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1.1 Prehistory: Poincaré-Hopf theorem. Suppose M is a manifold, v a vector field with isolated

zeros, then

χ(M) =
∑

p∈Zeros
Indp(v) ,

where Indp(v) is the index of the vector field, i.e. the degree of the map from a small sphere around p

S(p, ϵ) to the unit sphere in TpM given by v(p)/||v(p)||.

1.2 Suppose a circle S1 acts smoothly on M with isolated fixed points. Let v be the fundamental

field of the action, i.e.

v(x) = d
dt(t · x)|t=0 .

Then if p ∈MS1
the index Indp(v) = 1. Hence

χ(M) = |MS1 | .

This statement is true in a much greater generality.

1.3 Let X be a simplicial complex (or any decent compact topological space, e.g. a manifold).

Suppose p is a prime number. Let P be a p-group acting on X. Then the Euler characteristic of fixed

points χ(XP ) ≡ χ(X) mod p.

Proof: We assume that P acts simplicially and the relation follows from the property of p groups acting

on finite sets: |XP | ≡ |X| mod p.

1.4 Exercise: give a proof for compact manifolds, not using triangulations.

[Sören Illman, Smooth equivariant triangulations ofG-manifolds forG a finite group. Math. Ann.233(1978),

no.3, 199–220.]

See a far-reaching generalization: Dwyer–Wilkerson Smith theory revisited. Ann. of Math. (2) 127

(1988), no. 1, 191–198.

1.5 Corollary: no decent compact contractible space admits a finite group action without fixed points.

1.6 Theorem does not hold for infinite dimensional spaces, e.g. Z2 acts on S∞ ∼ pt without fixed

points (action via antipodism).

1.7 Theorem: Let X be a compact (decent) compact topological space (e.g. a manifold). Suppose

T = (S1)r acts on X. Then χ(X) = χ(XT).

Proof: XS1
= XZp∞ = XZpn for n >> 0.

Examples of the spaces with torus action.

1.8 X = S2n+1 ⊂ Cn+1 with S1 ⊂ C action via scalar multiplication. (No fixed points, χ(X) = 0.)
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1.9 The projective space Pn = CPn = Pn(C) = (Cn+1 \ {0})/C∗ can be presented as S2n+1/S1.

1.10 X = S2n ⊂ Cn × R with S1 ⊂ C acting on the factor Cn. ( χ(X) = 2, two fixed points.)

1.11 Projective space Pn (in particular P1 = S2) admits the action of TC = (C∗)n+1. There are n+ 1

fixed points. Also the small torus consisting of the sequences (1, t, t2, . . . , tn) has the same fixed points.

We check directly that χ(Pn) = n+ 1.

[For holomorphic actions does not matter whether we take compact torus S1 or C∗. The fixed points

are the same.]

Bia lynicki-Birula decomposition by examples.

1.12 Let X = Pn,

T = {(1, t, t2, . . . , tn) ∈ TC | t ∈ C∗}

acting as above. For p ∈ XT let

X+
p = {z ∈ X | lim

t→0
t · z = p}.

The sets X±
p are homeomorphic (isomorphic as algebraic varieties) with affine spaces. We obtain the

well known decomposition of the projective space

Pn = Cn ⊔ Cn−1 ⊔ Cn−2 ⊔ · · · ⊔ C0 .

X+

[0:0:···:
k
1:0:···:0]

= {zk ̸= 0, zℓ = 0 for ℓ < k} ≃ Cn−k

1.13 The quadric z0z3 − z1z2 = 0 in P3 with the T = C∗ action as above.

Q[1,0,0,0] = {[1 : z1 : z2 : z1z2] | z1, z2 ∈ C} ≃ C2

Q[0,1,0,0] = {[0 : 1 : 0 : z3] | z3 ∈ C} ≃ C

Q[0,0,1,0] = {[0 : 0 : 1 : z3] | z3 ∈ C} ≃ C

Q[0,0,0,1] = {[0 : 0 : 0 : 1]} ≃ pt

1.14 Theorem [Bia lynicki-Birula 1973] Let X be a complex projective algebraic variety with algebraic

T = C∗ action. For a component F ⊂ XT let

X+
p = {z ∈ X | lim

t→0
t · z ∈ F}.

(1) Then

X =
⊔
F

X+
F

(the sum over connected components) is a decomposition into locally closed algebraic subsets.

(2) The limit map

pF = lim
t→0

: X+
F → F

is an algebraic map. If X is smooth then pF is a Zariski-locally trivial fibration with the fiber isomorphic

to CnF .
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(3) The number nF is the rank of ν+F ⊂ νF , the subbundle of the normal bundle on which T acts with

positive weights.

• The field C can be replaced by any algebraically closed field.

1.15 Note that existence of the limit limt→0 t · z follows from the fact that the closure of the orbit is

an algebraic curve. The map

αz : C∗ → P1 ×X

t 7→ (t, t · z)

extends to a map from P1. To see that one can note that the image of C∗ is a constructible algebraic

set (by Tarski-Seidenberg theorem), hence the closure is an algebraic curve, dominated by P1. Hence

we have a unique extension of αz

ᾱz : P1 → P1 ×X π→ X

and

lim
t→0

t · z := π(ᾱz(0)) .

• If the action is not algebraic, the above argument does not work: C∗ acts transitively on any elliptic

curve, there are no fixed points.

2 Basics about actions of compact groups

2.1 Let T = (S1)r ⊂ Cr and t = iRr ⊂ Cr. The map exp coordinatewise induces the exact sequence

0 −→ tZ −→ t
exp−→ T −→ 0,

where tZ = 2πiZr ⊂ iRr = t is the kernel, also denoted by N

2.2 Weights and characters. See [Anderson-Fulton, Ch. 3,§1]

• Homomorphisms Hom(T, S1) are called ,,characters”. This set is a group with respect to multipli-

cation pointwise. It is isomorphic to Zr. In toric geometry denoted by M .

• any character in coordinates is of the form

(t1, t2, . . . , tr) 7→ tw1
1 tw1

2 . . . twr
r denoted by tw.

• the sequence (w1, w2, . . . , wr) ∈ Zr is the called weight.

2.3 Without coordinates:

Weights = Hom(N,Z)

In toric geometry Hom(N,Z) is denoted by M , in representation theory t∗Z.

tZ
weight−→ 2πiZ ≃ Z

∩ ∩
t −→ iR

exp ↓ ↓

T character−→ S1

For a weight w ∈ tZ the corresponding character is denoted by ew.
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2.4 For the complex torus TC ≃ (C∗)r any polynomial map is determined by the values on T ≃ (S1)r

Homalg(TC,C∗) = Hom(T, S1) .

