $F^{*}(P)=P^{\prime}$. Moreover f is unique up to homotopy.
- Hence

$$
\{G \text {-bundles on } X\}=[X, B]
$$

where $[X, B]$ means homotopy classes of maps (X is assumed to be CW-complex).
3.9 We will show that a universal G-bundle exists.

- Notation $E G \rightarrow B G$, should be understood as a homotopy type, which has various realizations.
- A G bundle $P \rightarrow B$ is universal if and only if E is contractible.
- Proof: Assume that P is contractible. Suppose $P^{\prime} \rightarrow B^{\prime}$ be an arbitrary G-bundle. We construct a mapping by induction on skeleta. We assume that P^{\prime} is a CW-complex, glued from cells with trivial stabilizers, i.e. each cell is of the form $D^{n} \times G$.

it is enough to construct a mapping $S^{n-1} \times\{1\} \rightarrow P$ do $D^{n} \times\{1\} \rightarrow E G$ and use G-action to spread the definition on the whole tube $D^{n} \times G$. Similarly we construct a homotopy between two maps.

Hence if P is contractible then it is universal. If we have another bundle $P^{\prime} \rightarrow B^{\prime}$ which is universal, then there are G maps $P^{\prime} \rightarrow P$ and $P \rightarrow P^{\prime}$ and their compositions are homotopic to identities (this is a general nonsens about universal objects).
3.10 Corollary: by the homotopy exact sequence for $G \subset E G \rightarrow B G$ we have homotopy group isomorphism $\pi_{k}(B G) \simeq \pi_{k-1}(G)$. In particular, if G is connected, then $B G$ is 1-connected.
3.11 Since any nontrivial compact Lie group contains torus, hence elements of finite orders, the space $E G$ cannot be of finite dimension (by Euler characteristic argument).

3.12 Examples:

$E S^{1}=S^{\infty} \rightarrow \mathbb{P}^{\infty}=B S^{1}$ (of the type $K(\mathbb{Z}, 2)$)
$E\left(S^{1}\right)^{r}=\left(S^{\infty}\right)^{r} \rightarrow\left(\mathbb{P}^{\infty}\right)^{r}=B\left(S^{1}\right)^{r}$
$B U(n)=\lim _{N \rightarrow \infty} \operatorname{Gras}_{n}\left(\mathbb{C}^{N}\right)$
3.13 For $G=\mathbb{T}$ or $U(n)$ one can approximate $B G$ by compact algebraic manifolds, which admit a decomposition into algebraic cells (BB-decomposition's).
3.14 For all linear algebraic groups $G \subset \mathrm{GL}_{m}(C)$ we can take $E G=$ Steel manifold

$$
S t_{m}\left(\mathbb{C}^{N}\right):=\operatorname{Monomorphisms}\left(\mathbb{C}^{m}, \mathbb{C}^{N}\right) \subset \operatorname{Hom}\left(\mathbb{C}^{m}, \mathbb{C}^{N}\right)
$$

See [Anderson-Fulton, Ch.2, Lemma 2.1]

- Exercise: Show that

$$
\lim _{N \rightarrow \infty} \operatorname{codim}\left(\operatorname{Hom}\left(\mathbb{C}^{m}, \mathbb{C}^{N}\right) \backslash S t_{m}\left(\mathbb{C}^{N}\right)\right)=\infty
$$

- For any algebraic group Totaro constructs approximation of $B G$ by algebraic varieties in a more systematic way.
3.15 If $H \subset G$, then as a model for $E H$ we can take $E G$. Hence we get a fibration $G / H \rightarrow B H \rightarrow$ $B G$.
3.16 If $H \triangleleft G$ is a normal subgroup, $K=G / H$ then there is a fibration $B H \rightarrow B G \rightarrow B K$.
(Take $E H:=E G$ and $E^{\prime} G=E G \times E K$, taking the fibration $E^{\prime} G / G \rightarrow E K / K$ we find that the fiber is $E G \times{ }^{G} G / H=B H$.)
3.17 Characteristic classes for G-bundles [see e.g. Guillemn-Sternberg $\S 8$] Consider two contravariant functors:

$$
\begin{gathered}
\text { Gbdl }:=\{G-\text { bundles }\} / \sim: h \text { Top } \rightarrow \text { sets } \\
H:=H^{*}(-\mathbb{Z}): h T o p \rightarrow \text { sets } \\
\text { Mapp }_{\text {Functors }}(G b d l, H)=H^{*}(B G ; \mathbb{Z})
\end{gathered}
$$

- This is just Yoneda Lemma: if $F, H: \mathcal{C} \rightarrow \mathcal{S}\rceil \sqcup \int$ and F is representable by $A \in O b(\mathcal{C})$, i.e.

$$
F(X)=M \operatorname{cr}_{\mathcal{C}}(X, A),
$$

then

$$
\operatorname{Mor}_{\text {Functors }}(F, H)=F(A) .
$$

Given a transformation of functors

$$
\alpha: \operatorname{Mor}_{\mathcal{C}}(-, A) \rightarrow H(-)
$$

We construct an element in $H(A)$ setting $X=A$

$$
\alpha \mapsto \alpha\left(I d_{A}\right) \in H(A) .
$$

Conversely: given $f: X \rightarrow A$ and $\alpha \in H(A)$ define

$$
\alpha(f)=f^{*}(\alpha) .
$$

3.18 Characteristic classes for n-dimensional vector bundles.

- Each vector bundle is determined by its associated principal bundle. Thus $\operatorname{Vect}_{n}(X)=\left[X, B G L_{n}(\mathbb{C})\right]$ and $B G L_{n}(\mathbb{C})=B U_{n}$. Hence

$$
\text { characteristic classes of } \mathrm{n} \text {-vector bundles }=H^{*}(B U(n))
$$

- $H^{*}(B U(n), \mathbb{Z}) \simeq \mathbb{Z}\left[c_{1}, c_{2}, \ldots, c_{n}\right]$
- The map $H^{*}(B U(n+1)) \rightarrow H^{*}(B U(n))$ is surjective given by $c_{n+1}:=0$.
3.19 For the torus we have
- $G=\mathbb{C}^{*}, E G=\mathbb{C}^{\infty} \backslash\{0\} ; B \mathbb{C}^{*}=\mathbb{P}^{\infty}=\bigcup_{n} \mathbb{P}^{n}$
- $H^{*}\left(B \mathbb{C}^{*}\right) \simeq \mathbb{Z}[t]$, it is convenient to take $t=c_{1}(\mathcal{O}(1))$, where $\mathcal{O}(1)$ is the dual of the tautological bundle.
- For S^{1} we can take $E S^{1}=S^{\infty}=\bigcup_{n} S^{2 n-1}$
3.20 Corollary:

$$
\begin{gathered}
\{\text { topological vector bundles over } X\} \simeq H^{2}(X ; \mathbb{Z}) \\
\{\text { characteristic classes of line bundles }\}=H^{*}\left(\mathbb{P}^{\infty}\right)=\mathbb{Z}[t]
\end{gathered}
$$

3.21 For $\mathbb{T}=\left(S^{1}\right)^{n}$:

$$
H^{*}(B \mathbb{T})=\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]
$$

3.22 The inclusion $\mathbb{T} \rightarrow U(n)$ induces $B \mathbb{T} \rightarrow B U(n)$ and $H^{*}(B U(n)) \rightarrow H^{*}(\mathbb{T})$ which is injective

$$
H^{*}(B U(n))=\mathbb{Z}\left[c_{1}, c_{2}, \ldots, c_{n}\right]=\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{S_{n}} \hookrightarrow \mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]=H^{*}(B \mathbb{T})
$$

Compare [Anderson-Fulton, Ch2, Proposition 4.1]
3.23 The above statement and many others in this course follows from Leray-Hirsch theorem:

- Let $F \rightarrow E \rightarrow B$ be a fibration. Assume that $H^{*}(F)$ is free (in our case over \mathbb{Z}). Suppose there is a linear map $\phi: H^{*}(F) \rightarrow H^{*}(E)$, a splitting of the restriction map $H^{*}(E) \rightarrow H^{*}(F)$. Then $H^{*}(E)$ is a free module over $H^{*}(B)$.
3.24 We have the bundle $E=B \mathbb{T} \rightarrow B U_{n}=B$ the fiber is $F=U_{n} / \mathbb{T}$. The base and the fiber ($F=$ Flag manifold) admit a cell decompositions into even dimensional cells - see explanation below. Hence we have a cell decomposition of $E \mathbb{T}$ which is compatible with the decomposition of the base. (Note that here as a model of $E \mathbb{T}$ is not taken S^{∞}.)
- Hence $H^{*}(E) \rightarrow H^{*}(F)$ is split-surjective.

By the Leray-Hirsh theorem $H^{*}(B \mathbb{T})$ is a free $H^{*}\left(B U_{n}\right)$-module of the rank $\operatorname{dim} H^{*}(F)$,

- $H^{*}(F) \simeq H^{*}(E) /\left(H^{>0}(B)\right)$ as algebras (also we can write $H^{*}(F) \simeq \mathbb{Z} \otimes_{H^{*}(B)} H^{*}(E)$)
3.25 We look at the cell decomposition of the approximation $\operatorname{Gras}_{n}\left(\mathbb{C}^{n}\right)$ of $B U(n)$ (see [AndersonFulton, Ch. 4, §5]
- The cells are indexed by the sequences

$$
\begin{gathered}
0<i_{1}<i_{2}<\ldots i_{k} \leq n \\
\left(\begin{array}{cccc}
1 & * & 0 & * \\
0 & 0 & 1 & *
\end{array}\right) \quad i_{1}=1, i_{2}=3
\end{gathered}
$$

Equivalently

$$
\text { (} \left.n-k \geq \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 0\right)=\text { number of } * \text { in the reduced form of the matrix. }
$$

3.26 Computation of $H^{*}(B U(n))$. The map $H^{*}(B U(n)) \rightarrow H^{*}(B \mathbb{T})$ is injective. The image is invariant with the symmetric group action S_{n}, since each permutation $\sigma: \mathbb{T} \rightarrow \mathbb{T} \rightarrow U_{n}$ is homotopic to the inclusion.

- First we give an argument over \mathbb{Q}. We show that in each gradation $\operatorname{dim} H^{2 k}\left(B U_{n}\right)=\operatorname{dim} \mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{S_{n}}$. $-\operatorname{dim} H^{2 k}(B U(n))=$ number of sequences $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 0$ (no restriction on λ_{1}), such that $\sum_{i} \lambda_{i}=k$
- $\operatorname{dim} H^{2 k}(B \mathbb{T})^{S_{n}}=\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]_{k}^{S_{n}}=$ the number of monomials with non-increasing exponents.
- We conclude that $H^{2 k}(B U(n) ; \mathbb{Q})=H^{2 k}(B \mathbb{T} ; \mathbb{Q})^{S_{n}}$
- Moreover $H^{*}(F l(n) ; \mathbb{Z})=\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right] /\left(H^{>0}\left(B U_{n} ; \mathbb{Z}\right)\right)$ is torsion-free. Hence $H^{*}\left(B U_{n} ; \mathbb{Z}\right)=$ $\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{S_{n}}$
3.27 Corollary: We have a description of the cohomology ring

$$
H^{*}(F l(n)) \simeq \mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right] /\left(\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]_{>0}^{S_{n}}\right) .
$$

3.28 Exercise: Compute the cohomology ring $H^{*}(\operatorname{Gras}(k, n))$ using the fibration $\operatorname{Gras}_{k}\left(\mathbb{C}^{n}\right) \rightarrow$ $B\left(U_{k} \times U_{n-k}\right) \rightarrow B U_{n}$.
3.29 General theorem: if G is connected, \mathbb{T} maximal torus, $W=N \mathbb{T} / \mathbb{T}$ the Weyl group, then $H^{*}(B G ; \mathbb{Q})=H^{*}(B \mathbb{T} ; \mathbb{Q})^{W}$ is a polynomial ring in the variables of even degrees, e.g.

- $H^{*}(B S p(n) ; \mathbb{Q})=\mathbb{Q}\left[c_{2}, c_{4}, \ldots, c_{2 n}\right],($ valid also over $\mathbb{Z})$,
- $H^{*}\left(B O_{2 n} ; \mathbb{Q}\right)=\mathbb{Q}\left[p_{1}, p_{2}, \ldots, p_{n}, e\right] /\left(e^{2}=p_{n}\right), \operatorname{deg} p_{i}=4 i, \operatorname{deg} e=2 n\left(\right.$ valid also over $\left.\mathbb{Z}\left[\frac{1}{2}\right]\right)$
- $B E_{8}$ is he worst, one has to invert $2,3,5$. The generators of $H^{2 *}\left(B E_{8}\right)$ are in the degrees $2 \times: 2,8$, $12,14,18,20,24,30$.
[Burt Totaro: The torsion index of E_{8} and other groups, Duke Math. J. 129 (2005), no. 2, 219-248]

4 Recollection on Chern classes

What you need to know about Chern classes

4.1 Let $V e c t_{1}$ denote the functor $h T o p \rightarrow$ Sets

$$
\operatorname{Vect}_{1}(X)=\text { Isomorphism classes of line bundles over } X
$$

- This functor factors through the category of abelian groups (tensor product of line bundles behaves like addition).
- $\operatorname{Vect}(X)$ denotes isomorphism classes of vector bundles. This is a semi-ring. Here \oplus is the addition, \otimes is the multiplication.
4.2 The first Chern class

$$
c_{1} \in \operatorname{Mor}_{\text {Functors }}\left(\operatorname{Vect}_{1}, H^{2}(-, \mathbb{Z})\right)=H^{2}(K(\mathbb{Z}, 2))=H^{2}\left(B S^{1}\right)=H^{2}\left(\mathbb{P}^{\infty}\right)=H^{2}\left(\mathbb{P}^{1}\right)
$$

We chose the generator of $H^{2}\left(\mathbb{P}^{1}\right)$ so that $c_{1}(\mathcal{O}(1))=[p t]$. Here the bundle $\mathcal{O}(1)=\gamma^{*}$ is the dual of the tautological bundle.

- In other words: the Chern class c_{1} is determined by the choice made for $\mathcal{O}(1)$.
4.3 Chern classes of vector bundles: $c(E)=1+c_{1}(E)+\cdots+c_{r k(E)}(E)$.
- functoriality (c is a transformation of functors $\operatorname{Vect}(-) \rightarrow H^{*}(-, \mathbb{Z})$
- for line bundles $c(L)=1+c_{1}(L)$
- Whitney formula $c(E \oplus F)=c(E) c(F)$
- Note c is not a group homomorphism. One can repair that, but has to use \mathbb{Q} coefficients. The resulting transformation is called Chern character. For line bundles

$$
\operatorname{ch}(L)=\exp \left(c_{1}(L)\right)
$$

Chern character is additive and multiplicative

$$
\begin{gathered}
\operatorname{ch}(E \oplus F)=\operatorname{ch}(E)+\operatorname{ch}(F) \\
\operatorname{ch}(E \otimes F)=\operatorname{ch}(E) \operatorname{ch}(F)
\end{gathered}
$$

4.4 If L is a holomorphic line bundle over a complex manifold, with a meromorphic section s, then $c_{1}(L)$ is equal to Poincaré dual of $\operatorname{Zero}(s)-\operatorname{Poles}(s)$.
4.5 Projective bundle theorem. For a vector bundle $E \rightarrow B$ let $\mathbb{P}(E) \rightarrow B$ be the projectivization ${ }^{11}$, $L=\mathcal{O}_{\mathbb{P}(E)}(1)$ the tautological line bundle, then $H^{*}(\mathbb{P}(E))$ is a free module over $H^{*}(B)$

$$
h^{r}+a_{1} h^{r-1}+\cdots+r a_{r}=0
$$

Then $a_{i}=c_{i}(E)$.

- There are other conventions of signs, but let's check: If E is a line bundle, then $L=E^{*}$. We have relation $h+a_{1}=c_{1}(L)+c_{1}(E)=0$.
4.6 Corollary: Chern classes of E and the ring structure of $H^{*}(B)$ determine the ring structure

$$
H^{*}(\mathbb{P}(E))=H^{*}(B)[h] /\left(h^{r}+c_{1} h^{r-1}+\cdots+c_{r-1} h+c_{r}\right)
$$

4.7 Splitting principle: for any line bundle $E \rightarrow B$ there exists $f: B^{\prime} \rightarrow B$ such that, $f^{*} E$ is a sum of line bundles and f^{*} is injective on cohomology. E.g.

$$
B^{\prime}=F \operatorname{lag} s(E)=B \times_{B U(n)} B \mathbb{T},
$$

where \mathbb{T} is the maximal torus in $U(n)$.
4.8 The generator of $H^{2}\left(B \mathbb{C}^{*}\right)$ is identified with $c_{1}(\mathcal{O}(1))$. Thus the generators of

$$
H_{T}^{*}(B \mathbb{T})=\mathbb{Z}\left[t_{1}, t_{2}, \ldots, t_{n}\right]
$$

can be presented as

$$
t_{i}=c_{1}\left(L_{i}\right)
$$

where $L_{i}=E \mathbb{T} \times \mathbb{T}_{t_{i}}$ is the line bundle associated to the representation of T in $\mathrm{GL}_{1}(\mathbb{C})$ given by the projection oh the i-th factor.
4.9 Let $\chi: \mathbb{T} \rightarrow \mathbb{C}^{*}$ be a character, then $c_{1}\left(E T \times{ }^{\mathbb{T}} \mathbb{C}_{\chi}\right)=\chi$. Here we identify

$$
\operatorname{Hom}\left(\mathbb{T}, \mathbb{C}^{*}\right)=\mathfrak{t}^{*}=H^{2}(B \mathbb{T})
$$

Borel's definition of equivariant cohomology [finally, see [Anderson-Fulton, Ch. 2 §2]]
4.10 Borel construction $X_{G}=E G \times{ }^{G} X$ sometimes is called the mixing space.
4.11 Basic properties:

- It is a module over $H_{G}^{*}(p t)=H^{*}(B G)$
- Contravariant functoriality with respect to X i G.
- If the action is free then $X_{G} \rightarrow X / G$ is a fibration with the contractible fiber $E G$, hence $H_{G}^{*}(X)=$ $H^{*}(X / G)$. [Anderson-Fulton, Ch 3, §4]
- For $K \subset G, X=G / H$ we have $X_{G}=E G \times{ }^{G} G / K \simeq E G / K=B K$.
- More generally $H_{G}^{*}\left(G \times{ }^{K} X\right) \simeq H_{K}^{*}(X)$ for any K-space X..
- If the action is trivial then $X_{G}=B G \times X$. If $H^{*}(B G)$ has no torsion (e.g. $G=T, \mathrm{GL}_{n}(\mathbb{C}), S p_{n}(\mathbb{C})$) then $H_{G}^{*}(X)=H^{*}(B G) \otimes H^{*}(X)$. For coefficients in \mathbb{Q} we do need the assumption about the torsion. [Anderson-Fulton, Ch 3, §4]

[^0]4.12 Basic properties of equivariant cohomology of smooth compact algebraic varieties: (G connected, coefficients of cohomology in \mathbb{Q})

- (*) $H_{G}^{*}(X)$ is a free module over $H^{*}(B G)$ hence $H_{G}^{*}(B G) \simeq H^{*}(B G) \otimes H^{*}(X)$, the information of the action of G is hidden in the multiplication,
- $H_{\mathbb{T}}^{*}(X) \rightarrow H_{\mathbb{T}}^{*}(X)^{T}$ is injective.
4.13 Example: [Anderson-Fulton, Ch. $2, \S 6] \mathbb{P}^{n}$ with the standard action of $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{n+1}$. We identify $X_{\mathbb{T}}$ with $\mathbb{P}\left(\bigoplus_{i=0}^{n} \mathbb{C}_{t_{i}}\right)$. By the projective bundle theorem

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\left[t_{0}, t_{2}, \ldots, t_{n}, h\right] /\left(\prod_{i=0}^{n}\left(t_{i}+h\right)\right)
$$

- It is a free module over $H_{T}^{*}(p t)=H^{*}(B \mathbb{T})=\mathbb{Z}\left[t_{0}, t_{2}, \ldots, t_{n}\right]$
- The map to $H^{*}\left(\mathbb{P}^{n}\right)=\mathbb{Z}[h] /\left(h^{n+1}\right)$ is a surjection.
- We have an isomorphism of modules over $H^{*}(B \mathbb{T})$

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n}\right) \simeq H^{*}(B \mathbb{T}) \otimes H^{*}\left(\mathbb{P}^{n}\right)
$$

We will see that for compact smooth algebraic varieties (or Kähler) the above holds always over \mathbb{Q}.