2.5 Linear actions of T one a vector space Cn can be diagonalized

(Commuting linear maps of finite order have a common diagonalization.)

2.6 Exercise: for any field F = F any linear action of TF = (F∗)r on Fn can be diagonalized.

2.7 Up to an isomorphism any linear action of T on a complex vector space is determined by the

multi-set of weights.

• Let Cw be equal to C as a vector space with the action of T via ew : T→ S1 ⊂ C∗ = GL1(C)

• If T has fixed coordinates, i.e. it is identified with (S1)r and w = (w1, w2, . . . , wr) then for t ∈ T
the linear map ew(t) : Cw → Cw is the multiplication by tw1

1 tw2
2 . . . twr

r .

• We have a canonical decomposition

V =
⊕
w∈M

Vw,

where Vw = {v ∈ V | ∀t ∈ T t · v = ew(t)v} ≃ HomT(Cw, V ) is the eigenspace (called weight space)

corresponding to the weight w.

• For a vector bundle E → B, with torus action such that T acts on B trivially and on the fiber the

action is linear we have a decomposition into a direct sum of subbundles E =
⊕

w Ew.

• The decomposition into weight subspaces can be noncannonically refined

V =
dimV⊕
k=1

Cwk
.

(Note: If we have fixed coordinates of T, then each wk is a sequence of numbers (wk,1, wk,2, . . . , wk,r).)

• The element

e(V ) =

dimV∏
k=1

wk =
∏
w

wdimVw ∈ SymdimV (t∗Z)

does not depend on the above decomposition and it is called the Euler class of the representation.

• The product

c(V ) =
dimV∏
k=1

(1 + wk) =
∏
w

(1 + w)dimVw ∈ Sym(t∗Z)

is also well defined. It is called the Chern class of the representation

• After tensoring with R (or Q) we can identify Sym(t∗Z)⊗ R with polynomial functions on t.

2.8 Exercise: for a representation V of T consider an action of T̃ = T× S1 on Ṽ = V , where S1 acts

by the scalar multiplication. Denote by ℏ the weight corresponding to the character T̃ → S1, which is

the projection. Show that

c(V ) = e(Ṽ )|ℏ=1 .

Action of a compact group (in particular torus) on a manifold

2.9 Exercise: (algebraic geometry) Let A be an algebra over a field F and X = Spec(A). Defining

an action of Gm = Spec(F[t, t−1]) on X is equivalent to defining a Z-gradation of A. Prove this

correspondence and generalize it to an action of the algebraic torus Gr
m.
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2.10 Let X be a manifold with a smooth action of T. Suppose x ∈ XT is a fixed point. Then T
acts on TxX. If x is an isolated fixed point, then the weight space (TxX)0 corresponding to the weight

w = 0 is trivial.

2.11 Proposition. There exists a neighbourhood x ∈ U ⊂ TxX and an equivariant map f : U → X,

which is an isomorphism on the image.

Proof: Fix an S1 invariant metric, take U to be the ball of a sufficiently small radius, f = exp in the

sense of the differential geometry.

2.12 Reminder: Orbit, stabilizer(=isotopy group): Suppose a group G acts on X, x ∈ X
• the stabilizer = Gx = {g ∈ G | gx = x}.
• if y = gx then Gy = gGxg

−1

• the orbit = G · x ≃ G/Gx.

• the isotropy group Gx acts on the tangent space TxX and the fiber of the normal bundle (νG·x)x

2.13 Construction of the associated bundle: Suppose V be a representation of a group H, and

suppose P be a H-principal bundle. Let us define

P ×H V = P × V/{(ph, v) ∼ (p, hv)} .

The projection P ×H V → P/H = Y is a vector bundle.

For the definition and basic facts about principal bundles [Anderson-Fulton, Ch.2.1]

2.14 Slice theorem for manifolds: Assume that X is a smooth manifold, G a compact Lie group

(can assume a torus) acting smoothly. Let V = (νG·x)x. There exist an equivariant neighbourhood

of 0 ∈ S ⊂ V , such that the map G ×Gx S → X induced by exp : G ×Gx V → X is an equivariant

diffeomorphism onto the image. This image is a neighbourhood of G×Gx {0} ≃ G · x. The set S or its

image is called the slice, whole neighbourhood is called the tube. See [Anderson-Fulton, Ch.5 Th.1.4].

• In other words: any orbit has a neighbourhood isomorphic to the disk bundle of the associated

vector bundle over the orbit.

• Proof. The map exp : T× V → X induces

(g, v) 7→ g · exp(v) .

Exp isGx-invariant, i.e. exp(g ·v) = g ·exp(v) for g ∈ Gx. Hence the above map factorizes G×GxV → X.

• Exercise: Show that the above map is well defined.

2.15 Exercise: Let G be a group, H a subgroup, E → G/H be a vector bundle with G-action, such

that for any g ∈ G, x ∈ G/H the map g : Ex → Egx is linear. Show that E ≃ G ×H E[e]. Here [e]

denotes the coset eH.

2.16 There is a more general theorem for topological spaces:

– If X is a topological space (completely regular), G a compact Lie group, then a slice V is a certain

subspace of X, invariant with respect to Gx. [Bredon, Introduction to Compact Transformation Groups.

Section II.5]
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– In algebraic geometry [Luna slice theorem] we assume that G is reductive ((C∗)r is fine, GLn(C)

too) X is an affine variety, and the orbit is closed. The neighbourhood is in the étal topology. [Luna,

Domingo (1973), Slices étales, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire,

vol. 33]

3 Classifying spaces

3.1 It is convenient to introduce a notion of G-CW-complex. By definition, we assume that X admits

a filtration

X−1 = ∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ XN

such that

Xi = Xi−1 ∪ϕ (G×H Dni),

where Dni is the unit disk of a linear orthogonal representation of H → Aut(Rni),

ϕ : G×H Sni−1 → Xi−1.

(with weak topology.)

3.2 Any smooth action of a compact Lie groupG on a compact manifold admits aG-CW-decomposition.

3.3 Example: S2 with the standard S1 action has 3 cells 0, ∞ and S1 ×D1.

3.4 Exercise: find a CW-decomposition of Pn with the standard action of (S1)n+1

3.5 The topological spaces we study will be assumed to admit a G-CW-decomposition

3.6 Equivariant cohomology of a G space:

• topological model H∗
G(X) = H∗(EG×GX), where EG is a contractible free G-space (unfortunately

in almost all cases EG is of infinite dimension)

• differential model if X is a G-manifold H∗
G,dR(X) = H∗(Ω∗(X,G))

• de Rham theorem H∗
G(X;R) ≃ H∗

G,dR(X)

3.7 We will assume, that G is compact (or linear algebraic reductive, e.g. (C∗)r).

3.8 A G bundle P → B = E/G is universal if for any G bundle P ′ → B′ there exist a map f : B′ → B

such that F ∗(P ) = P ′. Moreover f is unique up to homotopy.

• Hence

{G-bundles on X} = [X,B]

where [X,B] means homotopy classes of maps (X is assumed to be CW-complex).

3.9 We will show that a universal G-bundle exists.

• Notation EG→ BG, should be understood as a homotopy type, which has various realizations.

• A G bundle P → B is universal if and only if E is contractible.
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• Proof: Assume that P is contractible. Suppose P ′ → B′ be an arbitrary G-bundle. We construct a

mapping by induction on skeleta. We assume that P ′ is a CW-complex, glued from cells with trivial

stabilizers, i.e. each cell is of the form Dn ×G.

Sn−1 ×G

��

//
%%

Dn ×G

��

// EG

��
Sn−1 //

%%
Dn // BG

it is enough to construct a mapping Sn−1 × {1} → P do Dn × {1} → EG and use G-action to spread

the definition on the whole tube Dn ×G. Similarly we construct a homotopy between two maps.

Hence if P is contractible then it is universal. If we have another bundle P ′ → B′ which is universal,

then there are G maps P ′ → P and P → P ′ and their compositions are homotopic to identities (this is

a general nonsens about universal objects).

3.10 Corollary: by the homotopy exact sequence for G ⊂ EG → BG we have homotopy group

isomorphism πk(BG) ≃ πk−1(G). In particular, if G is connected, then BG is 1-connected.

3.11 Since any nontrivial compact Lie group contains torus, hence elements of finite orders, the space

EG cannot be of finite dimension (by Euler characteristic argument).

3.12 Examples:

ES1 = S∞ → P∞ = BS1 (of the type K(Z, 2))

E(S1)r = (S∞)r → (P∞)r = B(S1)r

BU(n) = limN→∞Grasn(CN )

3.13 For G = T or U(n) one can approximate BG by compact algebraic manifolds, which admit a

decomposition into algebraic cells (BB-decomposition’s).

3.14 For all linear algebraic groups G ⊂ GLm(C) we can take EG =Steel manifold

Stm(CN ) := Monomorphisms(Cm,CN ) ⊂ Hom(Cm,CN )

See [Anderson-Fulton, Ch.2, Lemma 2.1]

• Exercise: Show that

lim
N→∞

codim(Hom(Cm,CN ) \ Stm(CN )) =∞ .

• For any algebraic group Totaro constructs approximation of BG by algebraic varieties in a more

systematic way.

3.15 If H ⊂ G, then as a model for EH we can take EG. Hence we get a fibration G/H → BH →
BG.

3.16 If H ◁ G is a normal subgroup, K = G/H then there is a fibration BH → BG→ BK.

(Take EH := EG and E′G = EG× EK, taking the fibration E′G/G→ EK/K we find that the fiber

is EG×G G/H = BH.)
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3.17 Characteristic classes for G-bundles [see e.g. Guillemn-Sternberg §8] Consider two contravariant

functors:

Gbdl := {G− bundles}/ ∼: hTop→ sets

H := H∗(− Z) : hTop→ sets

MapFunctors(Gbdl,H) = H∗(BG;Z)

• This is just Yoneda Lemma: if F,H : C → S⌉⊔∫ and F is representable by A ∈ Ob(C), i.e.

F (X) = MorC(X,A) ,

then

MorFunctors(F,H) = F (A) .

Given a transformation of functors

α : MorC(−, A)→ H(−)

We construct an element in H(A) setting X = A

α 7→ α(IdA) ∈ H(A) .

Conversely: given f : X → A and α ∈ H(A) define

α(f) = f∗(α).

3.18 Characteristic classes for n-dimensional vector bundles.

• Each vector bundle is determined by its associated principal bundle. Thus V ectn(X) = [X,BGLn(C)]

and BGLn(C) = BUn. Hence

characteristic classes of n-vector bundles = H∗(BU(n))

• H∗(BU(n),Z) ≃ Z[c1, c2, . . . , cn]

• The map H∗(BU(n+ 1))→ H∗(BU(n)) is surjective given by cn+1 := 0.

3.19 For the torus we have

• G = C∗, EG = C∞ \ {0}; BC∗ = P∞ =
⋃
n Pn

• H∗(BC∗) ≃ Z[t], it is convenient to take t = c1(O(1)), where O(1) is the dual of the tautological

bundle.

• For S1 we can take ES1 = S∞ =
⋃
n S

2n−1

3.20 Corollary:

{topological vector bundles over X} ≃ H2(X;Z)

{characteristic classes of line bundles} = H∗(P∞) = Z[t]

3.21 For T = (S1)n:

H∗(BT) = Z[t1, t2, . . . , tn]
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3.22 The inclusion T→ U(n) induces BT→ BU(n) and H∗(BU(n))→ H∗(T) which is injective

H∗(BU(n)) = Z[c1, c2, . . . , cn] = Z[t1, t2, . . . , tn]Sn ↪→ Z[t1, t2, . . . , tn] = H∗(BT)

Compare [Anderson-Fulton, Ch2, Proposition 4.1]

3.23 The above statement and many others in this course follows from Leray-Hirsch theorem:

• Let F → E → B be a fibration. Assume that H∗(F ) is free (in our case over Z). Suppose there is

a linear map ϕ : H∗(F )→ H∗(E), a splitting of the restriction map H∗(E)→ H∗(F ). Then H∗(E) is

a free module over H∗(B).

3.24 We have the bundle E = BT → BUn = B the fiber is F = Un/T. The base and the fiber (

F =Flag manifold) admit a cell decompositions into even dimensional cells — see explanation below.

Hence we have a cell decomposition of ET which is compatible with the decomposition of the base.

(Note that here as a model of ET is not taken S∞.)

• Hence H∗(E)→ H∗(F ) is split-surjective.

By the Leray-Hirsh theorem H∗(BT) is a free H∗(BUn)–module of the rank dimH∗(F ),

• H∗(F ) ≃ H∗(E)/(H>0(B)) as algebras (also we can write H∗(F ) ≃ Z⊗H∗(B) H
∗(E) )

3.25 We look at the cell decomposition of the approximation Grasn(Cn) of BU(n) (see [Anderson-

Fulton, Ch. 4, §5]

• The cells are indexed by the sequences

0 < i1 < i2 < . . . ik ≤ n(
1 ∗ 0 ∗
0 0 1 ∗

)
i1 = 1, i2 = 3

Equivalently

(n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0) = number of * in the reduced form of the matrix.