- The map

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n}\right) \rightarrow H_{\mathbb{T}}^{*}\left(\left(\mathbb{P}^{n}\right)^{\mathbb{T}}\right)=\bigoplus_{i=0}^{n} H_{\mathbb{T}}^{*}(p t)=\bigoplus_{i=0}^{n} \mathbb{Z}\left[t_{0}, t_{1}, \ldots, t_{n}\right]
$$

by

$$
[f(\underline{t}, h)] \mapsto\left\{f_{i}\right\}_{i=0,1, \ldots, n}, \quad f_{i}(\underline{t})=f\left(\underline{t},-t_{i}\right)
$$

Exercise: this map is injective.
4.14 Example: $\mathbb{T}=\mathbb{C}^{*}$ acting on $\mathbb{P}^{1} \simeq S^{2}$ via $\left[t^{\ell} z_{0}, t^{k} z_{1}\right]$

$$
\begin{gathered}
X_{\mathbb{T}}=\mathbb{P}(\mathcal{O}(\ell) \oplus \mathcal{O}(k)) \\
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{1}\right)=\mathbb{Z}[h, t] /((h+k t)(h+\ell t)
\end{gathered}
$$

- The elements 1 and h generate over $\mathbb{Z}[t]=H^{*}(B T)$. This is a free module
[We have $h^{2}=-(k+\ell) t h-k \ell t^{2}$, so any polynomial in t and h can be written modulo the ideal $\left(h^{2}+h t\right)$ as $f_{0}(t)+f_{1}(t) h$.]
- The restriction to the fixed points

$$
[f(t, h)] \mapsto(f(t,-\ell t), f(t,-k t)) .
$$

is injective.
[If $f(t,-k t)=0$, then f is divisible by $h+k t \ldots$]
4.15 Let $\mathbb{T}=\mathbb{C}^{*}$ act on $X=\mathbb{C}^{*}$ via the multiplication by z^{k}

- We identify \mathbb{C}^{*} with the subset of \mathbb{P}^{1}

$$
\left\{[1, z] \in \mathbb{P}^{1} \mid z \neq 0\right\}
$$

the action of \mathbb{C}^{*} is as in 4.14 for $\ell=0$. To compute $H_{\mathbb{T}}^{*}\left(\mathbb{C}^{*}\right)$ use the Mayer-Vietoris exact sequence [Anderson-Fulton, Ch. 3, §5]: for even degrees we have

$$
\begin{gathered}
0 \rightarrow H_{\mathbb{T}}^{2 i-1}\left(\mathbb{C}^{*}\right) \rightarrow H_{\mathbb{T}}^{2 i}\left(\mathbb{P}^{1}\right) \xrightarrow{\alpha} H_{\mathbb{T}}^{2 i}(\mathbb{C}) \oplus H_{\mathbb{T}}^{2 i}(\mathbb{C}) \rightarrow H_{\mathbb{T}}^{2 i}\left(\mathbb{C}^{*}\right) \rightarrow 0 \\
0 \rightarrow ? \rightarrow \mathbb{Z}[t, h] /(h(h+k t)) \xrightarrow{\alpha} \mathbb{Z}[t] \oplus \mathbb{Z}[t] \rightarrow ? \rightarrow 0 \\
\alpha(t)=(t, t), \quad \alpha(h)=(k t, 0) .
\end{gathered}
$$

The restriction map to the open \mathbb{C} 's can be identified with the restriction to the fixed points. The one but last map α is injective, thus $H_{\mathbb{T}}^{2 i-1}\left(\mathbb{C}^{*}\right)=0$ and

$$
\left.H_{\mathbb{T}}^{2 i}\left(\mathbb{C}^{*}\right)=\operatorname{coker}(\alpha)=\left\langle t_{1}^{i}, t_{2}^{i}\right\rangle /\left\langle\alpha\left(t^{a} h^{b}\right)\right)\right\rangle=\left\langle t_{1}^{i}, t_{2}^{i}\right\rangle /\left\langle t_{1}^{i}+t_{2}^{i}, k t_{1}^{i}\right\rangle=\mathbb{Z} / k \mathbb{Z}
$$

- Corollary:

$$
H^{i}\left(B \mathbb{Z}_{k} \mathbb{Z}\right)=H_{\mathbb{C}^{*}}^{i}\left(\mathbb{C}_{k}^{*} ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } i=0 \\ \mathbb{Z}_{k} & \text { if } i \text { is even } \\ 0 & \text { if } i \text { is odd }\end{cases}
$$

(Here \mathbb{Z}_{k} denotes $\mathbb{Z} / k \mathbb{Z}$.)
4.16 In general, if G is a finite group $H^{>0}(B G ; \mathbb{Z})$ is torsion.

- $p: E G \rightarrow B G$ is a finite covering, thus $p_{*} p^{*} \in \operatorname{End}\left(H^{i}(B G)\right)$ is the multiplication by $|G|$. Since for $i>0$ it factors through trivial group for we have $|G| H^{i}(B G)=0$.
- We will mainly perform computation over \mathbb{Q}, so will ignore finite groups.

5 Equivariant formality, localization I

5.1 The condition

$\left.{ }^{*}\right) H_{\mathbb{T}}^{*}(X)$ is a free module over $H_{\mathbb{T}}^{*}(p t)$
Is called equivariant formality It can be reformulated
$-H_{\mathbb{T}}^{*}(X) \otimes_{H_{\mathbb{T}}^{*}(p t)} \mathbb{Q} \simeq H^{*}(X)$
$-H^{*}(X) \otimes H_{\mathbb{T}}^{*}(p t) \simeq H_{\mathbb{T}}^{*}(X)$ (it is enough to know that there is an isomorphism of graded vector spaces)
$-H_{\mathbb{T}}^{*}(X) \rightarrow H^{*}(X)$ is surjective, compare [Anderson-Fulton, Ch. 6, §3].
5.2 The basic argument is analysis of the fibration $X \subset E \mathbb{T} \times{ }^{\mathbb{T}} X \rightarrow B \mathbb{T}$ and Serre spectral sequence

$$
E_{2}^{p, q}=H_{\mathbb{T}}^{p}(p t) \otimes H^{q}(X) \Rightarrow H_{\mathbb{T}}^{p+q}(X)
$$

5.3 If X is a sum of even dimensional cells then $\left(^{*}\right)$ holds. It is enough to assume $H^{\text {odd }}(X ; \mathbb{Q})=0$.
5.4 Theorem: If X is smooth algebraic manifold with an algebraic torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r}$ action, then X is equivariantly formal.

- See [Anderson-Fulton, Ch. 5, Cor. 3.3]
- (Much more difficult result of McDuff is equivariant formality of X symplectic manifolds with Hamiltonian torus action.)
5.5 To show (5.4) we need some basic tools.
- Fundamental class of a subvariety $Y \subset X$: it is the Poincaré dual of the homology class. We denote it $[Y] \in H^{2 \text { codim } Y}(X)$. (We do not have to assume that X is compact.) • Equivariant fundamental class of an equivariant subvariety. Let $E_{n} \rightarrow B_{n}=\left(\mathbb{P}^{n}\right)^{r}$ be the approximation of the universal \mathbb{T}-bundle. He define $[Y] \in H_{\mathbb{T}}^{*}(X)$ as the fundamental class of $E_{n} \times{ }^{\mathbb{T}} Y \subset E_{n} \times \mathbb{T} X$

$$
\left[E_{n} \times^{\mathbb{T}} Y\right] \in H^{2 \operatorname{codim} Y}\left(E_{n} \times^{\mathbb{T}} X\right) \simeq H_{\mathbb{T}}^{2 \operatorname{codim} Y}(X) \quad \text { for sufficiently large } n
$$

- Exercise: Show that the definition does not depend on $n \gg 0$.
- Exercise: Define the equivariant fundamental class not passing through approximation, but using the equivariant normal bundle on $Y_{\text {smooth }}$.
5.6 Correspondences: (for cohomology with rational coefficients). Suppose X and Y are compact C^{∞} manifolds. We have

$$
\operatorname{Hom}\left(H^{*}(Y), H^{*}(X)\right) \simeq\left(H^{*}(Y)\right)^{*} \otimes H^{*}(X) \stackrel{\text { Poincaré }}{\simeq} H^{*}(Y) \otimes H^{*}(X) \stackrel{\text { Künneth }}{\simeq} H^{*}(X \times Y) .
$$

Having a cohomology class $a \in H^{k}(X \times Y)$ we define $\phi_{a}: H^{*}(Y) \rightarrow H^{*}(X)$

$$
\begin{array}{cccccl}
H^{i}(Y) & H^{i}(X \times Y) & & H^{i+k}(X \times Y) & & H^{i+k-\operatorname{dim} Y}(X) \\
\alpha & \mapsto & \pi_{Y}^{*} \alpha & \mapsto & a \cdot\left(\pi_{Y}^{*} \alpha\right) & \mapsto
\end{array} \pi_{X *}\left(a \cdot\left(\pi_{Y}^{*} \alpha\right)\right) .
$$

Here • is the product in cohomology. Puritans would denote it by U. The push-forward (a.k.a Gysin homomorphism) $\pi_{X *}$ can be defined as the map in homology composed with Poincaré dualities. See [Anderson-Fulton, Ch. 3, §6]

- If a is the class of a graph of $f: X \rightarrow Y$, $\operatorname{dim} Y=k$ i.e. $a=[\operatorname{graph}(f)] \in H^{k}(X \times Y)$. Then $\phi_{a}=f^{*}$. (Exercise.)
- Suppose X and Y smooth an compact algebraic varieties and $Z \subset X \times Y$ any subvariety. Take $a=[Z], \phi_{Z}:=\phi_{a}$. Then $\phi_{Z}: H^{i}(Y) \rightarrow H^{i+2 c}(X)$ with $c=\operatorname{codim} Z-\operatorname{dim} Y=\operatorname{dim} X-\operatorname{dim} Z$.
- One can drop the assumption that X is compact. It is enough to assume that the projection $Z \rightarrow X$ is proper:

$$
\left.\alpha \mapsto \pi_{Y}^{*} \alpha \mapsto\left(\pi_{Y}^{*} \alpha\right)_{\mid Z} \mapsto \pi_{X *}\left(\pi_{Y}^{*} \alpha\right)_{\mid Z}\right)
$$

5.7 Proof of 5.4 Let $B_{n}=\left(\mathbb{P}^{n}\right)^{r}, X_{n}=\left(\mathbb{C}^{n+1}-0\right)^{r} \times^{\mathbb{T}} X$ be the approximation of the Borel construction. We show that $H^{*}\left(X_{n}\right) \rightarrow H^{*}(X)$ surjective. It is enough, since $H^{k}\left(X_{n}\right) \simeq H_{\mathbb{T}}^{*}(X)$ for large n.
The bundle $\left(\mathbb{C}^{n+1}-0\right)^{r} \rightarrow\left(\mathbb{P}^{n}\right)^{r}$ is trivial over the set standard affine open set $U \simeq\left(\mathbb{C}^{n}\right)^{r}$:

$$
U \times X \subset X_{n}
$$

The projection $p: U \times X \rightarrow X$ extends to the correspondence

$$
\phi_{Z}: X_{n} \rightarrow X, \quad Z=\operatorname{closure}(\operatorname{graph}(p)) .
$$

The map p^{*} has a left inverse inverse $i^{\prime *}$ induced by $i^{\prime}: X=\{p t\} \times X \rightarrow U \times X$, i.e. $p i^{\prime}=i d_{X}$

$i^{*} \phi_{Z}=i d_{H^{*}(X)}$ because $i^{* *} p^{*}=i d_{H^{*}(X)}$.

- Exercise: show that all works for cohomology with \mathbb{Z} coefficients.
5.8 Example of a space which is not equivariantly formal:

Let $\mathbb{T}=\mathbb{T}_{1} \times \mathbb{T}_{2}$ with $\mathbb{T}_{i}=\mathbb{C}^{*}, X=\mathbb{T} / \mathbb{T}_{1} \simeq \mathbb{T}_{2}$:

$$
H_{\mathbb{T}}^{*}\left(\mathbb{T} / \mathbb{T}_{1}\right)=H^{*}\left(E \mathbb{T} \times \mathbb{T} \mathbb{T} / \mathbb{T}_{1}\right)=H^{*}\left(B \mathbb{T}_{1}\right)
$$

The map to $H^{*}(X)$ for $*=1$ is not surjective.
5.9 Example: $\mathbb{T}=S^{1}$ acting on $X=S^{3}$ with the quotient S^{2} (the Hopf fibration). Then $H_{\mathbb{T}}^{*}\left(S^{3}\right) \simeq$ $H^{*}\left(S^{2}\right)$ cannot be surjective to $H^{*}\left(S^{3}\right)$.
5.10 If X is a free \mathbb{T} space then X is not equivariantly formal (since $H_{\mathbb{T}}^{*}(X)$ is of finite dimension, cannot be a free module over a polynomial ring).
5.11 Localization 1.0: Let X be a finite $\mathbb{T}-\mathrm{CW}$ complex. Then the kernel and the cokernel of the restriction to the fixed point set $H_{\mathbb{T}}^{*}(X) \rightarrow H_{\mathbb{T}}^{*}\left(X^{T}\right)$ are torsion $H_{T}^{*}(p t)$-modules.

- Other formulation: Let $\Lambda=H_{T}^{*}(p t)=\mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{3}\right]$, and $K=$ be the fraction field. Then the restriction

$$
K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(X) \rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^{*}\left(X^{T}\right)
$$

is an isomorphism. - It will be clear from the proof what elements of Λ should be inverted.

- Proof in the case of the finite $X^{\mathbb{T}}$, see [Anderson-Fulton, Ch. 5, Th. 1.8]. For nonsingular varieties [Anderson-Fulton, Ch 5. Th. 1.13]
5.12 Let M be a Λ-module (it is enough to assume that Λ is a domain). Localization

$$
\begin{gathered}
K \otimes_{\Lambda} M=\left\{\left.\frac{m}{a} \right\rvert\, a \neq 0\right\} / \sim \\
\frac{m_{1}}{a_{1}} \sim \frac{m_{2}}{a_{2}} \Leftrightarrow \exists b \in \Lambda^{*} b a_{2} m_{1}=b a_{1} m_{2} .
\end{gathered}
$$

5.13 Lemma: The localization functor

$$
\Lambda \text { - modules } \longrightarrow K \text {-modules }
$$

is exact. (Exercise)
5.14 Proof of 5.11. Induction with respect to the number of cells: Assume that if $X=Y \cup \mathbb{T} \times{ }_{G} D$. Then the sequence

$$
\rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(X, Y) \rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(X) \rightarrow K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(Y) \rightarrow
$$

is exact. Assume that $G \neq \mathbb{T}$. We will show that $H_{\mathbb{T}}^{*}(X, Y)$ is a torsion Λ-module.

$$
H_{\mathbb{T}}^{*}(X, Y) \simeq H_{\mathbb{T}}^{*}\left(\mathbb{T} \times_{G} D, T \times_{G} S\right) \simeq H_{G}^{*}(D, S),
$$

(see 4.11) The action of Λ on $H_{G}^{*}(D, S)$ factorizes through $H_{\mathbb{T}}^{*}(\mathbb{T} / G)=H_{G}^{*}(p t)=\Lambda /($ characters anihilating $G)$, hence $H_{G}^{*}(p t)$ is a torsion Λ-module.
5.15 Exercise: see what goes wrong for \mathbb{T} replaced by a nonabelian groups. For tori the orbit $H_{\mathbb{T}}^{*}(\mathbb{T} / G)$ turned out to be a torsion $H_{\mathbb{T}}^{*}(p t)$-module. (Is $H_{G L_{n}}^{*}\left(G L_{n} / B_{n}\right)$ a torsion $H_{G L_{n}}^{*}(p t)-$ module?)
5.16 Example: \mathbb{P}^{1} with the standard $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{2}$ action

$$
\begin{gathered}
K \otimes_{\Lambda} H_{\mathbb{T}}^{*}\left(\mathbb{P}^{1}\right)=K[h] /\left(\left(t_{0}+h\right)\left(t_{1}+h\right)\right) \xrightarrow{\simeq} K \oplus K \\
f[h] \mapsto\left(f\left(-t_{0}\right), f\left(-t_{1}\right)\right) .
\end{gathered}
$$

(Chinese reminder theorem.)
5.17 If X is equivariantly formal, then all mappings below are injective

$$
\begin{array}{ccc}
H_{\mathbb{T}}^{*}(X) & \longrightarrow & H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right) \\
\downarrow & & \downarrow \\
K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(X) & \xrightarrow{\simeq} & K \otimes_{\Lambda} H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right)
\end{array}
$$

If $|X|<\infty$ then

$$
K \otimes_{\Lambda} H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right) \simeq K^{\left|X^{\mathbb{T}}\right|}
$$

Therefore instead of computation in a possibly difficult ring $H_{\mathbb{T}}^{*}(X)$ it is enough to make calculations with rational functions.
5.18 Example: (exercise) $X=\mathbb{P}^{n}, \mathbb{T}$ the standard one, the image

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n}\right) \hookrightarrow \bigoplus_{k=0}^{n} \Lambda=\Lambda^{n+1}
$$

consists of such sequences $\left(f_{0}, f_{1}, \ldots, f_{n}\right) \in \mathbb{Q}\left[t_{0}, t_{1}, \ldots, t_{n}\right]^{n+1}$, such that $t_{i}-t_{j}$ divides $f_{i}-f_{j}$.
Plans for the future:
5.19 Assume that X is equivariantly formal, $\left|X^{T}\right|<\infty$.

Question: how to describe $H_{T}^{*}(X) \hookrightarrow \bigoplus_{x \in X^{T}} \Lambda$?
(an answer for GKM-spaces is easy and handy to use).
5.20 Assume, that X is equivariantly formal and $\left|X^{\mathbb{T}}\right|<\infty$.

Question: how to reconstruct an element $\alpha \in H_{\mathbb{T}}^{*}(X)$ knowing the restrictions $\alpha_{\mid\{x\}} \in \Lambda$?
Answer: Atiyah-Bott and Beline-Vergne theorem: assuming that X compact manifold

$$
\alpha=\sum_{x \in X^{T}}\left(i_{x}\right)_{*}\left(\frac{i_{x}^{*} \alpha}{e\left(T_{x} X\right)}\right) \in K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(X)
$$

where $i_{x}:\{x\} \rightarrow X$, and $e\left(T_{x} X\right) \in \Lambda$ is the equivariant Euler class of $T_{x} X \rightarrow\{x\}$, see 2.7 .
5.21 Corollary (with the assumptions as above):

$$
\int_{X} \alpha=\sum_{x \in X^{T}} \frac{i_{x}^{*} \alpha}{e\left(T_{x} X\right)}
$$

5.22 Corollary: $X=\mathbb{P}^{n}, \alpha=\left(c_{1}(\mathcal{O}(1))^{n}\right.$

$$
\sum_{i=0}^{n} \frac{\left(-t_{i}\right)^{n}}{\prod_{j \neq i}\left(t_{j}-t_{i}\right)}=?
$$

6 Localization and integration on manifolds

[Anderson-Fulton, Ch. 5]
6.1 Corollary: If X is equivariantly formal, then $H^{\text {even }}(X ; \mathbb{Q}) \simeq H^{\text {even }}\left(X^{T} ; \mathbb{Q}\right)$ and $H^{\text {odd }}(X ; \mathbb{Q}) \simeq$ $H^{o d d}\left(X^{T} ; \mathbb{Q}\right)$

- By elementary arguments we already new that $\chi(X)=\chi\left(X^{\mathbb{T}}\right)$.
6.2 Remark: From Białynicki-Birula decomposition one can derive more: the correspondences

$$
\Gamma_{i}=\operatorname{closure}\left(X_{F}^{+} \rightarrow F\right) \subset F \times X
$$

induce

$$
H^{*}(X ; \mathbb{Z}) \simeq \bigoplus_{F \subset X^{\mathbb{T}}} H^{*-2 n_{F}^{+}}(F, \mathbb{Z})
$$

where n_{F}^{+}is the dimension of the fiber of the limit map $X_{F}^{+} \rightarrow F$. [proof by Carrell].
6.3 Let $f: X \rightarrow Y$ be a map of compact oriented manifolds. Then the push-forward (or the Gysin map [Anderson-Fulton, Ch.3, §6]) $f_{*}: H^{*}(X) \rightarrow H_{T}^{*}(Y)$ may be defined by Poincaré duality

$$
\begin{gathered}
P D_{X}: H^{k}(X) \rightarrow H_{\operatorname{dim} X-k}(X) \\
a \mapsto a \cap[X],
\end{gathered}
$$

We define f_{*} to be the composition

\[

\]

6.4 Another construction for an embedding: Let U be a tubular neighbourhood of X in Y, i.e. U is diffeomorphic to the space of the normal bundle $\pi: \nu \rightarrow X, c=\operatorname{codim} X$. Let $\tau \in H^{c}(U, U \backslash X)$ be the Thom class. This means that τ restricted to any fiber of $U \simeq \nu \rightarrow X$ is the generator of $H^{c}\left(\nu_{x}, \nu_{x} \backslash\{0\}\right) \simeq H^{c}\left(\mathbb{R}^{c}, \mathbb{R}^{c} \backslash\{0\}\right)$ (i.e. we have a continuous choice of orientations in the fibers). We define f_{*} :

$$
H^{k}(X) \xrightarrow{\text { Thom }} H^{c+k}(U, U \backslash X) \underset{\simeq}{\stackrel{\text { excision }}{\simeq}} H^{c+k}(Y, Y \backslash X) \longrightarrow H^{c+k}(Y) .
$$

The Thom isomorphism is given by $H^{k}(X) \xlongequal{\leftrightharpoons} H^{c+k}(U, U \backslash X), a \mapsto \tau \cdot \pi^{*}(a)$, where $\pi: U \rightarrow X$ is the projection in the bundle $\nu \simeq U \rightarrow X$.
6.5 Exercise: show that both constructions of f_{*} are equivalent. Hint $\tau \cap[U]=[X] \in H_{\operatorname{dim} X}(U) \simeq$ $H_{\operatorname{dim} X}(X)$, where $[U] \in H_{\operatorname{dim} Y}(\bar{U}, \partial U)$ is the orientation class.
6.6 Key formula. Let $e(\nu) \in H^{c}(X)$ be the Euler class, $i: X \hookrightarrow Y$ the inclusion. We have

$$
i^{*} i_{*}(a)=e(\nu) \cdot a .
$$

- Since

$$
e(\nu)=i^{*}(\tau), \quad \tau \in H^{c}(\nu, \nu \backslash X) \simeq H^{c}(Y, Y \backslash X)
$$

by the definition, we get $i^{*} i_{*}(a)=i^{*}\left(\tau \cdot \pi^{*}(a)\right)=i^{*}(\tau) \cdot i^{*} \pi^{*}(a)=e(\nu) a$.
6.7 If $X \subset Y$ is a \mathbb{T}-invariant. Let us define i_{*} as in 6.4. The equivariant class of an invariant submanifold is defined as $i_{*}\left(1_{X}\right) \in H_{\mathbb{T}}^{*}(Y)$.
6.8 Suppose, that X is a \mathbb{T}-manifold, $i: X^{T} \rightarrow X$ is an embedding,

$$
i^{*}: K \otimes_{\Lambda} H_{T}^{*}(X) \stackrel{\simeq}{\leftrightarrows} K \otimes_{\Lambda} H_{T}^{*}\left(X^{T}\right)
$$

The composition $i_{*} i^{*}$ by the Euler class of the normal bundle X^{T}. (over each component $F \subset X^{\mathbb{T}}$ the normal bundle can have a different dimension.)
6.9 Fundamental Lemma: The Euler class $e\left(\nu\left(X^{\mathbb{T}}\right.\right.$ in $\left.X\right) \in H_{\mathbb{T}}^{*}(X)$ is invertible in $K \otimes_{\Lambda} H_{\mathbb{T}}^{*}(X)$.