3.26 Computation of H∗(BU(n)). The map H∗(BU(n)) → H∗(BT) is injective. The image is

invariant with the symmetric group action Sn, since each permutation σ : T → T → Un is homotopic

to the inclusion.

• First we give an argument over Q. We show that in each gradation dimH2k(BUn) = dimQ[t1, t2, . . . , tn]Sn .

– dimH2k(BU(n)) = number of sequences λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 (no restriction on λ1), such that∑
i λi = k

– dimH2k(BT)Sn = Z[t1, t2, . . . , tn]Sn
k = the number of monomials with non-increasing exponents.

• We conclude that H2k(BU(n);Q) = H2k(BT;Q)Sn

• Moreover H∗(Fl(n);Z) = Z[t1, t2, . . . , tn]/(H>0(BUn;Z)) is torsion-free. Hence H∗(BUn;Z) =

Z[t1, t2, . . . , tn]Sn

3.27 Corollary: We have a description of the cohomology ring

H∗(Fl(n)) ≃ Z[t1, t2, . . . , tn]/(Z[t1, t2, . . . , tn]Sn
>0) .
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3.28 Exercise: Compute the cohomology ring H∗(Gras(k, n)) using the fibration Grask(Cn) →
B(Uk × Un−k)→ BUn.

3.29 General theorem: if G is connected, T maximal torus, W = NT/T the Weyl group, then

H∗(BG;Q) = H∗(BT;Q)W is a polynomial ring in the variables of even degrees, e.g.

• H∗(BSp(n);Q) = Q[c2, c4, . . . , c2n], (valid also over Z),

• H∗(BO2n;Q) = Q[p1, p2, . . . , pn, e]/(e
2 = pn), deg pi = 4i, deg e = 2n (valid also over Z[12 ])

• BE8 is he worst, one has to invert 2, 3, 5. The generators of H2∗(BE8) are in the degrees 2×: 2, 8,

12, 14, 18, 20, 24, 30.

[Burt Totaro: The torsion index of E8 and other groups, Duke Math. J. 129 (2005), no. 2, 219–248]

4 Recollection on Chern classes

What you need to know about Chern classes

4.1 Let V ect1 denote the functor hTop→ Sets

V ect1(X) = Isomorphism classes of line bundles over X

• This functor factors through the category of abelian groups (tensor product of line bundles behaves

like addition).

• V ect(X) denotes isomorphism classes of vector bundles. This is a semi-ring. Here ⊕ is the addition,

⊗ is the multiplication.

4.2 The first Chern class

c1 ∈MorFunctors(V ect1, H
2(−,Z)) = H2(K(Z, 2)) = H2(BS1) = H2(P∞) = H2(P1)

We chose the generator of H2(P1) so that c1(O(1)) = [pt]. Here the bundle O(1) = γ∗ is the dual of

the tautological bundle.

• In other words: the Chern class c1 is determined by the choice made for O(1).

4.3 Chern classes of vector bundles: c(E) = 1 + c1(E) + · · ·+ crk(E)(E).

– functoriality (c is a transformation of functors V ect(−)→ H∗(−,Z)

– for line bundles c(L) = 1 + c1(L)

– Whitney formula c(E ⊕ F ) = c(E) c(F )

• Note c is not a group homomorphism. One can repair that, but has to use Q coefficients. The

resulting transformation is called Chern character. For line bundles

ch(L) = exp(c1(L)) .

Chern character is additive and multiplicative

ch(E ⊕ F ) = ch(E) + ch(F ) ,

ch(E ⊗ F ) = ch(E) ch(F ) .
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4.4 If L is a holomorphic line bundle over a complex manifold, with a meromorphic section s, then

c1(L) is equal to Poincaré dual of Zero(s)− Poles(s).

4.5 Projective bundle theorem. For a vector bundle E → B let P(E) → B be the projectivization1,

L = OP(E)(1) the tautological line bundle, then H∗(P(E)) is a free module over H∗(B)

hr + a1h
r−1 + · · ·+ rar = 0.

Then ai = ci(E).

• There are other conventions of signs, but let’s check: If E is a line bundle, then L = E∗. We have

relation h+ a1 = c1(L) + c1(E) = 0.

4.6 Corollary: Chern classes of E and the ring structure of H∗(B) determine the ring structure

H∗(P(E)) = H∗(B)[h]/(hr + c1h
r−1 + · · ·+ cr−1h+ cr).

4.7 Splitting principle: for any line bundle E → B there exists f : B′ → B such that, f∗E is a sum

of line bundles and f∗ is injective on cohomology. E.g.

B′ = Flags(E) = B ×BU(n) BT ,

where T is the maximal torus in U(n).

4.8 The generator of H2(BC∗) is identified with c1(O(1)). Thus the generators of

H∗
T (BT) = Z[t1, t2, . . . , tn]

can be presented as

ti = c1(Li) ,

where Li = ET×T Cti is the line bundle associated to the representation of T in GL1(C) given by the

projection oh the i-th factor.

4.9 Let χ : T→ C∗ be a character, then c1(ET ×T Cχ) = χ. Here we identify

Hom(T,C∗) = t∗ = H2(BT) .

Borel’s definition of equivariant cohomology [finally, see [Anderson-Fulton, Ch.2 §2]]

4.10 Borel construction XG = EG×G X sometimes is called the mixing space.

4.11 Basic properties:

• It is a module over H∗
G(pt) = H∗(BG)

• Contravariant functoriality with respect to X i G.

• If the action is free then XG → X/G is a fibration with the contractible fiber EG, hence H∗
G(X) =

H∗(X/G). [Anderson-Fulton, Ch 3, §4]

• For K ⊂ G, X = G/H we have XG = EG×G G/K ≃ EG/K = BK.

• More generally H∗
G(G×K X) ≃ H∗

K(X) for any K-space X..

• If the action is trivial then XG = BG×X. If H∗(BG) has no torsion (e.g. G = T , GLn(C), Spn(C))

then H∗
G(X) = H∗(BG)⊗H∗(X). For coefficients in Q we do need the assumption about the torsion.

[Anderson-Fulton, Ch 3, §4]
1this is the naive projectivization, i.e. the fiber over x ∈ B consist of the lines in Ex.
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4.12 Basic properties of equivariant cohomology of smooth compact algebraic varieties: (G connected,

coefficients of cohomology in Q)

• (*) H∗
G(X) is a free module over H∗(BG) hence H∗

G(BG) ≃ H∗(BG)⊗H∗(X), the information of

the action of G is hidden in the multiplication,

• H∗
T(X)→ H∗

T(X)T is injective.