- It has to be checked for every component of $F \subset X^{\mathbb{T}}$ that the Euler class in invertible.
- If $F=\{x\}$ is a point,

$$
e\left(\nu_{F}\right)=\prod_{i} w_{i} \in Z\left[t_{1}, t_{2}, \ldots, t_{r}\right]
$$

where w_{1}, \ldots, w_{c} are weights of the torus representation $\nu_{F}=T_{x} X$. The weights are non-zero, since x is an isolated fixed point.

- E.g. if $x=[0: \cdots: 0: 1: 0: \cdots: 0] \in \mathbb{P}^{n}(1$ on k-th position $)$, then $e\left(\nu_{\{x\}}\right)=\prod_{i \neq k}\left(t_{i}-t_{k}\right)$.
6.10 Proof of the fundamental lemma in the general case: We decompose $\nu=\bigoplus_{w \in \mathcal{W}} \nu_{w}$. We can assume that ν_{w} is a complex bundle. (We do not assume that X is a complex manifold but the torus action allows to define complex structure.) Each summand ν_{w} has a complement μ_{w} such that

$$
\nu_{w} \oplus \mu_{w}=\mathbb{1}^{d_{w}} \quad \text { a trivial bundle of dimension } d_{w}
$$

The above isomorphism can be made equivariant, when we act on μ_{w} with the character w Then $e\left(\nu_{w} \oplus \mu_{w}\right)=w^{d_{w}}$. Let $\mu=\bigoplus_{w} \mu_{w}$. We have

$$
e(\nu \oplus \mu)=\prod_{w \in \mathcal{W}} w^{d_{w}}
$$

hence

$$
e(\nu) \cdot\left(e(\mu) / \prod_{w \in \mathcal{W}} w^{d_{w}}\right)=1
$$

6.11 Localization formula (Atiyah-Bott, Berline-Vergne). Assume, that X is a compact \mathbb{T}-manifold, which is equivariantly formal. For $a \in H_{\mathbb{T}}^{*} * X$) we have

$$
\begin{equation*}
a=\sum_{F}\left(i_{F}\right)_{*}\left(\frac{i_{F}^{*}(a)}{e(\nu(F))}\right) \tag{1}
\end{equation*}
$$

summation over the connected components $F \subset X^{\mathbb{T}}$. Here $i_{F}: F \rightarrow X$ is the inclusion.

- Proof. Let ϕ be the composition

$$
K \otimes_{\Lambda} H_{T}^{*}(X) \stackrel{i^{*}}{\rightarrow} \bigoplus_{F} K \otimes_{\Lambda} H_{T}^{*}(F) \xrightarrow{1 / e(\nu)} \bigoplus_{F} K \otimes_{\Lambda} H_{T}^{*}(F)
$$

Note, that $i_{*} \circ \phi=I d$. Since $K \otimes_{\Lambda} H_{T}^{*}(X)$ is of a finite dimension over K, thus $\phi \circ i_{*}=I d$. Hence we have an equality (1) in $K \otimes_{\Lambda} H_{T}^{*}(X)$.

- Note that we have an expression in $K \otimes_{\Lambda} H_{T}^{*}(X)$, but the sum belongs to $H_{T}^{*}(X)$, i.e. it is integral.
- The above argument reoproves the statement that the restriction to $X^{\mathbb{T}}$ is an isomorphism after tensoring with K.
- It is enough to invert the weights appearing in the normal bundles ν_{F}.
- We do not have to assume that X is compact. It is enough to know that $X^{\mathbb{T}}$ is compact and X is formal.
6.12 [Anderson-Fulton, Ch. 5, §2] AB-BV integration formula: Let $p_{X}: X \rightarrow p t$ be the constant map. With the assumption as above

$$
\int_{X} a:=\left(p_{X}\right)_{*}(a)=\sum_{F}\left(p_{F}\right)_{*}\left(\frac{i_{F}^{*}(a)}{e(\nu(F))}\right) \in \Lambda
$$

- The sum is in Λ although the summands belong to K.
- If $\left|X^{T}\right|<\infty$

$$
\int_{X} a=\sum_{p \in X^{T}} \frac{a_{\mid p}}{e\left(T_{p} X\right)}
$$

6.13 Example [Anderson-Fulton, Ch 5, Ex. 2.5] \mathbb{P}^{n}. Let $h=c_{1}(\mathcal{O}(1))$:

- Subexample, $n=1$

$$
\int_{\mathbb{P}^{1}} h=\frac{-t_{0}}{t_{1}-t_{0}}+\frac{-t_{1}}{t_{0}-t_{1}}=\cdots=1
$$

- In general

$$
\begin{gathered}
\int_{\mathbb{P}^{n}} h^{k+n}=\sum_{i=0}^{n} \frac{\left(-t_{i}\right)^{k+n}}{\prod_{j \neq i}\left(t_{j}-t_{i}\right)} \\
=(-1)^{k} \sum_{i=0}^{n} \operatorname{Res}_{z=t_{i}} \frac{z^{k+n}}{\prod_{j=1}^{n}\left(z-t_{j}\right)}=\ldots
\end{gathered}
$$

The result is:

$$
(-1)^{k} S_{k}\left(t_{0}, t_{1}, \ldots, t_{n}\right)=(-1)^{k} \sum_{\ell_{0}+\ell_{1}+\cdots+\ell_{n}=k} t_{0}^{\ell_{0}} t_{1}^{\ell_{1}} \ldots t_{n}^{\ell_{n}}
$$

i.e. the complete symmetric function.

- Exercise: Check at least that $\int_{\mathbb{P}^{n}} h^{n}=1$.

Application to compute Euler characteristic of holomorphic bundles.

6.14 Riemann-Roch theorem: Let E be a holomorphic bundle over a compact complex manifold, then

$$
\chi(X ; E)=\int_{X} t d(T X) \operatorname{ch}(E)
$$

- Remainder: the Todd class $t d$ is a multiplicative characteristic class i.e. $t d(E \oplus F)=t d(E) t d(F)$ and for a line bundle $t d(L)=\frac{t}{1-e^{-t}}$, where $t=c_{1}(L)$.
- If a torus \mathbb{T} acts on X with a finite number of fixed points, and E is a vector bundle admitting \mathbb{T} action, the $t d(T X)$ and $c h(E)$ naturally lift to equivariant cohomology (via Borel construction). Then

$$
\chi(X ; E)=\sum_{x \in X^{\mathbb{T}}} \frac{i_{x}^{*}(t d(T X) \operatorname{ch}(E))}{e\left(T_{x} X\right)}
$$

- For simplicity assume that $E=L$ is a line bundle. Each summand is equal to

$$
\frac{\prod_{i=1}^{n} \frac{w_{x, i}}{1-e^{-w_{x, i}}}}{\prod_{i=1}^{n} w_{x, i}} e^{\alpha_{x}}=\frac{e^{\alpha}}{\prod_{i=1}^{n}\left(1-e^{-w_{x, i}}\right)}
$$

where $w_{x, i}$ are the weights of the \mathbb{T} action on the tangent space $T_{x} X$ and α_{x} is the weight of \mathbb{T} acting on L_{x}.

- Exercise: compute from above $\chi\left(\mathbb{P}^{n} ; \mathcal{O}(k)\right)$.

7 Flag variety and flag bundles

[Anderson-Fulton, Ch.4, §4]
7.1 Let $E \rightarrow B$ be a complex vector bundle of rank $n, \pi: \mathcal{F} \ell(E) \rightarrow B$ the associated bundle of complete flag varieties. A point of $\mathcal{F} \ell(E)$ mapping to $x \in B$ is a sequence

$$
V_{\bullet}=\left\{0=V_{0} \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n}=E_{x} \mid \operatorname{dim}\left(V_{i}\right)=i\right\} .
$$

The quotients $L_{i}=V_{i} / V_{i-1}$ with V_{\bullet} varying form a line bundle. Let $x_{i}=c_{1}\left(L_{i}\right)$.
7.2 Theorem. Cohomology $H^{*}(\mathcal{F} \ell(E))$ is generated by x_{i} as a $H^{*}(B)$ algebra:

$$
H^{*}(\mathcal{F} \ell(E)) \simeq H^{*}(B)\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I
$$

where I is the ideal generated by

$$
\sigma_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)-\pi^{*} c_{i}(E) \quad \text { for } i=1,2, \ldots, n,
$$

so that in $H^{*}(\mathcal{F} \ell(E))$

$$
\pi^{*}(c(E))=\prod_{i=1}^{n}\left(1+x_{i}\right)
$$

7.3 The proof by induction.

- For $n=1: \mathcal{F} \ell(E)=B, H^{*}(B)\left[x_{1}\right] /\left(x_{1}-c_{1}(E)\right)=H^{*}(B)$.
- Let $B^{\prime}=\mathbb{P}(E)$ with the projection to B denoted by p. The bundle $p *(E)$ fits to the exact sequence

$$
0 \rightarrow \mathcal{O}(-1) \rightarrow p^{*}(E) \rightarrow E^{\prime}
$$

By the projective bundle theorem

$$
H^{*}\left(B^{\prime}\right) \simeq H^{*}(B)[h] /\left(\sum_{i=0}^{n} h^{i} p^{*}\left(c_{n-i}(E)\right)\right) .
$$

Here $h=c_{1}(\mathcal{O}(1))$. By Whitney formula

$$
c\left(E^{\prime}\right)=p^{*}(c(E))(1-h)^{-1}
$$

i.e.

$$
c_{k}\left(E^{\prime}\right)=\sum_{i=0}^{k} h^{i} p^{*}\left(c_{k-i}(E)\right) .
$$

(The expression for $0=c_{n}\left(E^{\prime}\right)$ is exactly the relation in the Projective Bundle Theorem,.) We identify the flag bundle $\mathcal{F} \ell\left(E^{\prime}\right)$ with $\mathcal{F} \ell(E)$. The generators in cohomology of $\mathcal{F} \ell(E)$ correspond to generators for $\mathcal{F} \ell\left(E^{\prime}\right)$:

$$
x_{1}=-h, \quad x_{2}=x_{1}^{\prime}, \quad x_{3}=x_{2}^{\prime} \quad \ldots \quad x_{n}=x_{n-1}^{\prime} .
$$

We have by the inductive assumption

$$
\begin{gathered}
H^{*}\left(\mathcal{F} \ell\left(E^{\prime}\right)\right) \simeq H^{*}(B)\left[h, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n-1}^{\prime}\right] / J \\
J=\left\langle\pi^{\prime *}\left(c_{i}\left(E^{\prime}\right)\right)-\sigma_{i}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right) \text { for } i=1,2, \ldots, n-1, \quad \sum_{i=0}^{n} h^{i} \pi^{*} c_{n-i}(E)\right\rangle .
\end{gathered}
$$

It is enough to change the name of variables and conclude that $J=I$.

- The inclusion $I \subset J$ follows since (topologically) $E \simeq \bigoplus_{i=1}^{n} L_{i}$.
- Example: $n=4$. The generator of J (we drop pull-backs in the notation)

$$
\begin{aligned}
& c_{1}\left(E^{\prime}\right)-\sigma_{1}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=c_{1}(E)-x_{1}-\sigma_{1}\left(x_{2}, x_{3}, x_{4}\right) \\
& c_{2}\left(E^{\prime}\right)-\sigma_{2}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=c_{2}(E)-x_{1} c_{1}(E)+x_{1}^{2}-\sigma_{2}\left(x_{2}, x_{3}, x_{4}\right) \\
& c_{3}\left(E^{\prime}\right)-\sigma_{3}\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=c_{3}(E)-x_{1} c_{2}(E)+x_{1}^{2} c_{1}(E)-x_{1}^{3}-\sigma_{3}\left(x_{2}, x_{3}, x_{4}\right) \\
& c_{4}(E)-x_{1} c_{3}(E)+x_{1}^{2} c_{2}(E)-x_{1}^{3} c_{1}(E)+x_{1}^{4}
\end{aligned}
$$

We perform computations in $H^{*}(B)\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$. By induction show that the generators of J are trivial. We abbreviate $\left(x_{1}, x_{2}, \ldots\right)$ by \underline{x}

$$
\begin{aligned}
& c_{1}\left(E^{\prime}\right)-\sigma_{1}\left(\underline{x}^{\prime}\right)=c_{1}(E)-x_{1}-\sigma_{1}\left(\underline{x}^{\prime}\right)=c_{1}(E)-\sigma_{1}(\underline{x}) \\
& c_{2}\left(E^{\prime}\right)-\sigma_{2}\left(\underline{x}^{\prime}\right)=c_{2}(E)-x_{1} \sigma_{1}(\underline{x})+x_{1}^{2}-\sigma_{2}\left(\underline{x}^{\prime}\right)=c_{2}(E)-\sigma_{2}(\underline{x}) \\
& c_{3}\left(E^{\prime}\right)-\sigma_{3}\left(\underline{x}^{\prime}\right)=c_{3}(E)-x_{1} \sigma_{2}(\underline{x})+x_{1}^{2} \sigma_{1}(\underline{x})-x_{1}^{3}-\sigma_{3}\left(\underline{x}^{\prime}\right)=c_{3}(E)-\sigma_{3}(\underline{x}) \\
& c_{4}(E)-x_{1} \sigma_{3}(\underline{x})+x_{1}^{2} \sigma_{2}(\underline{x})-x_{1}^{3} \sigma_{1}(\underline{x})+x_{1}^{4}=c_{4}(E)-\sigma_{4}(\underline{x})
\end{aligned}
$$

We apply the formula

$$
\sum_{i=0}^{k}(-1)^{i} x_{1}^{i} \sigma_{k-i}(\underline{x})=\sigma_{k}\left(\underline{x}^{\prime}\right)
$$

and for the last row

$$
\sum_{i=0}^{n}(-1)^{i} x_{1}^{i} \sigma_{n-i}(\underline{x})=0
$$

- Conceptually: the relations in J say that $c(E)\left(1+x_{1}\right)^{-1}$ lives in the gradations $<n$ and $c(E)(1+$ $\left.x_{1}\right)^{-1}=\prod_{k=2}^{n}\left(1+x_{k}\right)$. That follows from the identities of I.
7.4 Corollary: Let \mathbb{T} be the maximal torus in $\mathrm{GL}_{n}(\mathbb{C})$ acting on

$$
\begin{gathered}
\mathcal{F} \ell\left(\mathbb{C}^{n}\right)=\mathrm{GL}_{n}(\mathbb{C}) /(\text { upper-triangular }) \simeq U(n) /(U(n) \cap \mathbb{T}) . \\
H_{\mathbb{T}}^{*}\left(\mathcal{F} \ell\left(\mathbb{C}^{n}\right) \simeq \Lambda\left[x_{1}, x_{2}, \ldots, x_{n}\right] /\left\langle\sigma_{i}(\underline{t})-\sigma_{i}(\underline{x})\right\rangle|i=1,2, \ldots, n\rangle .\right. \\
H_{\mathbb{T}}^{*}\left(\mathcal{F} \ell\left(\mathbb{C}^{n}\right) \simeq \Lambda \otimes_{\Lambda^{\Sigma_{n}}} \Lambda .\right.
\end{gathered}
$$

- Note

$$
H_{\mathrm{GL}_{n}(\mathbb{C})}^{*}\left(\mathcal{F} \ell\left(\mathbb{C}^{n}\right) \simeq \Lambda\right.
$$

7.5 [Anderson-Fulton, Ch. 4, §5] For Grassmannian $G r_{k}\left(\mathbb{C}^{n}\right)$ the computation follows. The projection $\mathcal{F} \ell\left(\mathbb{C}^{n}\right) \rightarrow G r_{k}\left(\mathbb{C}^{n}\right)$ induces the inclusion

$$
H_{\mathbb{T}}^{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right) \hookrightarrow H_{\mathbb{T}}^{*}\left(\mathcal{F} \ell\left(\mathbb{C}^{n}\right)\right) \simeq \Lambda \otimes_{\Lambda^{\Sigma_{n}}} \Lambda,
$$

(as for any locally-Zariski trivial fibration). The image lies in

$$
\Lambda \otimes_{\Lambda_{n}} \Lambda^{\Sigma_{k} \times \Sigma_{n-k}} .
$$

By a dimension consideration there is an isomorphism

$$
H_{\mathbb{T}}^{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right) \simeq \Lambda \otimes_{\Lambda^{\Sigma_{n}}} \Lambda^{\Sigma_{k} \times \Sigma_{n-k}}
$$

- It follows that for any vector bundle $E \rightarrow B$ of rank n

$$
H_{\mathbb{T}}^{*}(E) \simeq H^{*}(B)\left[c_{1}, c_{2}, \ldots, c_{k}, c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n-k}^{\prime}\right] / I
$$

The ideal I is generated by the homogeneous components of the identity

$$
\left(1+c_{1}+\cdots+c_{k}\right)\left(1+c_{1}^{\prime}+\cdots+c_{n-k}^{\prime}\right)=c(E) .
$$

7.6 We denote the group of invertible upper-triangular matrices by B_{n}. The fixed points of \mathbb{T} acting on $\mathcal{F} \ell_{n}=G L_{n}(\mathbb{C}) / B_{n}$ are given by the permutation matrices. The identity corresponds to the standard flag V_{0}. The quotient map $G L_{n}(\mathbb{C}) \rightarrow \mathcal{F} \ell_{n}$ is \mathbb{T} equivariant with respect to the action of \mathbb{T} on $G L_{n}(\mathbb{C})$ by conjugation. The tangent space of $\mathcal{F} \ell\left(\mathbb{C}^{n}\right)=\mathrm{GL}_{n}(\mathbb{C}) / B_{n}$ at the point $[i d]$ is isomorphic to $\mathfrak{g l}_{n} / \mathfrak{b}$ with the adjoint action of the torus. The weights are $t_{j}-t_{i}$ for $i<j$. At the remaining points corresponding to permutations the weights differ by the action of the permutation.
7.7 Let $X=\mathcal{F} \ell\left(\mathbb{C}^{n}\right)$. We will apply AB-BV formula to integrate the class $\prod_{i=1}^{n} c_{1}\left(L_{i}\right)^{\alpha_{i}}$ for some choice of exponents $\alpha_{i} \in \mathbb{N}$:

- The integration formula is of the form

$$
(\boldsymbol{\star})=\sum_{\sigma \in \Sigma_{n}} \frac{\prod_{i=1}^{n} t_{\sigma(i)}^{\alpha_{i}}}{\prod_{i<j}\left(t_{\sigma(j)}-t_{\sigma(i)}\right)}=\frac{\left|\begin{array}{cccc}
t_{1}^{\alpha_{1}} & t_{1}^{\alpha_{2}} & \ldots & t_{1}^{\alpha_{n}} \\
t_{2}^{\alpha_{1}} & t_{2}^{\alpha_{2}} & \ldots & t_{2}^{\alpha_{n}} \\
\vdots & & & \\
t_{n}^{\alpha_{1}} & t_{n}^{\alpha_{2}} & \ldots & t_{n}^{\alpha_{n}}
\end{array}\right|}{\operatorname{Vandermonde}\left(t_{1}, t_{2}, \ldots, t_{n}\right)}
$$

If α_{i} is decreasing then we obtain the Schur function S_{λ} indexed by the sequence λ_{i} obtained as below

$$
\begin{aligned}
& \begin{array}{cccccccc}
\alpha_{1} & > & \alpha_{2} & > & \alpha_{3} & > & \ldots & > \\
\| & \| & \|_{n} \\
\lambda_{1}+n-1 & & \lambda_{2}+n-2 & & \lambda_{3}+n-3 & & \ldots & \\
\lambda_{2}+n & \lambda_{n}
\end{array} \\
& \alpha_{k}=\lambda_{k}+n-k
\end{aligned}
$$

The Schur functions in n variables for $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right)$ form an additive basis of symmetric functions

$$
S_{\lambda}=\frac{\left|\begin{array}{cccc}
t_{1}^{n-1+\lambda_{1}} & t_{1}^{n-2+\lambda_{2}} & \ldots & t_{1}^{\lambda_{n}} \\
t_{2}^{n-1+\lambda_{1}} & t_{2}^{n-2+\lambda_{2}} & \ldots & t_{2}^{\lambda_{n}} \\
\vdots & & & \\
t_{n}^{n-1+\lambda_{1}} & t_{n}^{n-2+\lambda_{2}} & \ldots & t_{n}^{\lambda_{n}}
\end{array}\right|}{\left|\begin{array}{cccc}
t_{1}^{n-1} & t_{1}^{n-2} & \ldots & 1 \\
t_{2}^{n-1} & t_{2}^{n-2} & \ldots & 1 \\
\vdots & & & \\
t_{n}^{n-1} & t_{n}^{n-2} & \ldots & 1
\end{array}\right|}= \pm \frac{\text { Generalized Undermined }}{\text { Vandermonde }}
$$

It is equal $(-1)^{\frac{n(n-1)}{2}}(\star)$.
7.8 Exercise (but maybe not for this course): Check that

$$
S_{\lambda}=\operatorname{det}\left(h_{\lambda_{i}+j-i}\right)_{i, j=1, \ldots, \text { length }(\lambda)}
$$

where h_{i} is the complete symmetric function and $h_{i}=0$ for $i<0$.