4.13 Example: [Anderson-Fulton, Ch.2, §6] Pn with the standard action of T = (C∗)n+1. We identify

XT with P(
⊕n

i=0Cti). By the projective bundle theorem

H∗
T(Pn) = Z[t0, t2, . . . , tn, h]/(

n∏
i=0

(ti + h)) .

• It is a free module over H∗
T (pt) = H∗(BT) = Z[t0, t2, . . . , tn]

• The map to H∗(Pn) = Z[h]/(hn+1) is a surjection.

• We have an isomorphism of modules over H∗(BT)

H∗
T(Pn) ≃ H∗(BT)⊗H∗(Pn).

We will see that for compact smooth algebraic varieties (or Kähler) the above holds always over Q.

• The map

H∗
T(Pn)→ H∗

T((Pn)T) =
n⊕
i=0

H∗
T(pt) =

n⊕
i=0

Z[t0, t1, . . . , tn]

by

[f(t, h)] 7→ {fi}i=0,1,...,n , fi(t) = f(t,−ti) .

Exercise: this map is injective.

4.14 Example: T = C∗ acting on P1 ≃ S2 via [tℓz0, t
kz1]

XT = P(O(ℓ)⊕O(k))

,

H∗
T(P1) = Z[h, t]/((h+ kt)(h+ ℓt)

• The elements 1 and h generate over Z[t] = H∗(BT ). This is a free module

[We have h2 = −(k+ℓ)th−kℓt2, so any polynomial in t and h can be written modulo the ideal (h2+ht)

as f0(t) + f1(t)h.]

• The restriction to the fixed points

[f(t, h)] 7→ (f(t,−ℓt), f(t,−kt)) .

is injective.

[If f(t,−kt) = 0, then f is divisible by h+ kt . . . .]

4.15 Let T = C∗ act on X = C∗ via the multiplication by zk

• We identify C∗ with the subset of P1

{[1, z] ∈ P1 | z ̸= 0}

12



the action of C∗ is as in 4.14 for ℓ = 0. To compute H∗
T(C∗) use the Mayer-Vietoris exact sequence

[Anderson-Fulton, Ch. 3, §5]: for even degrees we have

0→ H2i−1
T (C∗)→ H2i

T (P1)
α→ H2i

T (C)⊕H2i
T (C)→ H2i

T (C∗)→ 0

0→?→ Z[t, h]/(h(h+ kt))
α→ Z[t]⊕ Z[t]→?→ 0

α(t) = (t, t) , α(h) = (kt, 0) .

The restriction map to the open C’s can be identified with the restriction to the fixed points. The one

but last map α is injective, thus H2i−1
T (C∗) = 0 and

H2i
T (C∗) = coker(α) = ⟨ti1, ti2⟩/⟨α(tahb))⟩ = ⟨ti1, ti2⟩/⟨ti1 + ti2, kt

i
1⟩ = Z/kZ .

• Corollary:

H i(BZk Z) = H i
C∗(C∗

k;Z) =


Z if i = 0

Zk if i is even

0 if i is odd.

(Here Zk denotes Z/kZ.)

4.16 In general, if G is a finite group H>0(BG;Z) is torsion.

• p : EG→ BG is a finite covering, thus p∗p
∗ ∈ End(H i(BG)) is the multiplication by |G|. Since for

i > 0 it factors through trivial group for we have |G|H i(BG) = 0.

• We will mainly perform computation over Q, so will ignore finite groups.

5 Equivariant formality, localization I

5.1 The condition

(*) H∗
T(X) is a free module over H∗

T(pt)

Is called equivariant formality It can be reformulated

– H∗
T(X)⊗H∗T(pt) Q ≃ H

∗(X)

– H∗(X)⊗H∗
T(pt) ≃ H∗

T(X) (it is enough to know that there is an isomorphism of graded vector spaces)

– H∗
T(X)→ H∗(X) is surjective, compare [Anderson-Fulton, Ch. 6, §3].

5.2 The basic argument is analysis of the fibration X ⊂ ET×TX → BT and Serre spectral sequence

Ep,q2 = Hp
T(pt)⊗Hq(X)⇒ Hp+q

T (X) .

5.3 If X is a sum of even dimensional cells then (*) holds. It is enough to assume Hodd(X;Q) = 0.

5.4 Theorem: If X is smooth algebraic manifold with an algebraic torus T = (C∗)r action, then X

is equivariantly formal.

• See [Anderson-Fulton, Ch. 5, Cor. 3.3]

• (Much more difficult result of McDuff is equivariant formality of X symplectic manifolds with

Hamiltonian torus action.)
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5.5 To show (5.4) we need some basic tools.

• Fundamental class of a subvariety Y ⊂ X: it is the Poincaré dual of the homology class. We denote it

[Y ] ∈ H2codimY (X). (We do not have to assume that X is compact.) • Equivariant fundamental class

of an equivariant subvariety. Let En → Bn = (Pn)r be the approximation of the universal T-bundle.

He define [Y ] ∈ H∗
T(X) as the fundamental class of En ×T Y ⊂ En ×T X

[En ×T Y ] ∈ H2codimY (En ×T X) ≃ H2codimY
T (X) for sufficiently large n .

• Exercise: Show that the definition does not depend on n >> 0.

• Exercise: Define the equivariant fundamental class not passing through approximation, but using

the equivariant normal bundle on Ysmooth.

5.6 Correspondences: (for cohomology with rational coefficients). Suppose X and Y are compact

C∞ manifolds. We have

Hom(H∗(Y ), H∗(X)) ≃ (H∗(Y ))∗ ⊗H∗(X)
Poincaré≃ H∗(Y )⊗H∗(X)

Künneth≃ H∗(X × Y ) .

Having a cohomology class a ∈ Hk(X × Y ) we define ϕa : H∗(Y )→ H∗(X)

H i(Y ) H i(X × Y ) H i+k(X × Y ) H i+k−dimY (X)
α 7→ π∗Y α 7→ a · (π∗Y α) 7→ πX∗(a · (π∗Y α)) .

Here · is the product in cohomology. Puritans would denote it by ∪. The push-forward (a.k.a Gysin

homomorphism)πX∗ can be defined as the map in homology composed with Poincaré dualities. See

[Anderson-Fulton, Ch. 3, §6]

• If a is the class of a graph of f : X → Y , dimY = k i.e. a = [graph(f)] ∈ Hk(X × Y ). Then

ϕa = f∗. (Exercise.)