- The fixed points of $G(k, n)$ are the coordinate subspaces (exercise), they correspond to k-element subsets of $\underline{n}=\{1,2, \ldots, n\}$. The weights at the point corresponding to $I_{0}=\{1,2, \ldots, k\}$ can be computed from the isomorphism

$$
T_{I_{0}} G(k, n) \simeq \mathfrak{g l}_{\mathfrak{n}} / \mathfrak{p}
$$

where. $\mathfrak{p}=\operatorname{Lie}(P), P$ is the stabilizer of $\operatorname{lin}\left\{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{k}\right\}$. This set is equal to

$$
\left\{t_{j}-t_{i} \mid i \leq k<j\right\}
$$

- At the point p_{I} corresponding to the set $I \subset\{1,2, \ldots, n\}$ the set of weights is equal to $\left\{t_{j}-t_{i}\right\}_{i \in I, j \notin I}$.
7.9 Let $a \in H_{\mathbb{T}}^{*}(G(k, n))$ be given by a polynomial $W\left(c_{1}(\gamma), c_{2}(\gamma), \ldots c_{k}(\gamma), c_{1}(Q), c_{2}(Q), \ldots, c_{n-k}(Q)\right)$ written as a polynomial in $x_{1}, x_{2}, \ldots, x_{n}$, symmetric with respect to $\Sigma_{k} \times \Sigma_{n-k}$. Then

$$
\int_{G(k, n)} a=\sum_{I \subset \underline{n}|I|=k} \frac{W\left(t_{I}, t_{I \vee}\right)}{\prod_{i \in I} \prod_{j \in I^{\vee}}\left(t_{j}-t_{i}\right)}
$$

where $I^{\vee}=\underline{n} \backslash I$.
7.10 Let $L=\Lambda^{k} \gamma^{*}$ be the top exterior power of the dual tautological bundle on $G(k, n)$. (This bundle is the pull-back of $\mathcal{O}(1)$ for the Plücker embedding).

- Exercise: Compute the degree of $G(k, n)$ under Plücker embedding: let $m=\operatorname{dim}(G(k, n)=k(m-k)$

$$
\int_{G(k, n)} c_{1}(L)^{m}=(-1)^{m} \sum_{I \subset \underline{n}|I|=k} \frac{\left(\sum_{i \in I} t_{i}\right)^{m}}{\prod_{i \in I} \prod_{j \in I^{\vee}}\left(t_{j}-t_{i}\right)}
$$

- In particular

$$
\frac{\left(t_{1}+t_{2}\right)^{4}}{\left(t_{3}-t_{1}\right)\left(t_{4}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(t_{4}-t_{2}\right)}+\text { other } 5 \text { summands }=2
$$

Check it.
7.11 Tangent bundle of the Grassmannian $G r_{k}\left(\mathbb{C}^{n}\right)=G(k, n)$: let $\gamma \stackrel{\iota}{\hookrightarrow} \mathbb{1}^{n}$ be the tautological bundle and let $Q=\mathbb{1}^{n} / \gamma$ be the quotient bundle. There is an equivariant isomorphism

$$
T G(k, n) \simeq \operatorname{Hom}(\gamma, Q)
$$

- Proof. We define a map of vector bundles

$$
\operatorname{Hom}\left(\gamma, \mathbb{1}^{n}\right) \rightarrow T G(k, n)
$$

constructing a curve: for $V \in G(k, n)$ let $f \in \operatorname{Hom}\left(V, \mathbb{1}^{n}\right)$. The cure $x_{f}:(-\epsilon, \epsilon) \rightarrow G(k, n)$ is given by

$$
x_{f}(t)=\operatorname{image}(\iota+t f) \in G(k, n)
$$

(well defined for small t). The bundle map is given by

$$
\Phi(f)=\dot{x}_{f}(0)
$$

This map invariant with respect to automorphisms of \mathbb{C}^{n}. At a point $V \in G(k, n)$ decompose $\mathbb{C}^{n}=$ $V \oplus W$. In the affine neighbourhood of V

$$
\left\{V^{\prime} \in G(k, n) \mid V^{\prime} \text { is transverse to } W\right\}
$$

every element is a graph of a map $V \rightarrow W$. The kernel of Φ is equal to $\operatorname{Hom}(\gamma, \gamma) \subset \operatorname{Hom}\left(\gamma, \mathbb{1}^{n}\right)$ (i.e. at the point V the kernel is equal to $\operatorname{Hom}(V, V) \subset \operatorname{Hom}(V, V \oplus W))$. Thus we have (equivariant) short exact sequence of bundles

$$
0 \rightarrow \operatorname{Hom}(\gamma, \gamma) \rightarrow \operatorname{Hom}\left(\gamma, \mathbb{1}^{n}\right) \xrightarrow{\Phi} T G(k, n) \rightarrow 0
$$

Hence

$$
T G(k, n) \simeq \operatorname{Hom}(\gamma, Q)
$$

8 Application of the integration formula

8.1 Let $\mathbb{T} \subset B \subset \mathrm{GL}_{n}(\mathbb{C})$ be the diagonal torus, B - the group of upper-triangular matrices. For a character $e^{\lambda}: \mathbb{T} \rightarrow \mathbb{C}^{*}$ define a line bundle $\mathcal{L}_{\lambda}=\mathrm{GL}_{n}(\mathbb{C}) \times{ }^{B} \mathbb{C}_{-\lambda}$. Here B acts on $\mathbb{C}_{-\lambda}$ via the surjection $B \rightarrow \mathbb{T} \xrightarrow{e^{-\lambda}} \mathbb{C}^{*}$. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, then the diagonal torus acts via the multiplication by $t^{-\lambda_{1}} t^{-\lambda_{2}} \ldots t^{-\lambda_{n}}$.

- If $n=2$, then for $\lambda=(1,0)$ the bundle \mathcal{L}_{λ} is isomorphic to $\mathcal{O}(1)$.
- Borel-Weil-Bott theorem: Suppose $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$, then $V_{\lambda}=H^{0}\left(G / B ; \mathcal{L}_{\lambda}\right)$ is an irreducible representation of $\mathrm{GL}_{m}(\mathbb{C})$ and $H^{k}\left(G / B ; \mathcal{L}_{\lambda}\right)=0$ for $k>0$, [Fulton-Harris, p.392-394]
8.2 Character of a representation V is denoted by χ_{V}, it is the function from $G=\mathrm{GL}_{n} \rightarrow \mathbb{C}$:

$$
\chi_{V}(g)=\operatorname{tr}(g: V \rightarrow V)
$$

- Since $\chi_{V}(g)=\chi_{V}\left(h g h^{-1}\right)$ the values of χ_{V} on the maximal torus determine χ_{V}.
- Let $R(\mathrm{GL}(n)$ be the representation ring. The map

$$
\chi: R(\mathrm{GL}(n)) \rightarrow \mathbb{C}\left[t_{1}^{ \pm 1}, t_{2}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]^{\Sigma_{n}}
$$

is an isomorphism after $\otimes \mathbb{C}$.
8.3 The construction of the representation ring is generalized to the equivariant K-theory of an algebraic variety (or to any category with exact sequences)
$K_{G}(X)=\bigoplus \mathbb{Z}[$ Isomorphism classes of equivariant vector bundles $] /$ (short exact sequences)

$$
0 \rightarrow E_{1} \rightarrow E_{2} \rightarrow E_{3} \rightarrow 0 \quad \Rightarrow \quad\left[E_{2}\right]=\left[E_{1}\right]+\left[E_{3}\right]
$$

- We take the algebraic version of the K-theory, but there is a variant for topological spaces.
- If complex algebraic group G is reductive (all representations split into a direct sum of irreducible representations), then $K_{G}(p t)=R(G)$. We will consider G reductive only, e.g. $G=\mathrm{GL}_{n}(\mathbb{C})$.
8.4 Instead of vector bundles we can take the isomorphism classes of coherent sheaves. If X is smooth, then we obtain isomorphic K-theory.
8.5 Let $f: X \rightarrow Y$ be a proper G-equivariant map of smooth algebraic G-varieties. We define $f_{!}: K_{G}(X) \rightarrow K_{G}(Y)$

$$
f_{!}(E)=\sum_{k=0}^{\operatorname{dim} X}(-1)^{k}\left[R^{k} f_{*}(E)\right]
$$

- The sheaf $R^{k} f_{*}(E)$ is a coherent sheaf, should be replaced by its resolution by locally free sheaves, i.e. by vector bundles. We take $Y=p t$, then

$$
f_{!}(E)=\sum_{k=0}^{\operatorname{dim} X}(-1)^{k} H^{k}(X ; E) \in R(G) \simeq K_{G}(p t)
$$

8.6 Equivariant Hirzebruch-Riemann-Roch theorem. Let G be an algebraic group acting on X.

Here $c h: R(G) \rightarrow \hat{H}_{G}(p t)$ maps a representation V to $\operatorname{ch}\left(E G \times{ }^{G} V\right)$. We need to take

$$
\hat{H}_{G}^{*}(p t):=\prod_{k=0}^{\infty} H_{G}^{k}(p t)
$$

since the Chern character lives in infinite gradations.

- If $G=\mathbb{T}$ the image of $c h: R(\mathbb{T}) \rightarrow \hat{H}^{*} \mathbb{T}(p t)=\mathbb{Z}\left[\left[t_{1}, t_{2}, \ldots, t_{n}\right]\right]$ lies in the ring of Laurent polynomial $\mathbb{Z}\left[e^{ \pm t_{1}}, e^{ \pm t_{2}}, \ldots, e^{ \pm t_{n}}\right]$.
8.7 There is a coincidence of standard notations:
$-\chi(X ; \mathcal{L})=$ Euler characteristic of G / B with coefficients in the sheaf \mathcal{L}
- if a group G acts on X, then naturally $\chi(X ; \mathcal{L}) \in R(G)$.
$-\chi(V)=\chi_{V} \in R(G)$ character of a representation.
8.8 We will compute the character of the representation V_{λ} using localization theorem for \mathbb{T}-equivariant cohomology.

$$
\begin{aligned}
\chi\left(\mathcal{F} \ell_{n} ; \mathcal{L}_{\lambda}\right) & =\sum_{p \in\left(\mathcal{F} \ell_{n}\right)^{T}} \frac{t d\left(T \mathcal{F} \ell_{n}\right)_{\mid p}}{e u\left(T \mathcal{F} \ell_{n}\right)_{\mid p}} \operatorname{ch}\left(\mathcal{L}_{\lambda}\right) \\
& =\sum_{\sigma \in \Sigma_{n}} \frac{1}{\prod_{i<j}\left(1-e^{-\left(t_{\sigma(j)}-t_{\sigma(i)}\right)}\right)} \prod_{i=1}^{n} e^{-\lambda_{i} t_{\sigma(i)}}
\end{aligned}
$$

With new variables $x_{i}=e^{-t_{i}}$:

$$
\chi\left(\mathcal{F} \ell_{n} ; \mathcal{L}_{\lambda}\right)=\sum_{\sigma \in \Sigma_{n}} \frac{1}{\prod_{i<j}\left(1-x_{\sigma(j)} / x_{\sigma(i)}\right)} \prod_{i=1}^{n} x_{\sigma(i)}^{\lambda_{i}}
$$

We introduce the notation

$$
\begin{gathered}
x^{\lambda}=\prod_{i=1}^{n} x_{i}^{\lambda_{i}}, \quad \sigma\left(x^{\lambda}\right)=\prod_{i=1}^{n} x_{\sigma(i)}^{\lambda_{i}}, \\
x^{\rho}=\prod_{i=1}^{n} x_{i}^{n-i+1}, \quad x^{\lambda+\rho}=\prod_{i=1}^{n} x_{i}^{\lambda_{i}+n-i+1} .
\end{gathered}
$$

Then

$$
\chi_{V_{\lambda}}=\chi\left(\mathcal{F} \ell_{n} ; \mathcal{L}_{\lambda}\right)=\sum_{\sigma \in \Sigma_{n}} \frac{\sigma\left(x^{\lambda+\rho}\right)}{\prod_{i<j}\left(x_{\sigma(i)}-x_{\sigma(j)}\right)}=S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) .
$$

- This is Weyl character formula describing the character of the representation V_{λ}

Goresky-Kottwitz-MacPherson: GKM spaces

8.9 Lemma [Chang, Skjelbred]. Suppose a torus acts on a topological space. Let $F=X^{\mathbb{T}}$ and let Y be the sum of F and 1-dimensional orbits. Assume that X is equivariantly formal space. Then the sequence

$$
0 \rightarrow H_{\mathbb{T}}^{*}(X) \rightarrow H_{\mathbb{T}}^{*}(F) \rightarrow H_{\mathbb{T}}^{*+1}(Y, F)
$$

is exact.

- The lemma is equivalent to:

$$
\operatorname{ker}\left(H_{\mathbb{T}}^{*}(F) \rightarrow H_{\mathbb{T}}^{*+1}(Y, F)\right)=\operatorname{ker}\left(H_{\mathbb{T}}^{*}(F) \rightarrow H_{\mathbb{T}}^{*+1}(X, F)\right)
$$

- We do not prove CS Lemma in full generality (see Matthias Franz, Volker Puppe, Exact sequences for equivariantly formal spaces, arXiv:math/0307112). The proof will be given for spaces, which are of special interest for geometers.
8.10 Definition of GKM-space: The torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{r}$ acting algebraically on X - a compact algebraic variety (there is a topological version as well). We assume że $\left|X^{\mathbb{T}}\right|<\infty$ and there are only finitely many 1-dimensional orbits. We assume that X is equivariantly formal, e.g. X is smooth.
8.11 Assume X is smooth $\left|X^{\mathbb{T}}\right|<\infty$. For any $x \in X^{\mathbb{T}}$ no two weights of $T_{x} X$ are proportional if and only if there are only finitely many 1-dimensional orbits orbits.
8.12 Graph GKM (V, E, w),
- $V=X^{\mathbb{T}}$ vertices
- E edges $=1$-dimensional orbits. After fixing an isomorphism of the orbit with \mathbb{C}^{*} we get an oriented graph
- edges are labeled with weights $w: \mathbb{T} \rightarrow \mathbb{C}^{*}$ of the action of \mathbb{T} on $\mathbb{C}^{*} \simeq$ orbit.

All cohomologies are with coefficients in \mathbb{Q}.

8.13 Basic Lemma: suppose $X=\mathbb{P}^{1}, \mathbb{T}$ acts via $w \in \mathfrak{t}^{*} \simeq H_{\mathbb{T}}^{2}(p t)$. Then

$$
H_{\mathbb{T}}^{*}(X)=\left\{\left(u_{0}, u_{\infty}\right) \in \Lambda^{2} \mid u_{0} \equiv u_{\infty} \quad \bmod w\right\}
$$

- It follows from the long exact sequence of the pair $\left(\mathbb{P}^{1},\{0, \infty\}\right)$, since

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{1},\{0, \infty\}\right) \simeq \Lambda /(w) \quad \text { with a shift of gradation by } 1
$$

8.14 Description of $H_{\mathbb{T}}^{*}(X)$ for GKM-spaces:

$$
0 \rightarrow H_{\mathbb{T}}^{*}(X) \rightarrow \bigoplus_{x \in F} \Lambda \rightarrow \bigoplus_{1-\text { orbits }} \Lambda /\left(w_{\ell}\right)
$$

8.15 GKM-algebra associated with a graph $\left(V, E, w: E \rightarrow \mathfrak{t}_{\mathbb{Z}}^{*}\right)$

$$
\begin{gathered}
A(V, E, w):=k e r\left(\bigoplus_{v \in V} \Lambda \rightarrow \bigoplus_{e \in E} \Lambda /\left(w_{\ell}\right)\right) \\
\left\{a_{v}\right\}_{v \in V} \mapsto\left\{a_{t(e)}-a_{s(e)}\right\}_{e \in E}
\end{gathered}
$$

(this description does not depend on the orientation of edges)

- The GKM-graph of Grassmannian $G r_{2}\left(\mathbb{C}^{4}\right)$

The weight associated to the edge with numbers $i \ldots j$ is equal to $t_{i}-t_{j}$ or $t_{j}-t_{i}$ depending on the choice of the orientation.
8.16 Original reference: Goresky-Kottwitz-MacPherson Equivariant cohomology, Koszul duality, and the localization theorem, Invent. math. 131, (1998). See [Anderson-Fulton, §7].

9 GKM spaces, differential model of equivariant cohomology

9.1 GKM graphs of Grassmannians $G r_{k}\left(\mathbb{C}^{n}\right)$:

- vertices V : fixed points are the coordinate subspaces; bijection with subsets $I \subset\{1 . . n\}$
- edges E if I differs from J by one element; say $i \in I$ is replaced by $j \in J$, then let

$$
W=\operatorname{lin}\left\{\varepsilon_{i}+\varepsilon_{j}, \varepsilon_{k} k \in I \cap J\right\} .
$$

The stabilizer of W has the equation $t_{i}=t_{j}$. Hence the orbit of W is 1-dimensional, with the weight equal to $t_{i}-t_{j}$.

- Exercise: there are no other edges.
9.2 Moment map: GKM-graph of the Grassmannian can be realized in \mathbb{R}^{n}. Let $m=\binom{n}{k}$, we identify \mathbb{R}^{m} with $\wedge^{k} \mathbb{R}^{m}$:
- We have a map:

$$
G r_{k}\left(\mathbb{C}^{n}\right) \xrightarrow{\text { Plücker }} \mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)=\mathbb{P}^{m} \xrightarrow{\mu} \mathbb{R}^{n},
$$

where

$$
\mu:\left[\ldots, z_{I}, \ldots\right] \mapsto \frac{1}{\|z\|^{2}}\left(\ldots,\left|z_{I}\right|, \ldots\right) \mapsto \frac{1}{|z|^{2}}\left(\ldots, \sum_{I \ni i}\left|z_{I}\right|^{2}, \ldots\right) .
$$

This map is the composition of the standard moment map from \mathbb{P}^{m} to m-dimensional simplex

$$
\left[\cdots: z_{1}: \ldots\right] \mapsto \frac{1}{\|z\|^{2}}\left(\ldots,\left|z_{I}\right|^{2}, \ldots\right)
$$

with a linear map $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$.

- The 1-dimensional orbits are mapped to intervals.
- The image is contained in $\left\{x_{1}+x_{2}+\cdots+x_{m}\right\}=k$.
- For \mathbb{P}^{n} the GKM graph is the 1 -skeleton of the standard n-simplex.
- For $n=4, m=2$ we get octahedron in $\left\{x_{1}+x_{2}+x_{3}+x_{4}=2\right\}$

$$
\begin{array}{lll}
\varepsilon_{1} \wedge \varepsilon_{2} & \mapsto & (1,1,0,0) \\
\varepsilon_{1} \wedge \varepsilon_{3} & \mapsto & (1,0,1,0) \\
\varepsilon_{1} \wedge \varepsilon_{4} & \mapsto & (1,0,0,1) \\
\varepsilon_{2} \wedge \varepsilon_{3} & \mapsto & (0,1,1,0) \\
\varepsilon_{2} \wedge \varepsilon_{4} & \mapsto & (0,1,0,1) \\
\varepsilon_{3} \wedge \varepsilon_{4} & \mapsto & (0,0,1,1)
\end{array}
$$

- It will follow from differential methods, that the GKM graph of a projective manifold is canonically realized as a graph in \mathfrak{t}^{*}.
9.3 If X is smooth of dimension n, then there are n edges at each vertex. For singular spaces can be more edges from one vertex:
- GKM graph for the Schubert variety $X_{1}=\left\{W \in G r_{2}\left(\mathbb{C}^{4}\right) \mid W \cap \operatorname{lin}\left\{\varepsilon_{1}, \varepsilon_{2}\right\} \neq 0\right\}$. The point $\{1,2\}$ is singular.

$\{3,4\}$
9.4 GKM-graph for the flag variety $\mathcal{F} \ell(n)$
- The vertices V are labeled by permutations
- Since $\mathcal{F} \ell(n) \subset \prod_{k=1}^{n-1} G r_{k}\left(\mathbb{C}^{n}\right)$ we see that one dimensional orbits join permutations if and only permutations differ by a transposition $\tau_{i, j}$
- One can realize the GKM graph in $\left\{\sum_{i=1}^{n} x_{i}=\frac{n(n+1)}{2}\right\} \subset \mathbb{R}^{n}$. The permutation $\sigma \mapsto(\sigma(1), \sigma(2), \ldots, \sigma(n))$. Note that there are internal edges.
- For $n=4$

Proof of Chang-Skjelbred lemma for smooth GKM spaces.

9.5 Notation:

- $H_{\mathbb{T}}^{*}(p t)=\Lambda=\mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{r}\right]$
- $w:$ Edges $\rightarrow \Lambda=\mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{r}\right], \ell \mapsto w_{\ell}$
- $\phi \in \Lambda$ the least common multiple of all weights appearing as in the stabilizers (up to a coefficient in $\mathbb{Q})$. For each weight appearing in the product let $\psi_{w}:=\phi / w$.
- Let $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{s}$ be a basis over Λ of the free module $H_{\mathbb{T}}^{*}(X)$. By the first localization theorem $H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right) \simeq \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$. The isomorphism is induced by the inclusion $\iota: X^{\mathbb{T}} \rightarrow X$. The set $\iota^{*} \varepsilon_{1}, \iota^{*} \varepsilon_{2}, \ldots, \iota^{*} \varepsilon_{s}$ is a basis of $K \otimes_{\Lambda} H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right)$ over the quotient field $K=(\Lambda)$. Any element $\underline{u} \in H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right)$ can be written as

$$
\underline{u}=\left\{u_{x}\right\}_{x \in X^{\mathbb{T}}}=\sum \frac{r_{i}}{s_{i}} \iota^{*} \varepsilon_{i},
$$

i.e. a sum of the basis vectors with the coefficients presented as irreducible fractions $\frac{r_{i}}{s_{i}}$ (it is unique up to a \mathbb{Q}-factor). The denominators s_{i} are products of w_{ℓ} 's.
Goal: Show that the coefficients $\frac{r_{i}}{s_{i}}$ are integral, i.e. $s_{i}=1$, provided that the divisibility condition is satisfied.
9.6 Suppose $\underline{u} \in H_{\mathbb{T}}^{*}\left(X^{\mathbb{T}}\right) \simeq \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$ satisfies the divisibility condition

$$
w_{\ell} \mid u_{s(\ell)}-u_{t(\ell)},
$$

where $s(\ell)$ is the source, and $t(\ell)$ is the target of the edge in the GKM graph.

- Define

$$
X_{w}=X^{\mathbb{T}} \cup(\text { sum of the orbits with } \mathbb{T} \text {-action via } k w, k \in \mathbb{Q}) \text {. }
$$

With our assumptions $X_{w}=X^{\mathbb{T}} \cup\left(\right.$ disjoint union of \mathbb{P}^{1} 's)
We claim, that the product of $\psi_{w} \underline{u}$ belongs to the image of $H_{\mathbb{T}}^{*}\left(X_{w}\right)$ in $H_{\mathbb{T}}^{*}(X)$.

- Proof of the claim:
- If no edges adjacent to x is proportional to w, then x is isolated in X_{w}. Then $\psi_{w} u_{x}$ is equal to $\left(\iota_{x}\right)_{*}\left(\frac{\psi_{w}}{e(x)} u_{x}\right)$, where $e(x)$ is the Euler class at x and $\frac{\psi_{w}}{e(x)} \in \Lambda$.
- If x and y are connected by the edge ℓ i.e. an orbit with \mathbb{T}-action having the weight $w_{\ell}=q w, q \in \mathbb{Q}$, then $e\left(\nu_{x}\right)=\frac{e(x)}{q w} \in \Lambda$ i $e\left(\nu_{y}\right)=\frac{e(y)}{q w} \in \Lambda$ are the Euler classes of the normal bundle of the closure ${ }^{2}$ of the orbit工 \mathbb{P}^{1} :

$$
\nu=f_{\ell}^{*}(T X)-T \mathbb{P}^{1}, \quad f_{\ell}: \mathbb{P}^{1} \hookrightarrow X \quad e(\nu)=f_{\ell}^{*}(e(T X)) / e\left(T \mathbb{P}^{1}\right)
$$

[^1]Hence

$$
\begin{equation*}
e\left(\nu_{x}\right)=e\left(\nu_{y}\right) \quad \bmod w \tag{2}
\end{equation*}
$$

Let $\alpha_{x}=\frac{\psi_{w}}{e\left(\nu_{x}\right)} \in \Lambda, \alpha_{y}=\frac{\psi_{w}}{e\left(\nu_{y}\right)} \in \Lambda$. We have $\alpha_{x} e\left(\nu_{x}\right)=\alpha_{y} e\left(\nu_{y}\right)$, and w is not proportional to any factor of that. From (2) it follows

$$
\alpha_{x}=\alpha_{y} \quad \bmod w
$$

Since by the assumption

$$
u_{x}=u_{y} \quad \bmod w
$$

we have

$$
\alpha_{x} u_{x}=\alpha_{y} u_{y} \quad \bmod w
$$

We deduce that $\left\{\alpha_{x} u_{x}, \alpha_{y} u_{y}\right\}$ defines an element of the cohomology of the closure of the orbit joining x with y. The push-forward to X restricted to x is equal to $\psi_{w} u_{x}$ and restricted to y respectively $\psi_{w} u_{y}$. \diamond
9.7 The end of the proof of CS Lemma: The coefficients of $\psi_{w} \underline{u}=\sum \frac{\psi_{w} r_{i}}{s_{i}} \iota^{*} \varepsilon_{i}$ belong to Λ. The weight w does not divide ψ_{w}, hence w does not divide s_{i}. Since w was arbitrary, $s_{i}=1$. Finally we conclude that $\underline{u}=\iota^{*}\left(\sum r_{i} \epsilon_{i}\right)$.

Differential model of equivariant cohomology - an overview of the next few lectures

9.8 A model of $\Omega^{*}(E T)$: It should be a differential graded algebra A^{\bullet}

- a module over $H^{*}(B T) \simeq \operatorname{Sym} \cdot\left(\mathfrak{t}^{*}\right)=\operatorname{Polynomials}(\mathfrak{t})$
- acyclic, i.e. $H^{*}\left(A^{\bullet}\right) \simeq H^{*}(p t) \simeq \mathbb{R}$
- an action of $\lambda \in \mathfrak{t}$ lowering degree by one - an analogue of the contraction of a form with the vector field generated by λ.
\bullet Economic solution: the Weil algebra $W^{\bullet}(\mathfrak{t}):=S y m^{\bullet} \mathfrak{t}^{*} \otimes \wedge^{\bullet} \mathfrak{t}^{*}$. For $\xi \in \mathfrak{t}^{*}=\wedge^{1} \mathfrak{t}^{*}=\operatorname{Sym}^{1} \mathfrak{t}^{*}$

$$
1 \otimes \xi \in W^{1}(\mathfrak{t}), \quad \xi \otimes 1 \in W^{2}(\mathfrak{t})
$$

To define the differential let us fix a basis of $\mathfrak{t}: \alpha_{1}, \alpha_{2}, \ldots \alpha_{r}$ and the dual basis of $\mathfrak{t}^{*}: \alpha_{1}^{*}, \alpha_{2}^{*}, \ldots \alpha_{r}^{*}$. For $f \in \operatorname{Sym}^{\bullet} \mathfrak{t}^{*}, \xi \in \Lambda^{\bullet} \mathfrak{t}^{*}$

$$
d(f \otimes \xi):=\sum_{i=1}^{r} f \cdot \alpha_{i}^{*} \otimes \iota_{\alpha_{i}} \xi
$$

where $\iota_{\alpha_{i}}$ is the contraction of the form ξ with the vector α_{i}

- Exercise: show that $d^{2}=0$ and that the differential does not depend on the choice of a basis.
- Example $n=1$. Let $\xi=\alpha_{1}^{*}$:

$$
\begin{gathered}
W(\mathfrak{t}) \simeq \mathbb{R}[t] \otimes(\mathbb{R} \oplus \mathbb{R} \xi) \\
d\left(t^{k} \otimes \xi\right)=t^{k+1} \otimes 1, \quad d\left(t^{k} \otimes 1\right)=0
\end{gathered}
$$

9.9 There is a map from $W^{\bullet}(\mathfrak{t})$ to the forms on approximations of $E \mathbb{T}$:

$$
\Omega^{\bullet}(E \mathbb{T}):=\lim _{\overleftarrow{m}} \Omega^{\bullet}\left(\left(\mathbb{C}^{m} \backslash\{0\}\right)^{r}\right)
$$

sending the generators of $S y m^{\bullet}\left(\mathfrak{t}^{*}\right)$ to pull-backs of forms living on $B \mathbb{T}$ and the generators of $\wedge^{\bullet}\left(\mathfrak{t}^{*}\right)$ to connection forms. (It will be explained later.)
9.10 Similarly to the model of $\Omega^{\bullet}(E G)$ a model of $\Omega^{*}(E \mathbb{T} \times \mathbb{T} X)$ is obtained. The exterior algebra $\Lambda^{\bullet} \mathfrak{t}^{*}$ which serve as $H^{*}(\mathbb{T})=\Omega^{\bullet}(\mathbb{T})^{\mathbb{T}}$ is replaced by $\Omega^{\bullet}(X)^{\mathbb{T}}$. The complex of twisted differential forms is defined as

$$
S y m{ }^{\bullet} \mathfrak{t}^{*} \otimes \Omega^{\bullet}(X)^{\mathbb{T}}
$$

with the differential \tilde{d}, which is a map of $S y m^{\bullet} \mathfrak{t}^{*}$-modules. For a form $\alpha \in \Omega^{k}(X)^{\mathbb{T}}$ let

$$
\begin{gathered}
\tilde{d}(1 \otimes \alpha) \in \mathbb{R} \otimes \Omega^{k+1}(X)^{\mathbb{T}} \oplus \mathfrak{t}^{*} \otimes \Omega^{k-1}(X)^{\mathbb{T}} \\
\tilde{d}(1 \otimes \alpha)=1 \otimes d \alpha+\sum_{i=1}^{r} \alpha_{i}^{*} \otimes \iota_{v_{\lambda}} \alpha
\end{gathered}
$$

where v_{λ} is the fundamental field generated by $\lambda \in \mathfrak{t}$.
9.11 If $\mathbb{T}=S^{1}$ then we obtain the model constructed by Witten. The equivariant differential forms are defined as $S y m^{\bullet} \mathfrak{t}^{*} \otimes \Omega^{\bullet}(X)^{\mathbb{T}}=\Omega^{\bullet}(X)^{\mathbb{T}}[h]$, i.e.polynomials in h with coefficients in $\Omega^{\bullet}(X)^{\mathbb{T}}$. The standard differential is perturbed by the contraction

$$
\tilde{d}(\alpha)=d \alpha-h \iota_{v} \alpha
$$

We think of h as something very small.

- From the Cartan formula expressing the Lie derivative $\mathcal{L}_{v}=\iota_{v} d+d \iota_{v}$ we compute $\tilde{d}=0$.

10 De Rham model of equivariant cohomology

Main reference:
Atiyah, M. F.; Bott, R. The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28. Text-book: Guillemin, Victor W.; Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory. Springer, 1999
10.1 Basics about differential forms $\Omega^{\bullet}(M)$ on a C^{∞} manifolds

- $\left(\Omega^{\bullet}(M), d\right)$ is a CDGA i.e. a graded-commutative algebra with a differential satisfying the Leibniz rule
- vector fields act on forms: for $X \in \Gamma(T M)$ there is a contraction operator:

$$
\iota_{X}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M) .
$$

such that for a function $f \in \Omega^{0}(M)=C^{\infty}(M)$

$$
\iota_{X} d f=X f
$$

The contraction is an odd derivative

$$
\begin{gathered}
\iota_{X}(a \wedge b)=\iota_{X} a \wedge b+(-1)^{\operatorname{deg} a} a \wedge \iota_{X} b, \\
\iota_{X} \circ \iota_{X}=0
\end{gathered}
$$

- Lie derivative \mathcal{L}_{X} :

$$
\mathcal{L}_{X} f=X f, \quad \text { for } f \in \Omega^{0}(M)
$$

$$
\begin{gathered}
\mathcal{L}_{X}(a \wedge b)=\mathcal{L}_{X} a \wedge b+a \wedge \mathcal{L}_{X} b, \\
d \circ \mathcal{L}_{X}=\mathcal{L}_{X} \circ d . \\
{\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right]=\mathcal{L}_{[X, Y]} .}
\end{gathered}
$$

10.2 Cartan formula

$$
\mathcal{L}_{X}=d \iota_{X}+\iota_{X} d .
$$

- Proof: it is enough to check that it agrees for functions (YES) and both sides of equations commute with the differential and satisfy the (even) Leibniz rule:

$$
d\left(d \iota_{X}+\iota_{X} d\right)=d^{2} \iota_{X}+d \iota_{X} d=d \iota_{X} d=d \iota_{X} d+\iota_{X} d^{2}=\left(d \iota_{X}+\iota_{X} d\right) d .
$$

- Leibniz rule: this is a general phenomenon, that the super-commutator of two odd differentiations is an even differentiation. Set $U=\iota_{X}, V=d$. We skip \wedge and write $|a|$ for $\operatorname{deg} a$

$$
\begin{aligned}
& {[U, V]=U V+V U, } \\
& U V(a b)= U\left((V a) b+(-1)^{|a|} a(V b)\right) \\
&=(U V a) b+(-1)^{|a|-1}(V a)(U b)+(-1)^{|a|}(U a)(V b)+(-1)^{2|a|} a(U V b) \\
& V U(a b)=V\left((U a) b+(-1)^{|a|} a(U b)\right) \\
&=(V U a) b+(-1)^{|a|-1}(U a)(V b)+(-1)^{|a|}(V a)(U b)+(-1)^{2|a|} a(V U b)
\end{aligned}
$$

Hence

$$
(U V+V U)(a b)=((U V+V U) a) b+a((U V+V U) b) .
$$

10.3 We study manifolds with an action of a compact, connected Lie group G. Each element $\lambda \in$ $\mathfrak{g}=\operatorname{Lie}(G)$ generates a vector field, denoted v_{λ}.

- Taking the fundamental field

$$
\mathfrak{g} \xrightarrow{v}\{\text { vector fields on } M\} .
$$

is a map of Lie algebras, i.e.

$$
\left[v_{\lambda}, v_{\mu}\right]=v_{[\lambda, \mu]} .
$$

- The contraction with v_{λ} will be denoted by ι_{λ}.
10.4 The structure which will be relevant in what follows is:
- M a graded vector space or an algebra
- M is equipped with a differential d of degree 1 and operations \mathcal{L}_{λ} of degree 0 and ι_{λ} of degree -1 .

All together satisfy the commutative relations as described above.

- In other words M is a representation of the graded Lie algebra $\mathfrak{g} \oplus \mathfrak{g} \oplus \mathbb{R} d$

$$
\begin{aligned}
& {\left[\iota_{\lambda}, \iota_{\mu}\right]=0, \quad\left[\mathcal{L}_{\lambda}, \iota_{\mu}\right]=\iota_{[\lambda, \mu]}, \quad\left[d, \iota_{\lambda}\right]=\mathcal{L}_{\lambda},} \\
& {\left[\mathcal{L}_{\lambda}, \mathcal{L}_{\mu}\right]=\mathcal{L}_{[\lambda, \mu]}, \quad\left[\mathcal{L}_{\lambda}, d\right]=0, \quad[d, d]=0 .}
\end{aligned}
$$

- Later we will assume that $\mathfrak{g}=\mathfrak{t}$ is commutative, i.e. $[\lambda, \mu]=0$.
10.5 The group G acts on $\Omega^{\bullet}(M)$. If G is connected

$$
\Omega^{\bullet}(M)^{G}=\left\{\alpha \in \Omega^{\bullet}(M) \mid \forall_{\lambda} \in \mathfrak{g} \quad \mathcal{L}_{\lambda} \alpha=0\right\}=: \Omega^{\bullet}(M)^{\mathfrak{g}} .
$$

10.6 Assume G is connected. For all $g \in G$ and $[\alpha] \in H^{*}(M)$ the transported form has the same cohomology class $\left[g^{*} \alpha\right]=[\alpha]$.
10.7 If G is compact, every form can be averaged. Hence

$$
H^{*}\left(\Omega^{*}(M)^{G}\right)=H^{*}\left(\Omega^{*}(X)\right) .
$$

Principal bundles

10.8 Let $p: P \rightarrow B=M / G$ be a principal bundle. The group is assumed to be compact and connected. Let us define basic forms [Guillemin-Sternberg §2.3.5]:

$$
\Omega^{*}(P)_{\text {bas }}=\left\{\alpha \in \Omega^{*}(P) \mid \forall v_{0} \in \mathfrak{g} \mathcal{L}_{v} \alpha=0, \iota_{v} \alpha=0\right\}=\left\{\alpha \in \Omega^{*}(P) \mid \forall v_{0} \in \mathfrak{g} \iota_{v} \alpha=0, \iota_{v} d \alpha=0\right\} .
$$

This is a subcomplex.
10.9 Theorem:

$$
\Omega^{*}(P)_{b a s}=p^{*} \Omega^{*}(B) \simeq \Omega^{*}(B)
$$

10.10 For M with an action of $\mathbb{T}=S^{1}$. For short let $\iota=\iota_{\lambda}$ for a fixed $\lambda \in \mathfrak{t}$. Let us define a differential in $\mathbb{R}[h] \otimes \Omega^{*}(M)^{\mathbb{T}}$

$$
d_{h}(\omega)=d-h \iota .
$$

This is called the Cartan construction, also appears in a Witten's paper [Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661-692]. The symbol h stands for an independent variable, which lives in the gradation 2 . If we specialize h to a number, then we obtain a \mathbb{Z}_{2}-graded complex. (Sometimes it is more convenient to have $+h \iota$, but we obtain an isomorphic complex).
10.11 The cohomology $H_{\mathbb{T}, d R}^{*}(M)=H^{*}\left(\Omega^{*}(M)^{\mathbb{T}}[h], d_{h}\right)$ is a module over the polynomial ring $\mathbb{R}[h]$. If $M=p t$ then $H_{\mathbb{T}, d R}^{*}(M)=\mathbb{R}[h]$.
10.12 We will show, that $H_{\mathbb{T}, d R}^{*}(M) \simeq H_{\mathbb{T}}^{*}(M ; \mathbb{R})$, first constructing a map on the level of differential forms.

- There is a mapping $\mathbb{R}[h] \rightarrow \Omega^{2}\left(\mathbb{P}^{n}\right), h \mapsto \omega_{n}$, where ω_{n} is the Fubini-Study form. (It is enough to assume that $\left[\omega_{n}\right]$ generates $H^{2}\left(\mathbb{P}^{n}\right)$ and $\left(\omega_{n+1}\right)_{\mathbb{P}^{n}}=\omega_{n}$ to get a map to lim.)
- Define $M_{\mathbb{T}, n}=S^{2 n+1} \times{ }^{\mathbb{T}} M$, an approximation of the Borel construction. The polynomial ring $\mathbb{R}[h]$ acts on $\Omega^{*}\left(M_{\mathbb{T}, n}\right), h$ acts as the pull back of ω_{n}.
10.13 We will construct a map of $\mathbb{R}[h]$ modules

$$
\mathbb{R}[h] \otimes \Omega^{*}(M)^{\mathbb{T}} \rightarrow \Omega^{*}\left(M_{\mathbb{T}, n}\right)=\Omega^{*}\left(S^{2 n+1} \times M\right)_{\text {bas }}
$$

First approximation: For $\alpha \in \Omega^{*}(M)^{\mathbb{T}}$

$$
1 \otimes \alpha \mapsto p^{*} \alpha
$$

where $p: S^{2 n+1} \times M \rightarrow M$ is the projection.

- We check if the image is a basic form:
$-p^{*} \alpha$ is \mathbb{T}-invariant (YES)
$-\iota\left(p^{*} \alpha\right)=0$? (NO)
Some correction needs to be done.
10.14 The principal bundle and its connection: Suppose $P \rightarrow P / \mathbb{T}=B$ is a principal bundle. The tangent space of the fiber at each point is canonically isomorphic to \mathfrak{t}. With fixed $\lambda \in \mathfrak{t}$, the vector v_{λ} spans that fiber.
- The connection is a \mathbb{T}-invariant 1 -form θ, such that $\theta\left(v_{\lambda}\right)=1$. Such form can be constructed having a \mathbb{T}-invariant metric.

$$
\theta(w)=\frac{\left(v_{\lambda}, w\right)}{\left(v_{\lambda}, v_{\lambda}\right)}
$$

This is just the orthogonal projection from $T P$ to the tangent space of the fiber, i.e. to $k e r(T P \rightarrow T B)$

- In general a connection is a 1 -form with values in \mathfrak{g}, which is G invariant, with G acting on \mathfrak{g} via the adjoint representation..
10.15 Let $\theta \in \Omega^{1}\left(S^{2 n+1}\right)^{T}$, be the connection. This is equivalent to $\iota \theta=1$. It is elementary to check that

$$
\theta=-\frac{i}{2 \pi} \partial \log \|z\|^{2}
$$

is a good choice. When restricted to the points of the form $\left(z_{0}, 0, \ldots, 0\right)$ it is equal to

$$
-\frac{i}{2 \pi} \frac{\bar{z}_{0} d z_{0}}{\left|z_{0}\right|^{2}}=-\frac{i}{2 \pi} \frac{d z_{0}}{z_{0}}
$$

For the parametrization of the orbit $\gamma_{z}(t)=e^{2 \pi i t} z$ we compute

$$
\theta(\dot{\gamma}(0))=\left\langle-\frac{i}{2 \pi} \gamma_{z}^{*}\left(\frac{d z}{z}\right), \frac{d}{d t}\right\rangle=\left\langle-\frac{i}{2 \pi} \frac{2 \pi i e^{2 \pi i t} z d t}{e^{2 \pi i t} z}, \frac{d}{d t}\right\rangle=1
$$

The differential $d \theta$ is a basic form and it is the Kähler form ω_{n} on \mathbb{P}^{n}.