• Suppose X and Y smooth an compact algebraic varieties and Z ⊂ X × Y any subvariety. Take

a = [Z], ϕZ := ϕa. Then ϕZ : H i(Y )→ H i+2c(X) with c = codimZ − dimY = dimX − dimZ.

• One can drop the assumption that X is compact. It is enough to assume that the projection Z → X

is proper:

α 7→ π∗Y α 7→ (π∗Y α)|Z 7→ πX∗(π
∗
Y α)|Z) .

5.7 Proof of 5.4. Let Bn = (Pn)r, Xn = (Cn+1 − 0)r ×T X be the approximation of the Borel

construction. We show that H∗(Xn) → H∗(X) surjective. It is enough, since Hk(Xn) ≃ H∗
T(X) for

large n.

The bundle (Cn+1 − 0)r → (Pn)r is trivial over the set standard affine open set U ≃ (Cn)r:

U ×X ⊂ Xn.

The projection p : U ×X → X extends to the correspondence

ϕZ : Xn → X , Z = closure(graph(p)).

The map p∗ has a left inverse inverse i′∗ induced by i′ : X = {pt} ×X → U ×X, i.e. pi′ = idX

H∗(X)
i∗ ↗ ↖ i′∗

H∗(Xn) −→ H∗(U ×X)

ϕZ ↖ ↗ (ϕZ)|U×X=p∗

H∗(X)
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i∗ϕZ = idH∗(X) because i′∗p∗ = idH∗(X).

• Exercise: show that all works for cohomology with Z coefficients.

5.8 Example of a space which is not equivariantly formal:

Let T = T1 × T2 with Ti = C∗, X = T/T1 ≃ T2:

H∗
T(T/T1) = H∗(ET×T T/T1) = H∗(BT1) .

The map to H∗(X) for *=1 is not surjective.

5.9 Example: T = S1 acting on X = S3 with the quotient S2 (the Hopf fibration). Then H∗
T(S3) ≃

H∗(S2) cannot be surjective to H∗(S3).

5.10 If X is a free T space then X is not equivariantly formal (since H∗
T(X) is of finite dimension,

cannot be a free module over a polynomial ring).

5.11 Localization 1.0: Let X be a finite T–CW complex. Then the kernel and the cokernel of the

restriction to the fixed point set H∗
T(X)→ H∗

T(XT ) are torsion H∗
T (pt)-modules.

• Other formulation: Let Λ = H∗
T (pt) = Q[t1, t2, . . . , t3], and K = be the fraction field. Then the

restriction

K ⊗Λ H
∗
T(X)→ K ⊗Λ H

∗
T(XT ).

is an isomorphism. • It will be clear from the proof what elements of Λ should be inverted.

• Proof in the case of the finite XT, see [Anderson-Fulton, Ch. 5, Th. 1.8]. For nonsingular varieties

[Anderson-Fulton, Ch 5. Th. 1.13]

5.12 Let M be a Λ-module (it is enough to assume that Λ is a domain). Localization

K ⊗Λ M = {m
a
| a ̸= 0}/ ∼

m1

a1
∼ m2

a2
⇔ ∃b ∈ Λ∗ ba2m1 = ba1m2 .

5.13 Lemma: The localization functor

Λ−modules −→ K −modules

is exact. (Exercise)

5.14 Proof of 5.11. Induction with respect to the number of cells: Assume that if X = Y ∪ T×G D.

Then the sequence

→ K ⊗Λ H
∗
T(X,Y )→→ K ⊗Λ H

∗
T(X)→ K ⊗Λ H

∗
T(Y )→

is exact. Assume that G ̸= T. We will show that H∗
T(X,Y ) is a torsion Λ-module.

H∗
T(X,Y ) ≃ H∗

T(T×G D,T ×G S) ≃ H∗
G(D,S) ,

(see (4.11)) The action of Λ onH∗
G(D,S) factorizes throughH∗

T(T/G) = H∗
G(pt) = Λ/(characters anihilating G),

hence H∗
G(pt) is a torsion Λ-module.
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5.15 Exercise: see what goes wrong for T replaced by a nonabelian groups. For tori the orbit

H∗
T(T/G) turned out to be a torsion H∗

T(pt)–module. (Is H∗
GLn

(GLn/Bn) a torsion H∗
GLn

(pt)–module?)

5.16 Example: P1with the standard T = (C∗)2 action

K ⊗Λ H
∗
T(P1) = K[h]/((t0 + h)(t1 + h))

≃−→ K ⊕K

f [h] 7→
(
f(−t0) , f(−t1)

)
.

(Chinese reminder theorem.)

5.17 If X is equivariantly formal, then all mappings below are injective

H∗
T(X) −→ H∗

T(XT)
↓ ↓

K ⊗Λ H
∗
T(X)

≃−→ K ⊗Λ H
∗
T(XT)

If |X| <∞ then

K ⊗Λ H
∗
T(XT) ≃ K |XT|

Therefore instead of computation in a possibly difficult ring H∗
T(X) it is enough to make calculations

with rational functions.

5.18 Example: (exercise) X = Pn, T the standard one, the image

H∗
T(Pn) ↪→

n⊕
k=0

Λ = Λn+1

consists of such sequences (f0, f1, . . . , fn) ∈ Q[t0, t1, . . . , tn]n+1, such that ti − tj divides fi − fj .

Plans for the future:

5.19 Assume that X is equivariantly formal, |XT | <∞.

Question: how to describe H∗
T (X) ↪→

⊕
x∈XT Λ?

(an answer for GKM-spaces is easy and handy to use).

5.20 Assume, that X is equivariantly formal and |XT| <∞.

Question: how to reconstruct an element α ∈ H∗
T(X) knowing the restrictions α|{x} ∈ Λ?

Answer: Atiyah-Bott and Beline-Vergne theorem: assuming that X compact manifold

α =
∑
x∈XT

(ix)∗

(
i∗xα

e(TxX)

)
∈ K ⊗Λ H

∗
T(X),

where ix : {x} → X, and e(TxX) ∈ Λ is the equivariant Euler class of TxX → {x}, see 2.7.

5.21 Corollary (with the assumptions as above):∫
X
α =

∑
x∈XT

i∗xα

e(TxX)
.

5.22 Corollary: X = Pn, α = (c1(O(1))n

n∑
i=0

(−ti)n∏
j ̸=i(tj − ti)

=?
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6 Localization and integration on manifolds

[Anderson-Fulton, Ch. 5]

6.1 Corollary: If X is equivariantly formal, then Heven(X;Q) ≃ Heven(XT ;Q) and Hodd(X;Q) ≃
Hodd(XT ;Q)

• By elementary arguments we already new that χ(X) = χ(XT).