- It follows that in general $d \theta$ is a basic form: $[d \theta] \in H^{2}(P / \mathbb{T})$ is the first Chern class of the line bundle associated to P (up to a scalar).
10.16 Correction: We identify θ_{n} with its pull-back to $S^{2 n+1} \times M$.
- Let

$$
\alpha^{\prime}=p^{*} \alpha-\theta_{n} \wedge p^{*} \iota \alpha
$$

We have

$$
\iota \alpha^{\prime}=\iota p^{*} \alpha-\iota\left(\theta_{n} \wedge p^{*} \iota \alpha\right)=\iota p^{*} \alpha-1 \wedge p^{*} \iota \alpha+\theta_{n} \wedge \iota p^{*} \iota \alpha=0
$$

- We check that the map $\phi: f(h) \otimes \alpha \mapsto f\left(\omega_{n}\right) \wedge\left(p^{*} \alpha-\theta \wedge p^{*}(\iota \alpha)\right)$ is a chain map. It is enough to check for $f(h)=1$

$$
\begin{aligned}
d \phi(1 \otimes \alpha) & =d\left(p^{*} \alpha-\theta_{n} \wedge p^{*}(\iota \alpha)\right) \\
& =d p^{*} \alpha-d \theta_{n} \wedge p^{*}(\iota \alpha)+\theta_{n} \wedge d p^{*}(\iota \alpha) \\
\phi\left(d_{h}(1 \otimes \alpha)\right) & =\phi(1 \otimes d \alpha-h \otimes \iota \alpha)=\phi(1 \otimes d \alpha)-\phi(h \otimes \iota \alpha) \\
& =p^{*} d \alpha-\theta_{n} \wedge p^{*}(\iota d \alpha)-\omega_{n} \wedge p^{*}(\iota \alpha)
\end{aligned}
$$

Since α is \mathbb{T} invariant

$$
d p^{*}(\iota \alpha)=p^{*}(d \iota \alpha)=p^{*}(-\iota d \alpha)
$$

we obtain that $d \phi(1 \otimes \alpha)=\phi\left(d_{h}(1 \otimes \alpha)\right)$.
10.17 Theorem: the map $\phi: \mathbb{R}[h] \otimes \Omega^{\bullet}(M)^{\mathbb{T}} \rightarrow \varliminf_{\longleftarrow} \Omega^{\bullet}\left(S^{2 n+1} \times M\right)_{b a s}$ is a quasiisomorphism, i.e. an isomorphism of cohomologies.

- Proof:
- The complex $\mathbb{R}[h] \otimes \Omega^{\bullet}(M)$ is filtered (a decreasing filtration) by the powers the ideal (h).
- The complex $\lim _{\leftrightarrows} \Omega^{\bullet}\left(S^{2 n+1} \times M\right)_{b a s}$ is filtered by

$$
\operatorname{ker}\left(\varliminf_{\longleftarrow} \Omega^{\bullet}\left(S^{2 n+1} \times M\right)_{b a s} \rightarrow \Omega^{\bullet}\left(S^{2 n+1} \times M\right)_{b a s}\right)
$$

The map ϕ is a quasiisomorphism on the associated graded complexes. Hence it is a quasiisomorphism. (This is an exercise in homological algebra.)

11 Models for higher dimensional Lie groups. Moment map $M \rightarrow \mathfrak{t}^{*}$

11.1 Reference to general theory of G^{*} modules: Guillemin-Sternberg $\S 2$. We make the assumption $G=\mathbb{T}$ simplifying radically the formulas.
11.2 Let $p: P \rightarrow B$ be a S^{1}-principal bundle (i.e. S^{1} acts freely on P and $B=P / S^{1}$). We identify S^{1} with the image

$$
\mathbb{R} \rightarrow \mathbb{C}, \quad t \mapsto e^{2 \pi i t}
$$

hence we have determined the choice of $\lambda \in \mathfrak{t} \simeq \mathbb{R}$.

- Let $\theta \in \Omega^{1}(P ; \mathfrak{t})^{\mathbb{T}} \simeq \Omega^{1}(P)^{\mathbb{T}}$ be a connection, i.e. $\iota \theta=1$.
- The form $d \theta$ is closed. We check that $d \theta$ is a basic form

$$
\iota d \theta=\mathcal{L} \theta-d \iota \theta=0-d 1=0
$$

Hence $d \theta$ defines an element of $H^{2}(B)$.

- Exercise: $[d \theta]=c_{1}(L)$, where L is the associated line bundle $L=P \times{ }^{S^{1}} \mathbb{C}$. In particular the cohomology class does not depend on the choice of the connection. Hint for $B=\mathbb{P}^{n}$ we have $d \theta=-\omega_{F S}$.
11.3 The case of a higher dimensional torus $\mathbb{T}=\left(S^{1}\right)^{n}$ acting on a smooth manifold M :
- Set $A=\Omega^{\bullet}(M)$. Let

$$
\tilde{A}=\operatorname{Polynomial} \text { functions }(\mathfrak{t}, A)^{\mathbb{T}} \simeq S y m \mathfrak{t}^{*} \otimes A^{\mathbb{T}}
$$

Here

$$
\text { Sym } \mathfrak{t}^{*}=\bigoplus_{k=0}^{\infty} \text { Sym }^{k} \mathfrak{t}^{*}=\text { Polynomial functions on } \mathfrak{t}
$$

- The constructions below are purely algebraic. Thus we consider a G^{*} module A i.e a graded vector space equipped with operations $d, \iota_{\lambda}, \mathcal{L}_{\lambda}$ for $\lambda \in \mathfrak{t}$ satisfying the relations 10.3 .
- We set

$$
A_{h o r}=\left\{\alpha \in A \mid \forall \lambda \in \mathfrak{t} \iota_{\lambda} \alpha=0\right\} \quad \text { horizontal submodule }
$$

and

$$
A_{\text {bas }}=A_{h o r}^{\mathbb{T}}=\left\{\alpha \in A \mid \forall \lambda \in \mathfrak{t} \iota_{\lambda} \alpha=0, \iota_{\lambda} d \alpha=0\right\} .
$$

- The differential in \tilde{A} is Sym t*-linear and for $\alpha \in A^{k}$

$$
\tilde{d}(1 \otimes \alpha)(\lambda)=d \alpha-\iota_{\lambda} \alpha
$$

viewed as a function on \mathfrak{t}, which is linear with respect to λ, i.e. it belongs to

$$
\mathbb{R} \otimes A^{k+1} \oplus \mathfrak{t}^{*} \otimes A^{k-1}
$$

In a basis $\lambda_{1}, \ldots \lambda_{n}$ of \mathfrak{t}

$$
\tilde{d}(1 \otimes \alpha)=1 \otimes d \alpha-\sum_{i=1}^{n} \lambda_{i}^{*} \otimes \iota_{\lambda_{i}} \alpha .
$$

- We will use physicists notation. The vectors will have superscripts, and functionals subscripts. Also the running index will be a instead if i, which can easily confused with ι. We write

$$
\tilde{d}(1 \otimes \alpha)=1 \otimes d \alpha-\sum_{a=1}^{n} \lambda_{a} \otimes \iota_{\lambda^{a}} \alpha
$$

or according to the Einstein notation

$$
\tilde{d}(1 \otimes \alpha)=1 \otimes d \alpha-\lambda_{a} \otimes \iota_{\lambda^{a}} \alpha .
$$

11.4 [Guillemin-Sternberg §3.2] If $A=\Omega^{\bullet}(\mathbb{T})$, then $A^{\mathbb{T}}=\wedge \mathfrak{t}^{*}$. The resulting \tilde{A} is the Weil algebra of t

$$
W(\mathfrak{t})=\operatorname{Sym}\left(\mathfrak{t}^{*}\right) \otimes \wedge \mathfrak{t}^{*} .
$$

- Theorem: $H^{0}(W(\mathfrak{t}))=\mathbb{R}$ and $H^{k}(W(\mathfrak{t}))=0$ for $k>0$.

Proof: Since $W\left(\mathfrak{t}_{1} \oplus \mathfrak{t}_{2}\right)=W\left(\mathfrak{t}_{1}\right) \otimes W\left(\mathfrak{t}_{2}\right)$ as dg-algebra, it is enough to compute cohomology for \mathfrak{t} of dimension 1 . This was an easy check.

- Since $\Omega^{\bullet}(\mathbb{T})^{\mathbb{T}}=\wedge \mathfrak{t}^{*}$, if $\operatorname{dim} \mathbb{T}=1$ an explicit map from $W(\mathfrak{t})=\mathbb{R}[h] \otimes\left(\mathbb{R}+\mathfrak{t}^{*}\right)$ to

$$
\left(\Omega^{\bullet}\left(S^{2 m+1} \backslash 0\right) \times \wedge \mathfrak{t}^{*}\right)_{b a s}
$$

was already given in the previous section:

$$
f \otimes \xi \mapsto f\left(\omega_{F S}\right)(\xi-\theta \wedge \iota \xi)
$$

For higher dimensional tori we take the product of these maps and obtain a quasiisomorphism

$$
W(\mathfrak{t}) \rightarrow \Omega^{\bullet}(E \mathbb{T} \times \mathbb{T} \mathbb{T}) \stackrel{q i s}{\sim} \Omega^{\bullet}(E \mathbb{T})
$$

The right hand side is understood as the inverse limit of forms on finite dimensional representations. Note that $W(\mathfrak{t})$ is a very economic model of forms on $E \mathbb{T}$.

Mathai-Quillen twist See [Mathai-Quillen: Superconnections, Thom classes, and equivariant differential forms. Topology25(1986), no.1, 85-110], [Guillemin-Sternberg §7.2]
We construct an explicit map of complexes

$$
\tilde{A} \rightarrow(W(\mathfrak{t}) \otimes A)_{\text {bas }} \stackrel{q i s}{\sim}\left(\Omega^{\bullet}(E G) \otimes A\right)_{\text {bas }},
$$

which for $A \simeq \Omega^{\bullet}(M)$ will provide a convenient model for the equivariant cohomology.
11.5 [Guillemin-Sternberg $\S 2.3 .4]$ Let A be a \mathbb{T}^{*} module. We say that A is locally free if there exists a connection, i.e. $\theta \in \mathfrak{t} \otimes\left(A^{1}\right)^{\mathbb{T}}$, in a basis of \mathfrak{t} it can be written as

$$
\sum_{a=1}^{n} \lambda^{a} \otimes \theta_{a}
$$

such that for

$$
\theta_{a}\left(\lambda^{b}\right)=\delta_{a}^{b} .
$$

- Differential forms $\Omega^{\bullet}(M)$ is a locally free \mathbb{T}^{*} module if the action of T is locally free, i.e. the stabilizers of points are finite.
11.6 Mathai-Quillen twist: consider \mathbb{T}^{*}-algebras W and A, with W locally free (e.g. $W=W(\mathfrak{t})$. Let

$$
\begin{gathered}
\gamma=\sum \theta_{a} \otimes \iota_{\lambda^{a}}, \\
\phi=\exp (\gamma) \in A u t(W \otimes A)=1+\gamma+\frac{1}{2} \gamma \circ \gamma+\ldots
\end{gathered}
$$

It is well defined since $\gamma^{n+1}=0$ for $n=\operatorname{dim}(\mathbb{T})$.
11.7 The map γ, hence also ϕ, is T-invariant.

- Theorem. [Guillemin-Sternberg, chapter 4, Theorem 4.1.1] For any $\lambda \in \mathfrak{t}$

$$
\begin{gathered}
\phi \circ\left(\iota_{\lambda} \otimes 1+1 \otimes \iota_{\lambda}\right) \circ \phi^{-1}=\iota_{\lambda} \otimes 1 \\
\phi \circ(d \otimes 1+1 \otimes d) \circ \phi^{-1}=(d \otimes 1+1 \otimes d)-\sum \nu_{a} \otimes \iota_{\lambda^{a}}+\sum \theta_{a} \otimes \mathcal{L}_{\lambda^{a}}
\end{gathered}
$$

where $\nu_{a}=d \theta_{a}$

- This is a direct computation. See [W. Greub, S. Halperin, S, Vanstone: Curvature, Connections and Cohomology, vol. III Academic Press New York. (1976)] Prop. V, p.286,, or better compute it manually. This is an Exercise.
11.8 After the twist

$$
\phi\left((W \otimes A)_{h o r}\right)=W_{h o r} \otimes A
$$

For $W=W(\mathfrak{t})$

$$
\phi\left((W \otimes A)_{b a s}\right)=S(\mathfrak{t}) \otimes A
$$

with the differential

$$
\tilde{d}=1 \otimes d-\sum \lambda^{a} \otimes \iota_{\lambda_{a}}
$$

That is exactly the Cartan model of equivariant cohomology. [Guillemin-Sternberg §4.2]
11.9 The construction can be carried out for noncommutative connected groups. The action of G on \mathfrak{g} has to be taken into account. Then the cohomology of

$$
\left(\operatorname{Sym}_{\mathfrak{g}^{*}} \otimes \Omega^{\bullet}(M)\right)^{G}
$$

with an appropriate differential serves, as a model for equivariant cohomology. Reference: GuilleminSternberg §3-4

Moment map
11.10 Assume $T=S^{1}$. Let $\alpha \in \Omega^{2}(M)^{T}$. Suppose $d \alpha=0$. An equivariant enhancement of α is a function $f \in \Omega^{0}(M)$, such that

$$
d_{h}(1 \otimes \alpha-h \otimes f)=0
$$

i.e.

$$
1 \otimes d \alpha-h \otimes \iota \alpha+h \otimes d f=0
$$

This reduces to

$$
\iota \alpha=d f
$$

11.11 Basic example: Moment map $f: \mathbb{P}^{1} \rightarrow \mathbb{R}$.

- Suppose $\mathbb{T}=S^{1}$ acts on \mathbb{P}^{1} with the weights $\left(\lambda_{0}, \lambda_{1}\right)$. In the 0 -th affine standard chart the action is linear and the weights are $\lambda_{1}-\lambda_{0}$. The fundamental field at the point z is equal to

$$
v=\frac{d}{d t}\left(e^{\left(\lambda_{1}-\lambda_{0}\right) 2 \pi i t} z\right)_{\mid t=0}=2 \pi i\left(\lambda_{1}-\lambda_{0}\right) z=2 \pi\left(\lambda_{1}-\lambda_{0}\right)(-y+i x)
$$

i.e.

$$
v=2 \pi\left(\lambda_{1}-\lambda_{0}\right)\left(-y \frac{d}{d x}+x \frac{d}{d y}\right)
$$

Let $\alpha=\omega_{F S}$. In the affine coordinate

$$
\omega_{F S}=\frac{i}{2 \pi} \partial \bar{\partial} \log \left(1+|z|^{2}\right)=\frac{i}{2 \pi} \frac{d z \wedge d \bar{z}}{\left(1+|z|^{2}\right)^{2}}=\frac{1}{\pi} \frac{d x \wedge d y}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

We compute the contraction

$$
\iota_{v} \omega_{F S}=2 \pi\left(\lambda_{1}-\lambda_{0}\right)\left(-y \iota_{x} \omega_{F S}+x \iota_{y} \omega_{F S}\right)=-2 \pi\left(\lambda_{1}-\lambda_{0}\right) \frac{y d y+x d x}{\left(1+x^{2}+y^{2}\right)^{2}}
$$

Let

$$
\begin{gathered}
f=\frac{\lambda_{0}+\lambda_{1}|z|^{2}}{1+|z|^{2}}=\frac{\lambda_{0}+\lambda_{1}\left(x^{2}+y^{2}\right)}{1+x^{2}+y^{2}} \\
d f=\left(\lambda_{1}-\lambda_{0}\right) \frac{2 x d x+2 y d y}{\left(1+x^{2}+y^{2}\right)^{2}}
\end{gathered}
$$

The form

$$
1 \otimes \omega_{F S}-h \otimes \pi f
$$

is a closed equivariant form.

- Globally f is defined by the formula

$$
f\left(\left[z_{0}, z_{1}\right]\right)=\frac{\lambda_{0}\left|z_{0}\right|^{2}+\lambda_{1}\left|z_{1}\right|^{2}}{\|z\|^{2}}
$$

11.12 In general, if the action on \mathbb{P}^{n} has weights $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right)$ we set

$$
f([z])=\frac{\sum_{i=0}^{n} \lambda_{i}\left|z_{i}\right|^{2}}{\|z\|^{2}}
$$

Then $1 \otimes \omega_{n}-h \otimes \pi f$ is an equivariant d_{h}-closed form.

- An element $f \in \mathfrak{t}^{*} \otimes \Omega^{0}(M)=\operatorname{Hom}\left(\mathfrak{t}, C^{\infty}(M)\right)$ by adjunction is the same as a map $\mu: M \rightarrow \mathfrak{t}^{*}$

$$
\langle\mu(x), \lambda\rangle=f(\lambda)(x)
$$

- For $\mathbb{T}=\left(S^{1}\right)^{n+1}$ acting on \mathbb{P}^{n} we obtain the map

$$
\mu([z])=\frac{1}{\|z\|^{2}}\left(\left|z_{0}\right|^{2},\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right) .
$$

Symplectic geometry [Guillemin-Sternberg §9], but before beginning see [V. I. Arnold, Mathematical Methods Of Classical Mechanics. Graduate Texts in Mathematics 60 . Springer 1989] chapter 8.
11.13 The most interesting case is when M is a symplectic manifold e.g. Kähler manifold and the symplectic ω has a lift to an equivariant form, then $\mu: M \rightarrow \mathfrak{t}^{*}$ is defined.

- Of course μ is constant on the components of $X^{\mathbb{T}}$.
11.14 Symplectic manifold (M, ω) such that ω is a nondegenerate 2 -form, $d \omega=0$
- basic examples:
- M complex Kähler manifold,
- $M=T^{*} N$, where N is a real smooth manifold, $\omega=d$ (Liouville form
- ω induces an isomorphism $T M \simeq T^{*} M: v \mapsto \iota_{v} \omega$
- a function f defines a vector field X_{f}. It is the field, such that $\iota_{X_{f}} \omega=d f$
- the symplectic structure defines a structure of a Lie algebra of functions (Poisson bracket)

$$
\{f, g\}=\omega\left(X_{f}, X_{g}\right)=\left(\iota_{X_{f}} \omega\right)\left(X_{g}\right)=d f\left(X_{g}\right)=X_{g} f .
$$

- Definition: Action of S^{1} is Hamiltonian iff the fundamental field v is equal to X_{f} for some f

$$
\iota_{v} \omega=d f \quad \text { i.e. } \quad v=X_{f} .
$$

If that is so then $\omega+h f$ is a closed equivariant form.

12 Hamiltonian action and the moment map

[Dusa McDuff, Dietmar Salamon ; Introduction to Symplectic Topology (Oxford Mathematical Monographs) §5]
[Anna Cannas da Silva Lectures on Symplectic Geometry.]
12.1 Physical motivation:

- Hamiltonian system q position, $p=m v$ momentum, $H(p, q)$ a C^{∞} function

$$
\left\{\begin{array}{l}
\dot{q}=\frac{\partial H}{\partial p} \\
\dot{p}=-\frac{\partial H}{\partial q}
\end{array}\right.
$$

- Motion of a particle in the constant gravitation field, $H=$ energy, $q=h$ height:

$$
H(q, p)=\frac{m v^{2}}{2}+m g q=\frac{p^{2}}{2 m}+m g q, \quad\left\{\begin{array}{l}
\dot{q}=\frac{p}{m}=v \\
\dot{p}=-m g
\end{array}\right.
$$

- Conservation energy law: H is constant along trajectories
12.2 Poisson bracket in local Darboux coordinates

$$
\omega=\sum_{i=1}^{n} d p_{i} \wedge d q_{i}, \quad\{f, g\}=\sum_{i=1}^{n} \frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}} .
$$

- The Hamiltonian equations take the form $\dot{q}=\{q, H\}, \dot{p}=\{p, H\}$.
12.3 Let ω be a symplectic form on M and $f: M \rightarrow \mathbb{R}$. Then ω is invariant with respect to the Hamiltonian flow generated by f

$$
\mathcal{L}_{X_{f}} \omega=d \iota_{X_{f}} \omega+\iota_{X_{f}} d \omega=d \iota_{X_{f}} \omega=d d f=0
$$

We also note that $\iota_{X_{f}} \omega$ is closed.
12.4 The commutator of the Hamiltonian fields is related with the Poisson bracket

$$
\left[X_{f}, X_{g}\right]=-X_{\{f, g\}}
$$

- We have to show that

$$
\iota_{\left[X_{f}, X_{g}\right]} \omega=d\{g, f\} \quad \text { which is by definition } d\left(\omega\left(X_{g}, X_{f}\right)\right)
$$

- We compute the Lie derivative

$$
\mathcal{L}_{X_{f}}\left(\iota_{X_{g}} \omega\right)=\iota_{\mathcal{L}_{X_{f} X_{g}}} \omega=\iota_{\left[X_{f}, X_{g}\right]} \omega
$$

since $\mathcal{L}_{X_{f}} \omega=0$. By the Cartan formula

$$
\mathcal{L}_{X_{f}}\left(\iota_{X_{g}} \omega\right)=d \iota_{X_{f}} \iota_{X_{g}} \omega+\iota_{X_{f}} d \iota_{X_{g}} \omega=d\left(\omega\left(X_{g}, X_{f}\right)\right) .
$$

12.5 Let $C^{\infty}(M ; T M)$ be the space of smooth vector fields. It is a Lie algebra with respect to the Poisson bracket. The map

$$
-X: C^{\infty}(M) \rightarrow C^{\infty}(M ; T M), \quad f \mapsto-X_{f}
$$

is a map of Lie algebras. (Applying alternative conventions we can get rid of ,,-".)

- For an arbitrary Lie group: The G-action defines a map of Lie algebras

$$
v: \mathfrak{g} \rightarrow C^{\infty}(M ; T M)
$$

We say that the action is Hamiltonian if there exists a linear map of Lie algebras $\tilde{\mu}: \mathfrak{g} \rightarrow C^{\infty}(M)$ making the following diagram commutative up to a sign

$$
\begin{array}{ccc}
& & C^{\infty}(M) \\
& \tilde{\mu} & \nearrow
\end{array} c \downarrow^{X} .
$$

Existence of the map $\tilde{\mu}$ is equivalent to having a map $\mu: M \rightarrow \mathfrak{t}^{*}$, called the moment map.
12.6 From now on we assume that $G=\mathbb{T}=\left(S^{1}\right)^{n}$. The moment map is given in coordinates $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathfrak{t}^{*}=\mathbb{R}^{n}$. The Hamiltonian flows associated to μ_{i} commute, moreover we assume $\left\{\mu_{i}, \mu_{j}\right\}=0$, so that $\tilde{\mu}: \mathfrak{t} \rightarrow C^{\infty}(M)$ is a map of Lie algebras.
12.7 The map μ restricted to the fixed points is locally constant. The moment map $\mu \in C^{\infty}\left(M, \mathrm{t}^{*}\right)$ evaluated at $\lambda \in \mathfrak{t}$ is a function whose differential vanishes at zeros of the fundamental vector field:

$$
d \mu(\lambda)(x)=0 \quad \text { iff } \quad v_{\lambda}(x)=0
$$

12.8 The map μ is constant on the orbits:

$$
d \mu_{i}\left(v_{\lambda_{j}}\right)=\left(\iota_{v_{\lambda_{i}}} \omega\right)\left(v_{\lambda_{j}}\right)=\omega\left(v_{\lambda_{i}}, v_{\lambda_{j}}\right)=\left\{\mu_{i}, \mu_{j}\right\}=0 .
$$

12.9 Theorem [Atiyah, Guillemin-Sternberg]. If M is compact, then $\Delta_{M, \mathbb{T}}:=\mu(M)$ is a convex polytope

$$
\Delta_{M, \mathbb{T}}=\operatorname{Conv}\left(\mu\left(M^{T}\right)\right)
$$

See [McDuff-Salamon §5.5, Theorem 5.47]

- Note that the image of the moment map μ restricted to a 1 -dimensional $\mathbb{T}_{\mathbb{C}}=\mathbb{T} \otimes \mathbb{C}$ orbit is an interval.
12.10 Assume $M \subset \mathbb{P}^{m}$ is a smooth projective variety, $\omega=\left(\omega_{F S}\right)_{\mid M}$.
12.11 The most important example $M=\mathbb{P}^{n}, \mathbb{T}=\left(S^{1}\right)^{n+1}, \mu=$ const $\frac{1}{\| z]]^{2}}\left(\ldots,\left|z_{i}\right|^{2}, \ldots\right) \in \mathbb{R}^{n+1}$. The constant depends on the convention.
12.12 If M is a smooth projective variety with an algebraic action of $\mathbb{T}_{\mathbb{C}} \simeq\left(\mathbb{C}^{*}\right)^{n}$ then it can be equivariantly embedded into $\mathbb{P}(V)$ for some representation V of a finite cover of \mathbb{T}. Hence it admits a moment map (possibly after a modification of ω).
- If M is a smooth projective toric variety (i.e. M has a dense and open orbit of $\mathbb{T}_{\mathbb{C}}$), then $M / \mathbb{T}=$ $\Delta_{M, \mathbb{T}}$.
12.13 Suppose M is equivariantly embedded into $\mathbb{P}(V), L=\mathcal{O}(1)_{\mid M}$ an equivariant vector bundle. The form $\omega=\omega_{F S \mid M}$ represents $c_{1}(L) \in H_{\mathbb{T}}^{2}(M)$. Let $x \in M^{\mathbb{T}}$ be a fixed point. Then $c_{1}(L)_{\mid x} \in$ $H_{\mathbb{T}}^{2}(p t) \simeq \operatorname{Hom}\left(\mathbb{T}, S^{1}\right)$ is the character of the action of \mathbb{T} on L_{x}. We claim that

$$
\mu(x)=c_{1}(L) \in \operatorname{Hom}\left(\mathbb{T}, S^{1}\right) \otimes \mathbb{R}=\mathfrak{t}^{*}
$$

- That is true for $M=\mathbb{P}^{n}$ with the action of $\left(S^{1}\right)^{n+1}$, since

$$
\mu([0: \cdots: 0: 1: 0: \cdots: 0])=(0, \ldots, 0,1,0, \ldots, 0) \quad \text { with the preferred normalization. }
$$

In general chose coordinates of $V=\mathbb{C}^{m+1}$, such that \mathbb{T} action is diagonal. Consider the embedding $\mathbb{T} \hookrightarrow \mathbb{T}_{\text {big }}=\left(S^{1}\right)^{m+1}$ and the natural maps

The claim follows from the commutativity of the diagram.
12.14 (!!!) Note that the moment polytope does not depend on the C^{∞} consideration with the symplectic form. It only depends on the action of \mathbb{T} on L. It can be defined purely in the realm of algebraic geometry as

$$
\Delta_{M, \mathbb{T}}=\operatorname{Conv}\left\{\chi\left(L_{x}\right) \mid x \in M^{\mathbb{T}}\right\}
$$

12.15 Example. Let $M=\mathcal{F} \ell(n)$ be the flag manifold. We have an equivariant embedding

$$
\mathcal{F} \ell(n) \hookrightarrow \prod_{k=1}^{n-k} G r_{k}\left(\mathbb{C}^{n}\right) \hookrightarrow \prod_{k=1}^{n-k} \mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)
$$

Let $p_{i}: \mathcal{F} \ell(n) \rightarrow \mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)$ be the projection and let ω_{k} be the Fubini-Study form on $\mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)$. For a sequence of positive numbers $a_{i} \in \mathbb{R}^{n}$ let

$$
\omega_{\underline{a}}=\sum_{k=1}^{n-1} a_{k} p_{k}^{*}\left(\omega_{k}\right) .
$$

This is a symplectic form and the \mathbb{T} action admits a moment map

$$
\mu_{\underline{a}}=\sum_{k=1}^{n-1} a_{k} \mu_{k} \circ p_{k}
$$

where μ_{k} is the moment map for $\mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)$.

12.16 Suppose

$$
\left(V_{1} \subset \cdots \subset V_{n-1}\right) \in \mathcal{F} \ell(n)^{\mathbb{T}} .
$$

Such a point corresponds to a permutation $\sigma \in \Sigma_{n}$

$$
V_{1}=\operatorname{lin}\left\{\epsilon_{\sigma(1)}\right\}, \quad V_{2}=\operatorname{lin}\left\{\epsilon_{\sigma(1)}, \epsilon_{\sigma(2)}\right\}, \quad \ldots, \quad V_{n-1}=\operatorname{lin}\left\{\epsilon_{\sigma(1)}, \epsilon_{\sigma(2)}, \ldots, \epsilon_{\sigma(n-1)}\right\}
$$

Denote it by V_{σ}
12.17 The value of the map $G r_{k}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right) \xrightarrow{\mu_{k}} \mathbb{R}^{n}$ restricted at the point

$$
\operatorname{lin}\left\{\epsilon_{\sigma(i)} \mid i \leq k\right\}
$$

is equal to

$$
-\sum_{i=1}^{k} \epsilon_{\sigma(i)}
$$

- For $n=4$ the moment polytopes for $G r_{1}\left(\mathbb{C}^{4}\right)$ and $G r_{3}\left(\mathbb{C}^{4}\right)$ are tetrahedra, and $G r_{2}\left(\mathbb{C}^{4}\right)$ is the octahedron.
12.18 Take $\underline{a}=(1,1, \ldots, 1)$ then

$$
\mu_{\underline{a}}\left(V_{\sigma}\right)=-\sum_{k=1}^{n-1} \sum_{i=1}^{k} \epsilon_{\sigma(i)}=-\sum_{k=1}^{n-1}(n-k) \epsilon_{\sigma(k)}
$$

which is equal up to the shift by $n \sum_{k=1}^{n} \epsilon_{k}$ to $\sum_{k=1}^{n} k \epsilon_{\sigma(k)}$.

- This way we obtain the permutohedron in \mathbb{R}^{n} which can also be defined as the convex hull of Σ_{n} orbit of $(1,2, \ldots, n)$.
12.19 Taking various values of a_{i} we obtain deformations of the permutohedron

$$
\operatorname{Conv}\left(\Sigma_{n}\left(a_{1}, a_{1}+a_{2}, \ldots, a_{1}+a_{2}+\cdots+a_{n}\right)\right) \quad \text { up to a shift. }
$$

The extreme values with some a_{i} 's equal to 0 , the images are moment polytopes for partial flag varieties.

13 Moment map and quotients

13.1 Suppose a compact group G acts on a symplectic manifold (M, ω) with a moment map $\mu: M \rightarrow$ \mathfrak{g}^{*}. Recall that ω is G invariant $\mathcal{L}_{\lambda} \omega=0$ and μ is G invariant with respect to the coadjoint action on \mathfrak{g}^{*}.
13.2 Symplectic reduction [Guillemin-Sternberg §9.6], [McDuff,Salamon §5.4]

- Assume that $a \in \mathfrak{g}^{*}$ is an invariant element with respect to the coadjoint action. Then $\mu^{-1}(a)$ is G-invariant manifold.
- Furthermore assume that G action on $\mu^{-1}(a)$ is free. Then the quotient $X=\mu^{-1}(a) / G$ is denoted by $M / /{ }_{\mu, a} G$. Often a is assumed to be 0 and we write $M / / \mu G$. This is called the symplectic quotient. We will assume that $a=0$.
13.3 Let $x \in \mu^{-1}(0)$. The tangent space $T_{x} G x$ is coisotropic and $\left(T_{x} G x\right)^{\perp_{\omega}}=T_{x} \mu^{-1}(0)$.
- For $\lambda \in \mathfrak{g}, v \in T_{x} \mu^{-1}(0)$ compute $\omega\left(X_{\lambda}, v\right)=d \mu_{\lambda}(v)$, where $\mu_{\lambda}(x)=\mu(x)(\lambda)$. But since $\mu^{-1}(0)$ is mapped by μ to 0 , the tangent vectors are mapped to 0 as well. Hence $\left(T_{x} G x\right)^{\perp_{\omega}} \subset T_{x} \mu^{-1}(0)$. Since $\operatorname{dim}\left(\left(T_{x} G x\right)^{\perp_{\omega}}\right)=\operatorname{dim} G$ and $T_{x} \mu^{-1}(0)=\operatorname{dim} M-\operatorname{dim} G$ and ω is nondegenerate, the opposite inclusion holds.
13.4 The manifold X has a canonical symplectic structure induced from M : For $v, w \in T_{y} X$ find the lifts $\tilde{v}, \tilde{w} \in T_{x} M$ (with x mapping to y) and apply ω. It is well defined because ω is G-invariant and the orbits lie in the kernel of ω. Moreover the induced form is nondegenerate (it is an exercise in the linear algebra).
13.5 Example 1. $M=\mathbb{C}^{n}$ with the standard form, $G=S^{1}$ acting by scalar multiplication, $\mu(z)=$ $|z|^{2}, a \in 1$. Then

$$
\mathbb{C}^{n} / / \mu, a S^{1}=\mathbb{P}^{n-1}
$$

with the Fubini-Study form.
13.6 Example 2 (slightly more general): $M=\operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{n}\right), k<n$ with the action of $U(k)$. Let $A^{*}=\bar{A}^{T}$. Note that $\mathfrak{u}(k)=\left\{X \in \mathfrak{g l}_{k} \mid X^{*}=-X\right\}$. The moment map is defined by

$$
\mu(A)=i A^{*} A \in \mathfrak{u}(k) \simeq \mathfrak{u}(k)^{*}
$$

$a=i I$. Then $\mu^{-1}(a)$ is equal to unitary k-tuples of vectors in \mathbb{C}^{n}, and $X / / \mu, a U(k)$ is equal to the Grassmannian $G r_{k}\left(\mathbb{C}^{n}\right)$.

- Exercise: Compute that this is a moment map.
13.7 Kirwan [Cohomology of Quotients in Symplectic and Algebraic Geometry] compared symplectic quotients with GIT quotients in algebraic geometry. They basically coincide: the symplectic quotient by a compact group G is equal to the GIT quotient by the complexification $G_{\mathbb{C}}$ (as C^{∞} manifolds). The symplectic quotients depends on the choice of the moment map (and $a \in \mathfrak{g}$) and GIT quotient depends on the linearization and stability condition. These notions can be translated one to another.
13.8 Example 3 (still more general): We want to obtain $\mathcal{F} \ell_{n}=\mathrm{GL}_{n} / B_{n}$ as a symplectic quotient. The Borel group is not a complexification of a compact group. Thus we take a presentation of the flag manifold in terms of a quiver:

$$
1 \rightarrow 2 \rightarrow \cdots \rightarrow n-1 \rightarrow n
$$

- Let $M=\prod_{k=1}^{n-1} \operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{k+1}\right), G=\prod_{k=1}^{n-1} U(k)$. The moment map is given by

$$
\left(A_{1}, A_{2}, \ldots, A_{n-1}\right) \mapsto\left(A_{1}^{*} A_{1}, A_{2}^{*} A_{2}, \ldots, A_{n-1}^{*} A_{n-1}\right)
$$

and a is the sequence of i times the identity matrices.

- $\mu^{-1}(a)$ is a sequence of isometric embeddings $\mathbb{C}^{k} \hookrightarrow \mathbb{C}^{k+1}$, the quotient is the flag variety. Taking the quotient we forget about the particular coordinates on $V_{k} \subset \mathbb{C}^{n}$.
13.9 [Kirwan] If M is a compact symplectic manifold with a G action admitting a moment map μ, $X=M / / \mu, a$, then the map

$$
\kappa: H_{G}^{*}(M) \rightarrow H_{G}^{*}\left(\mu^{-1}(a)\right) \simeq H^{*}(X)
$$

is surjective.
[D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Results in Mathematics and Related Areas (2). Springer-Verlag, third edition, 1994. §8], compare [Megumi Harada, Gregory D. Landweber, Surjectivity for Hamiltonian G-spaces in K-theory, Trans. Amer. Math. Soc. 359 (2007), 6001-6025]

- The assumptions of the theorem can be relaxed. Just assume that μ is proper.
- A double-equivariant version: Assume that a group \mathbb{T} acts on M, and \mathbb{T} action commutes with G-action, then

$$
\kappa: H_{\mathbb{T} \times G}^{*}(M) \rightarrow H_{\mathbb{T} \times G}^{*}\left(\mu^{-1}(a)\right) \simeq H_{\mathbb{T}}^{*}(X)
$$

is surjective.
13.10 Back to Example 1:

$$
\begin{gathered}
\kappa: H_{\mathbb{C}^{*}}^{*}\left(\mathbb{C}^{n}\right) \simeq \mathbb{Q}[h] \rightarrow H^{*}\left(\mathbb{P}^{n-1}\right) \simeq \mathbb{Q}[h] /\left(h^{n}\right) \\
\kappa: H_{\mathbb{T} \times \mathbb{C}^{*}}^{*}\left(\mathbb{C}^{n}\right) \simeq \mathbb{Q}\left[t_{1}, t_{2}, \ldots t_{n}, h\right] \rightarrow H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n-1}\right) \simeq \mathbb{Q}\left[t_{1}, t_{2}, \ldots, t_{n} \cdot h\right] /\left(\prod\left(h+t_{i}\right)\right)
\end{gathered}
$$

13.11 Back to Example 2:

$$
\begin{gathered}
\kappa: H_{U(k)}^{*}\left(\operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{n}\right)\right) \simeq \mathbb{Q}\left[c_{1}, c_{2}, \ldots, c_{k}\right] \rightarrow H^{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right) \\
\kappa: H_{\mathbb{T} \times U(k)}^{*}\left(\operatorname{Hom}\left(\mathbb{C}^{k}, \mathbb{C}^{n}\right)\right) \simeq \mathbb{Q}\left[t_{1}, t_{2}, \ldots t_{n}, c_{1}, c_{2}, \ldots, c_{k}\right] \rightarrow H_{\mathbb{T}}^{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right)
\end{gathered}
$$

13.12 Projective toric varieties (without fans, but via polytopes), compare [Anderson-Fulton, Ch 8].

- Let X be a smooth compact algebraic manifold with a torus action. Assume that $\operatorname{dim} X=\operatorname{dim} \mathbb{T}_{\mathbb{C}}$ and $\mathbb{T}_{\mathbb{C}}$ has an open orbit and dense. We can assume that $\mathbb{T}_{\mathbb{C}}$ action is free on the open orbit. Then X is determined by a certain combinatorial data involving characters.
- Assume that the action of \mathbb{T} admits a moment map to $\mathfrak{t}^{*} \simeq \mathbb{R}^{n}$. If the moment map is the restriction of the standard moment $\operatorname{map} X \hookrightarrow \mathbb{P}^{N} \rightarrow \mathfrak{t}_{N}^{*} \rightarrow \mathfrak{t}^{*}$, then the moment polytope Δ_{X} has integral vertices.
- Since we assume that X is smooth, thus locally, around any fixed point X looks like \mathbb{C}^{n} with the standard action of $\left(\mathbb{C}^{*}\right)^{n}$, so the moment polytope locally is linearly isomorphic to a neighbourhood of $0 \in \mathbb{C}^{n} /\left(S^{1}\right)^{n} \simeq \mathbb{R}_{\geq 0}^{n}$.
- Each facet F_{i} (a codimension 1 face) of $\Delta_{X} \subset \mathfrak{t}^{*}$ we set $v_{i} \in\left(\mathfrak{t}^{*}\right)^{*}=\mathfrak{t}$, the normal vector (integral, minimal length). Let \mathbb{T}_{i} be the 1-dimensional subtorus corresponding to v_{i}
13.13 For $p \in F_{i_{1}} \cap F_{i_{2}} \cap \cdots \cap F_{i_{\ell}}$ let $\mathbb{T}_{p}=\mathbb{T}_{i_{1}} \mathbb{T}_{i_{2}} \ldots \mathbb{T}_{i_{\ell}} \simeq\left(S^{1}\right)^{\ell}$. Topologically $X=\Delta_{X} \times\left(S^{1}\right)^{n} / \sim$. The pairs (p, t) and $\left(p, t^{\prime}\right)$ are identified if and only if $t^{\prime} t^{-1} \in \mathbb{T}_{p}$.
13.14 The inverse images $\mu^{-1}\left(x_{i}\right)$ are divisors (=codimension 1 subvarieties) in X.
13.15 Theorem [Daniłov, Jurkiewicz, Davis-Januszkiewicz] The cohomology ring is generated by the classes of $\left[D_{i}\right] \in H^{2}(X)$. Assume that Δ_{X} has d facets:

$$
H^{*}(X)=\mathbb{Z}\left[x_{1}, \ldots, x_{d}\right] /(I+J)
$$

$$
I=\left(x_{i_{1}} x_{i_{2}} \ldots x_{i_{\ell}} \mid F_{i_{1}} \cap F_{i_{2}} \cap \cdots \cap F_{i_{\ell}} \text { is not a codimension } \ell \text { face of } \Delta_{X}\right) .
$$

$$
J=\left(\sum\left\langle u, v_{i}\right\rangle x_{i} \mid u \in \mathfrak{t}_{\mathbb{Z}}^{*}\right)
$$

Here the left hand side is written in the additive notation, but it concerns the monomials.