6.2 Remark: From Bia lynicki-Birula decomposition one can derive more: the correspondences

Γi = closure(X+
F → F ) ⊂ F ×X

induce

H∗(X;Z) ≃
⊕
F⊂XT

H∗−2n+
F (F,Z) ,

where n+F is the dimension of the fiber of the limit map X+
F → F . [proof by Carrell].

6.3 Let f : X → Y be a map of compact oriented manifolds. Then the push-forward (or the Gysin

map [Anderson-Fulton, Ch.3, §6]) f∗ : H∗(X)→ H∗
T (Y ) may be defined by Poincaré duality

PDX : Hk(X)→ HdimX−k(X)

a 7→ a ∩ [X],

We define f∗ to be the composition

Hk(X)
≃→ HdimX−k(X) → HdimX−k(Y )

≃← HdimY−dimX+k(Y )
a 7→ a ∩ [X] 7→ f∗(a ∩ [X]) 7→ f∗(a)

6.4 Another construction for an embedding: Let U be a tubular neighbourhood of X in Y , i.e. U

is diffeomorphic to the space of the normal bundle π : ν → X, c = codimX. Let τ ∈ Hc(U,U \ X)

be the Thom class. This means that τ restricted to any fiber of U ≃ ν → X is the generator of

Hc(νx, νx \ {0}) ≃ Hc(Rc,Rc \ {0}) (i.e. we have a continuous choice of orientations in the fibers). We

define f∗:

Hk(X)
Thom−−−→ Hc+k(U,U \X)

excision←−−−−−
≃

Hc+k(Y, Y \X) −→ Hc+k(Y ).

The Thom isomorphism is given by Hk(X)
≃→ Hc+k(U,U \X), a 7→ τ · π∗(a), where π : U → X is the

projection in the bundle ν ≃ U → X.

6.5 Exercise: show that both constructions of f∗ are equivalent. Hint τ ∩ [U ] = [X] ∈ HdimX(U) ≃
HdimX(X), where [U ] ∈ HdimY (U, ∂U) is the orientation class.

6.6 Key formula. Let e(ν) ∈ Hc(X) be the Euler class, i : X ↪→ Y the inclusion. We have

i∗i∗(a) = e(ν) · a .

• Since

e(ν) = i∗(τ) , τ ∈ Hc(ν, ν \X) ≃ Hc(Y, Y \X)

by the definition, we get i∗i∗(a) = i∗(τ · π∗(a)) = i∗(τ) · i∗π∗(a) = e(ν) a.
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6.7 If X ⊂ Y is a T-invariant. Let us define i∗ as in (6.4). The equivariant class of an invariant

submanifold is defined as i∗(1X) ∈ H∗
T(Y ).

6.8 Suppose, that X is a T-manifold, i : XT → X is an embedding,

i∗ : K ⊗Λ H
∗
T (X)

≃→ K ⊗Λ H
∗
T (XT ) .

The composition i∗i
∗ by the Euler class of the normal bundle XT . (over each component F ⊂ XT the

normal bundle can have a different dimension.)

6.9 Fundamental Lemma: The Euler class e(ν(XT in X) ∈ H∗
T(X) is invertible in K ⊗Λ H

∗
T(X).

• It has to be checked for every component of F ⊂ XT that the Euler class in invertible.

• If F = {x} is a point,

e(νF ) =
∏
i

wi ∈ Z[t1, t2, . . . , tr],

where w1, . . . , wc are weights of the torus representation νF = TxX. The weights are non-zero, since x

is an isolated fixed point.

• E.g. if x = [0 : · · · : 0 : 1 : 0 : · · · : 0] ∈ Pn (1 on k-th position), then e(ν{x}) =
∏
i ̸=k(ti − tk).

6.10 Proof of the fundamental lemma in the general case: We decompose ν =
⊕

w∈W νw. We can

assume that νw is a complex bundle. (We do not assume that X is a complex manifold but the torus

action allows to define complex structure.) Each summand νw has a complement µw such that

νw ⊕ µw = 11dw a trivial bundle of dimension dw

The above isomorphism can be made equivariant, when we act on µw with the character w Then

e(νw ⊕ µw) = wdw . Let µ =
⊕

w µw. We have

e(ν ⊕ µ) =
∏
w∈W

wdw

hence

e(ν) ·

(
e(µ)/

∏
w∈W

wdw

)
= 1.

6.11 Localization formula (Atiyah-Bott, Berline-Vergne). Assume, that X is a compact T-manifold,

which is equivariantly formal. For a ∈ H∗
T ∗X) we have

a =
∑
F

(iF )∗

(
i∗F (a)

e(ν(F ))

)
(1)

summation over the connected components F ⊂ XT. Here iF : F → X is the inclusion.

• Proof. Let ϕ be the composition

K ⊗Λ H
∗
T (X)

i∗→
⊕
F

K ⊗Λ H
∗
T (F )

1/e(ν)−→
⊕
F

K ⊗Λ H
∗
T (F ) .

Note, that i∗ ◦ ϕ = Id. Since K ⊗Λ H
∗
T (X) is of a finite dimension over K, thus ϕ ◦ i∗ = Id. Hence we

have an equality (1) in K ⊗Λ H
∗
T (X).

• Note that we have an expression in K ⊗ΛH
∗
T (X), but the sum belongs to H∗

T (X), i.e. it is integral.
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• The above argument reoproves the statement that the restriction to XT is an isomorphism after

tensoring with K.

• It is enough to invert the weights appearing in the normal bundles νF .

• We do not have to assume that X is compact. It is enough to know that XT is compact and X is

formal.

6.12 [Anderson-Fulton, Ch. 5, §2] AB-BV integration formula: Let pX : X → pt be the constant

map. With the assumption as above∫
X
a := (pX)∗(a) =

∑
F

(pF )∗

(
i∗F (a)

e(ν(F ))

)
∈ Λ.

• The sum is in Λ although the summands belong to K.

• If |XT | <∞ ∫
X
a =

∑
p∈XT

a|p

e(TpX)

6.13 Example [Anderson-Fulton, Ch 5, Ex. 2.5] Pn. Let h = c1(O(1)):

• Subexample, n = 1 ∫
P1

h =
−t0
t1 − t0

+
−t1
t0 − t1

= · · · = 1 .