- The quotient $\mathbb{Z}\left[x_{1}, \ldots, x_{d}\right] / I$ is called the Stanley Reisner ring. [Anderson-Fulton, §8.3] • Similarly the equivariant cohomology. Let $\Lambda=\operatorname{Sym}\left(\mathfrak{t}_{\mathbb{Z}}^{*}\right)=H_{\mathbb{T}}^{*}(p t)$

$$
\begin{gathered}
H_{\mathbb{T}}^{*}(X)=\Lambda\left[x_{1}, \ldots, x_{d}\right] /\left(I^{\prime}+J^{\prime}\right), \\
I^{\prime}=\Lambda \otimes I . \\
J^{\prime}=\left(u-\sum\left\langle u, v_{i}\right\rangle x_{i} \mid u \in \mathfrak{t}_{\mathbb{Z}}^{*}\right) .
\end{gathered}
$$

- Note that

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{d}\right] / I \simeq \Lambda\left[x_{1}, \ldots, x_{d}\right] /\left(I^{\prime}+J^{\prime}\right)
$$

and

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{d}\right] /(I+J) \simeq \Lambda\left[x_{1}, \ldots, x_{d}\right] /\left(I^{\prime}+J^{\prime}\right) \otimes_{\Lambda} \mathbb{Z}
$$

13.16 Connection with the Kirwan map: any toric variety can be obtained by the Cox construction

$$
X=U / \mathbb{T}^{\prime}
$$

Where $U \subset \mathbb{C}^{d}$,

$$
U=\mathbb{C}^{d} \backslash \bigcup_{I} V_{I}
$$

where sum runs over the sequences $i_{1}, i_{2}, \ldots, i_{\ell}$ such that $\bigcap_{j=1}^{\ell} F_{i_{j}}$ is not a face and

$$
V_{I}=\left\{x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{\ell}}=0\right\}
$$

$\mathbb{T}^{\prime}=$ some subtorus of $\left(\mathbb{C}^{*}\right)^{d}$. Decomposing $\left(\mathbb{C}^{*}\right)^{d}=\mathbb{T}^{\prime} \times \mathbb{T}$ we obtain an action of \mathbb{T} on U / \mathbb{T}^{\prime}.
13.17 Example $\mathbb{P}^{n}=\mathbb{C}^{n+1} \backslash\{0\} /$ (diagonal torus). Let $\mathbb{T}=\left\{t \in\left(\mathbb{C}^{*}\right)^{n+1} \mid t_{0}=1\right\}$.

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n}\right)=\mathbb{Z}\left[x_{0}, x_{1}, \ldots, x_{n}\right] /\left(x_{0} x_{1} \ldots x_{n},\right)
$$

The Λ-module structure is given by the relations in J^{\prime} : the vectors v_{i} consists of the standard basis vectors $\epsilon_{i}, v_{0}=-\sum \epsilon_{i}$. For the generator $t_{i} \in \Lambda, i>0$

$$
\left\langle t_{i}, v_{j}\right\rangle= \begin{cases}-\delta_{i, j} & \text { for } j>0 \\ 1 & \text { for } j=0\end{cases}
$$

hence

$$
t_{i} \mapsto x_{i}-x_{0} \quad \text { for } i>0 .
$$

13.18 The ranks of $H_{\mathbb{T}}^{*}(X)$ can be easily computed inductively from the exact sequence of a pair: for a smooth closed invariant submanifold $N \subset M$ we have

$$
\rightarrow H_{\mathbb{T}}^{*-2 \operatorname{codim} N}(N) \rightarrow H_{\mathbb{T}}^{*}(M) \rightarrow H_{\mathbb{T}}^{*}(M \backslash N) \rightarrow H_{\mathbb{T}}^{*-2 \operatorname{codim} N+1}(N) \rightarrow
$$

Note that if X is a sum of \mathbb{T} orbits, then each $H_{\mathbb{T}}^{\text {odd }}($ orbit $)=0$ and the sequence splits.

$$
H_{\mathbb{T}}^{*}(X) \simeq \bigoplus_{\mathcal{O} \text { orbit }} H_{\mathbb{T}}^{*-2 \operatorname{codim\mathcal {O}}}\left(B \mathbb{T}_{\mathcal{O}}\right), \quad \mathbb{T}_{\mathcal{O}} \simeq\left(\mathbb{C}^{*}\right)^{\operatorname{codim} \mathcal{O}}
$$

- Let us compute the equivariant Poincaré polynomial: set $q=t^{2}$

$$
P_{\mathbb{T}}(X)=\sum_{\mathcal{O}} q^{\operatorname{codim} O}(1-q)^{-\operatorname{codim} O}
$$

- The nonequivariant Poincaré polynomial can be computed due to equivariant formality:

$$
P_{\mathbb{T}}(X)=P(X) P(B \mathbb{T}),
$$

hence

$$
P(X)=P_{\mathbb{T}}(X) P(B \mathbb{T})^{-1}=\left(\sum_{\mathcal{O}} q^{\operatorname{codim} O}(1-q)^{-\operatorname{codim} O}\right)(1-q)^{n}=\sum_{\mathcal{O}} q^{\operatorname{codim} O}(1-q)^{\operatorname{dim} O}
$$

13.19 Example: $X=\mathbb{P}^{2}$

3 fixed points $\rightarrow 3 q^{2}$
3 lines $\rightarrow 3 q(1-q)$
1 open orbit $\rightarrow(1-q)^{2}$

$$
3 q^{2}+3 q(1-q)+(1-q)^{2}=3 q^{2}+3 q-3 q^{2}+1-2 q+q^{2}=q^{2}+q+1
$$

14 Equivariant Schubert Calculus on Grassmannians

This section contains mainly the example of the calculus on Grassmannian $G r_{2}\left(\mathbb{C}^{4}\right)$. See [AndersonFulton, Chapter 9] for the explanation.
14.1 The Grassmannian $G r_{d}\left(\mathbb{C}^{n}\right)=\mathrm{GL}_{n} / B_{n}$ is the union of Schubert cells $\Omega_{\lambda}^{\circ}, \lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \lambda_{d} \geq 0\right.$ with $i_{1} \leq n-d$. For convenience we set $\lambda_{d+1}=0$. Set $e=n-d$. We fix the standard flag E • preserved by the Borel group and define

$$
\Omega_{\lambda}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{n} \mid \operatorname{dim}\left(E_{q} \cap V\right)=k \text { for } q \in\left[e+k-\lambda_{k}, e+k-\lambda_{k+1}\right]\right\},
$$

i.e. the sets Ω_{λ}° are defined by the strict Schubert conditions. - For $n=4, d=2$,

$$
\Omega_{00}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{4}: \begin{array}{ll}
\operatorname{dim}\left(E_{q} \cap V\right)=1 & \text { for } q \in[3-0,3-0] \\
\operatorname{dim}\left(E_{q} \cap V\right)=2 & \text { for } q \in[4-0,4-0]
\end{array}\right\} .
$$

(The dimensions of the intersections are generic.)

$$
\Omega_{22}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{4}: \begin{array}{ll}
\operatorname{dim}\left(E_{q} \cap V\right)=1 & \text { for } q \in[3-2,3-2] \\
\operatorname{dim}\left(E_{q} \cap V\right)=2 & \text { for } q \in[4-2,4-2]
\end{array}\right\} .
$$

(The dimensions are the maximal possible, i.e. $\Omega_{22}^{\circ}=\left\{E_{2}\right\}$.)

$$
\Omega_{10}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{4}: \begin{array}{ll}
\operatorname{dim}\left(E_{q} \cap V\right)=1 & \text { for } q \in[3-1,3-0] \\
\operatorname{dim}\left(E_{q} \cap V\right)=2 & \text { for } q \in[4-0,4-0]
\end{array}\right\} .
$$

(The only nontrivial condition is $\operatorname{dim}\left(E_{2} \cap V\right)=1$ but $E_{1} \not \subset V, V \not \subset E_{3}$)

$$
\Omega_{11}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{4}: \begin{array}{ll}
\operatorname{dim}\left(E_{q} \cap V\right)=1 & \text { for } q \in[3-1,3-1] \\
\operatorname{dim}\left(E_{q} \cap V\right)=2 & \text { for } q \in[4-1,4-0]
\end{array}\right\} .
$$

(This means, that $V \subset E_{3}$.)

$$
\Omega_{20}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{4}: \begin{array}{ll}
\operatorname{dim}\left(E_{q} \cap V\right)=1 & \text { for } q \in[3-2,3-0] \\
\operatorname{dim}\left(E_{q} \cap V\right)=2 & \text { for } q \in[4-0,4-0]
\end{array}\right\} .
$$

(This means $E_{1} \subset V, V \neq E_{2}$.)

$$
\Omega_{21}^{\circ}\left(E_{\bullet}\right)=\left\{V \subset \mathbb{C}^{4}: \begin{array}{ll}
\operatorname{dim}\left(E_{q} \cap V\right)=1 & \text { for } q \in[3-2,3-1] \\
\operatorname{dim}\left(E_{q} \cap V\right)=2 & \text { for } q \in[4-1,4-0]
\end{array}\right\}
$$

$\left(E_{1} \subset V\right.$ and $\left.V \subset E_{3}.\right)$
14.2 For the standard flag the Schubert cells are the B_{n} orbits of the torus-fixed points. Let $x_{i, j}=$ $\operatorname{lin}\left\{\epsilon_{i}, \epsilon_{j}\right\}$

$$
\begin{array}{rlr}
\Omega_{00}^{\circ}\left(E_{s t}\right)=B_{4} x_{34}, & \text { open cell } \\
\Omega_{22}^{\circ}\left(E_{s t}\right)=B_{4} x_{12}, & \text { a point } \\
\Omega_{10}^{\circ}\left(E_{s t}\right)=B_{4} x_{24}, & \text { divisor } \\
\Omega_{11}^{\circ}\left(E_{s t}\right)=B_{4} x_{23}, & \operatorname{dim}=2, \text { closure } \simeq \mathbb{P}^{2} \\
\Omega_{20}^{\circ}\left(E_{s t}\right)=B_{4} x_{14}, & \operatorname{dim}=2, \text { closure } \simeq \mathbb{P}^{2}
\end{array}
$$

14.3 If we reverse the reference flag, then the Schubert cells are the orbits of the opposite Borel group B_{n}^{-}, consisting of the lower triangular matrices.

$$
\begin{array}{lc}
\Omega_{00}^{\circ}\left(E_{o p}\right)=B_{4}^{-} x_{12}, & \text { open cell } \\
\Omega_{22}^{\circ}\left(E_{o p}\right)=B_{4}^{-} x_{34}, & \text { a point } \\
\Omega_{10}^{\circ}\left(E_{o p}\right)=B_{4}^{-} x_{13}, & \text { divisor } \\
\Omega_{11}^{\circ}\left(E_{o p}\right)=B_{4}^{-} x_{23}, & \operatorname{dim}=2, \text { closure } \simeq \mathbb{P}^{2} \\
\Omega_{20}^{\circ}\left(E_{o p}\right)=B_{4}^{-} x_{14}, & \operatorname{dim}=2, \text { closure } \simeq \mathbb{P}^{2} \\
\Omega_{21}^{\circ}\left(E_{o p}\right)=B_{4}^{-} x_{24}, & \operatorname{dim}=1, \text { closure } \simeq \mathbb{P}^{1}
\end{array}
$$

(we replace $x_{i, j}$ by $x_{5-j, 5-i}$).

- Let us work with the opposite flag. We set $\sigma_{\lambda}=\left[\overline{\Omega_{\lambda}^{\circ}\left(E_{o p}\right)}\right]$.
14.4 The main statements of nonequivariant Schubert calculus are the following:
- The Giambelli formula says, that the classes of Schubert varieties can be expressed by the Chern classes of the (dual) tautological bundle V^{*}

$$
\left[\Omega_{\lambda}\right]=S_{\lambda}\left(V^{*}\right)
$$

- The rules how to multiply $\sigma_{\lambda}\left[\Omega_{\lambda}\right]$'s: Pieri rule and more general Littlewood-Richardson rule.
14.5 For example for $d=1, G r_{1}\left(\mathbb{C}^{n}\right)=\mathbb{P}^{n-1}, V^{*}=\mathcal{O}(1)$ and $\left[\Omega_{i}\right]=\left[\mathbb{P}^{n-1-i}\right]=c_{1}(\mathcal{O}(1))^{i}$.
14.6 Nonequivariant multiplication for $G r_{2}\left(\mathbb{C}^{4}\right)$

	σ_{00}	σ_{10}	σ_{11}	σ_{20}	σ_{21}	σ_{22}
σ_{00}	σ_{00}	σ_{10}	σ_{11}	σ_{20}	σ_{21}	σ_{22}
σ_{10}	σ_{10}	$\sigma_{11}+\sigma_{20}$	σ_{21}	σ_{21}	σ_{22}	0
σ_{11}	σ_{11}	σ_{21}	σ_{22}	0	0	0
σ_{20}	σ_{20}	σ_{21}	0	σ_{22}	0	0
σ_{21}	σ_{21}	σ_{22}	0	0	0	0
σ_{22}	σ_{22}	0	0	0	0	0

14.7 The product $\sigma_{\lambda} \cdot \sigma_{\mu}$ can be written as $\sum_{\nu} c_{\lambda \mu}^{\nu} \sigma_{\nu}$. The coefficients are called the LittlewoodRichardson coefficients. They are nonnegative integers:

$$
c_{\lambda \mu}^{\nu}=\left|g_{1} \Omega_{\lambda}\left(F_{s t}\right) \cap g_{2} \Omega_{\mu}\left(F_{s t}\right) \cap g_{3} \Omega_{\nu} \vee\left(F_{s t}\right)\right|,
$$

where ν^{\vee} is the opposite partition $\nu^{\vee}=\operatorname{Reverse}\left((n-k)^{k}-\nu\right), g_{i}$ are general elements of GL_{n}. In the equivariant calculus the coefficients $c_{\lambda \mu}^{\nu}$ are polynomials in $t_{1}, t_{2}, \ldots, t_{n}$.
14.8 In the nonequivariant case the reference flag is irrelevant for computing cohomology classes. Instead of B_{n} orbits one can take the orbits of the opposite Borel group B_{n}^{-}.
14.9 Equivariant cohomology contains more information. There are at least three important bases of $H_{\mathbb{T}}^{*}\left(G r_{d}\left(\mathbb{C}^{n}\right)\right.$:

- The basis on $\left[\sigma_{\lambda}\right]$ - the natural choice;
- The bases of Schur classes of V^{*} - convenient for functorial reasoning;
- The basis of the fixed point classes (this is a basis after the localization in $\left.S=\left\langle t_{i}-t_{j} \mid i \neq j\right\rangle\right)$ here the multiplication is easy.
14.10 The analogues of the Giambelli formulas are the Kempf-Laksov formulas. In [Anderson-Fulton, $9.2]$ given for B_{n}^{-}orbit closures.
14.11 Table of the restrictions of Schubert classes at the fixed points

	x_{34}	x_{24}	x_{23}	x_{14}	x_{13}
σ_{0}	1	1	1	1	1
σ_{10}	$t_{1}+t_{2}-t_{3}-t_{4}$	$t_{1}-t_{4}$	$t_{2}-t_{4}$	$t_{1}-t_{3}$	$t_{2}-t_{3}$
σ_{11}	$\left(t_{1}-t_{3}\right)\left(t_{1}-t_{4}\right)$	$\left(t_{1}-t_{2}\right)\left(t_{1}-t_{4}\right)$	0		
σ_{20}	$\left(t_{1}-t_{4}\right)\left(t_{2}-t_{4}\right)$	$\left(t_{1}-t_{4}\right)\left(t_{3}-t_{4}\right)$	$\left(t_{2}-t_{4}\right)\left(t_{3}-t_{4}\right)$	$\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right)$	0
σ_{21}	$\left(t_{1}-t_{3}\right)\left(t_{1}-t_{4}\right)\left(t_{2}-t_{4}\right)$	$\left(t_{1}-t_{2}\right)\left(t_{1}-t_{4}\right)\left(t_{3}-t_{4}\right)$	0	0	
σ_{22}	$\left(t_{1}-t_{3}\right)\left(t_{2}-t_{3}\right)\left(t_{1}-t_{4}\right)\left(t_{2}-t_{4}\right)$	0	0	0	0
0					

14.12 The formula for σ_{10} : in nonequivariant cohomology $\sigma_{1}=c_{1}\left(V^{*}\right)=c_{1}(\mathcal{O}(1))$ (the bundle $\mathcal{O}(1)$ comes from the Plücker embedding).

- The equivariant formula is of the form

$$
\sigma_{10}=c_{1}\left(V^{*}\right)+\text { linear form }\left(t_{1}, t_{2}, t_{3}, t_{4}\right) .
$$

The form is chosen in such way that $\left(\sigma_{10}\right)_{\mid x_{1,2}}=0$, i.e. it is equal $t_{1}+t_{2}$. This reasoning works in general.
14.13 Equivariant multiplication table.

- Multiplication by σ_{10}

$$
\begin{aligned}
\sigma_{10} \sigma_{22} & =\left(t_{1}+t_{2}-t_{3}-t_{4}\right) \sigma_{22} \\
\sigma_{10} \sigma_{21} & =\left(t_{1}-t_{4}\right) \sigma_{21}+\sigma_{22} \\
\sigma_{10} \sigma_{20} & =\left(t_{2}-t_{4}\right) \sigma_{20}+\sigma_{21} \\
\sigma_{10} \sigma_{11} & =\left(t_{1}-t_{3}\right) \sigma_{11}+\sigma_{21} \\
\sigma_{10}^{2} & =\left(t_{2}-t_{3}\right) \sigma_{10}+\sigma_{11}+\sigma_{20}
\end{aligned}
$$

According to the equivariant Monk formula

$$
\sigma_{10} \sigma_{\lambda}=\sum_{\lambda^{+}} \sigma_{\lambda^{+}}+\left(\sigma_{10}\right)_{\mid x_{\lambda}} \sigma_{\lambda},
$$

where x_{λ} is the fixed point in $\Omega_{\lambda}^{\circ}\left(E_{o p}\right)$.

- The remaining multiplications

$$
\begin{aligned}
\sigma_{22}^{2} & =\left(t_{1}-t_{3}\right)\left(t_{2}-t_{3}\right)\left(t_{1}-t_{4}\right)\left(t_{2}-t_{4}\right) \sigma_{22} \\
\sigma_{21} \sigma_{22} & =\left(t_{1}-t_{3}\right)\left(t_{1}-t_{4}\right)\left(t_{2}-t_{4}\right) \sigma_{22} \\
\sigma_{20} \sigma_{22} & =\left(t_{1}-t_{4}\right)\left(t_{2}-t_{4}\right) \sigma_{22} \\
\sigma_{11} \sigma_{22} & =\left(t_{1}-t_{3}\right)\left(t_{1}-t_{4}\right) \sigma_{22} \\
\sigma_{21}^{2} & =\left(t_{1}-t_{4}\right)^{2} \sigma_{22}+\left(t_{1}-t_{2}\right)\left(t_{1}-t_{4}\right)\left(t_{3}-t_{4}\right) \sigma_{21} \\
\sigma_{20} \sigma_{21} & =\left(t_{1}-t_{4}\right) \sigma_{22}+\left(t_{1}-t_{4}\right)\left(t_{3}-t_{4}\right) \sigma_{21} \\
\sigma_{11} \sigma_{21} & =\left(t_{1}-t_{2}\right)\left(t_{1}-t_{4}\right) \sigma_{21}+\left(t_{1}-t_{4}\right) \sigma_{22} \\
\sigma_{20}^{2} & =\left(t_{2}-t_{4}\right)\left(t_{3}-t_{4}\right) \sigma_{20}+\left(t_{3}-t_{4}\right) \sigma_{21}+\sigma_{22} \\
\sigma_{11} \sigma_{20} & =\left(t_{1}-t_{4}\right) \sigma_{21} \\
\sigma_{11}^{2} & =\left(t_{1}-t_{2}\right)\left(t_{1}-t_{3}\right) \sigma_{11}+\left(t_{1}-t_{2}\right) \sigma_{21}+\sigma_{22}
\end{aligned}
$$

14.14 Knutson-Tao puzzles: we draw a triangle with all edges of length n and fill them with pieces of the following shapes

- Three nonequivariant puzzles and one equivariant:

The last one is not rotatable.

- We change the coding of Schubert varieties. Instead of partitions we use 0-1 sequences of length n.

We walk along the edges of Young diagram $N E \rightarrow S W$: the sequence has 1 if we go $S, 0$ if we go W.

$$
\begin{array}{cll}
00 & \rightarrow & 0011 \\
10 & \rightarrow & 0101 \\
11 & \rightarrow & 0110 \\
20 & \rightarrow & 0110 \\
21 & \rightarrow & 1010 \\
22 & \rightarrow & 1100
\end{array}
$$

We label the edges of the triangle with the codes

ν
14.15 Multiplication in $\mathbb{P}^{1}=G r_{1}\left(\mathbb{C}^{2}\right)$

$$
\sigma_{0} \sigma_{1}=\sigma_{1} \quad \sigma_{1} \sigma_{1}=\left(t_{1}-t_{2}\right) \sigma_{1} \quad \sigma_{0} \sigma_{0}=\sigma_{0}
$$

14.16 Multiplication in $G r_{2}\left(\mathbb{C}^{4}\right)$

Three coefficients of the expansion of $\sigma_{10} \sigma_{10}$ in $H_{\mathbb{T}}^{*}\left(G r_{2}\left(\mathbb{C}^{4}\right)\right.$

$$
c_{10,10}^{10}=t_{2}-t_{3}, \quad c_{10,10}^{11}=1, \quad c_{10,10}^{20}=1
$$

14.17 [Anderson-Fulton, $\S 9$, Theorem 8.4] The equivariant Littlewood-Richardson coefficient is equal to

$$
c_{\lambda \mu}^{\nu}=\sum_{\text {puzzle fillings }} \prod_{\text {special pieces }}\left(t_{\text {left leg }}-t_{\text {right leg }}\right)
$$

- In [Anderson-Fulton, §9] the signs of the variables are reversed, due to a different convention.

[^0]: ${ }^{1}$ this is the naive projectivization, i.e. the fiber over $x \in B$ consist of the lines in E_{x}.

[^1]: ${ }^{2}$ In fact one has to take the normalization of the orbit.