• In general ∫
Pn

hk+n =

n∑
i=0

(−ti)k+n∏
j ̸=i(tj − ti)

= (−1)k
n∑
i=0

Resz=ti
zk+n∏n

j=1(z − tj)
= . . .

The result is:

(−1)kSk(t0, t1, . . . , tn) = (−1)k
∑

ℓ0+ℓ1+···+ℓn=k
tℓ00 t

ℓ1
1 . . . tℓnn

i.e. the complete symmetric function.

• Exercise: Check at least that
∫
Pn h

n = 1.

Application to compute Euler characteristic of holomorphic bundles.

6.14 Riemann-Roch theorem: Let E be a holomorphic bundle over a compact complex manifold,

then

χ(X;E) =

∫
X
td(TX)ch(E) .

• Remainder: the Todd class td is a multiplicative characteristic class i.e. td(E ⊕ F ) = td(E)td(F )

and for a line bundle td(L) = t
1−e−t , where t = c1(L).

• If a torus T acts on X with a finite number of fixed points, and E is a vector bundle admitting T
action, the td(TX) and ch(E) naturally lift to equivariant cohomology (via Borel construction). Then

χ(X;E) =
∑
x∈XT

i∗x(td(TX)ch(E))

e(TxX)
.

• For simplicity assume that E = L is a line bundle. Each summand is equal to∏n
i=1

wx,i

1−e−wx,i∏n
i=1wx,i

eαx =
eα∏n

i=1(1− e−wx,i)
,
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where wx,i are the weights of the T action on the tangent space TxX and αx is the weight of T acting

on Lx.

• Exercise: compute from above χ(Pn;O(k)).

7 Flag variety and flag bundles

[Anderson-Fulton, Ch.4, §4]

7.1 Let E → B be a complex vector bundle of rank n, π : Fℓ(E) → B the associated bundle of

complete flag varieties. A point of Fℓ(E) mapping to x ∈ B is a sequence

V• = {0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Ex | dim(Vi) = i} .

The quotients Li = Vi/Vi−1 with V• varying form a line bundle. Let xi = c1(Li).

7.2 Theorem. Cohomology H∗(Fℓ(E)) is generated by xi as a H∗(B) algebra:

H∗(Fℓ(E)) ≃ H∗(B)[x1, x2, . . . , xn]/I ,

where I is the ideal generated by

σi(x1, x2, . . . , xn)− π∗ci(E) for i = 1, 2, . . . , n ,

so that in H∗(Fℓ(E))

π∗(c(E)) =

n∏
i=1

(1 + xi) .

7.3 The proof by induction.

• For n = 1: Fℓ(E) = B, H∗(B)[x1]/(x1 − c1(E)) = H∗(B).

• Let B′ = P(E) with the projection to B denoted by p. The bundle p ∗ (E) fits to the exact sequence

0→ O(−1)→ p∗(E)→ E′ .

By the projective bundle theorem

H∗(B′) ≃ H∗(B)[h]/

(
n∑
i=0

hip∗(cn−i(E))

)
.

Here h = c1(O(1)). By Whitney formula

c(E′) = p∗(c(E))(1− h)−1 ,

i.e.

ck(E
′) =

k∑
i=0

hip∗(ck−i(E)) .

(The expression for 0 = cn(E′) is exactly the relation in the Projective Bundle Theorem,.) We identify

the flag bundle Fℓ(E′) with Fℓ(E). The generators in cohomology of Fℓ(E) correspond to generators

for Fℓ(E′):

x1 = −h , x2 = x′1 , x3 = x′2 . . . xn = x′n−1 .
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We have by the inductive assumption

H∗(Fℓ(E′)) ≃ H∗(B)[h, x′1, x
′
2, . . . , x

′
n−1]/J

J =

〈
π′

∗
(ci(E

′))− σi(x′1, x′2, . . . , x′n) for i = 1, 2, . . . , n− 1 ,

n∑
i=0

hiπ∗cn−i(E)

〉
.

It is enough to change the name of variables and conclude that J = I.

• The inclusion I ⊂ J follows since (topologically) E ≃
⊕n

i=1 Li.

• Example: n = 4. The generator of J (we drop pull-backs in the notation)

c1(E
′)− σ1(x′1, x′2, x′3) = c1(E)− x1 − σ1(x2, x3, x4)

c2(E
′)− σ2(x′1, x′2, x′3) = c2(E)− x1c1(E) + x21 − σ2(x2, x3, x4)

c3(E
′)− σ3(x′1, x′2, x′3) = c3(E)− x1c2(E) + x21c1(E)− x31 − σ3(x2, x3, x4)

c4(E)− x1c3(E) + x21c2(E)− x31c1(E) + x41

We perform computations in H∗(B)[x1, x2, . . . , xn]/I. By induction show that the generators of J are

trivial. We abbreviate (x1, x2, . . . ) by x

c1(E
′)− σ1(x′) = c1(E)− x1 − σ1(x′) = c1(E)− σ1(x)

c2(E
′)− σ2(x′) = c2(E)− x1σ1(x) + x21 − σ2(x′) = c2(E)− σ2(x)

c3(E
′)− σ3(x′) = c3(E)− x1σ2(x) + x21σ1(x)− x31 − σ3(x′) = c3(E)− σ3(x)

c4(E)− x1σ3(x) + x21σ2(x)− x31σ1(x) + x41 = c4(E)− σ4(x)

We apply the formula
k∑
i=0

(−1)ixi1σk−i(x) = σk(x
′)

and for the last row
n∑
i=0

(−1)ixi1σn−i(x) = 0

• Conceptually: the relations in J say that c(E)(1 + x1)
−1 lives in the gradations < n and c(E)(1 +

x1)
−1 =

∏n
k=2(1 + xk). That follows from the identities of I.

7.4 Corollary: Let T be the maximal torus in GLn(C) acting on

Fℓ(Cn) = GLn(C)/(upper-triangular) ≃ U(n)/(U(n) ∩ T) .

H∗
T(Fℓ(Cn) ≃ Λ[x1, x2, . . . , xn]/⟨σi(t)− σi(x)⟩ | i = 1, 2, . . . , n⟩ .

H∗
T(Fℓ(Cn) ≃ Λ⊗ΛΣn Λ .

• Note

H∗
GLn(C)(Fℓ(C

n) ≃ Λ .
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7.5 [Anderson-Fulton, Ch. 4, §5] For Grassmannian Grk(Cn) the computation follows. The projec-

tion Fℓ(Cn)→ Grk(Cn) induces the inclusion

H∗
T(Grk(Cn)) ↪→ H∗

T(Fℓ(Cn)) ≃ Λ⊗ΛΣn Λ ,

(as for any locally-Zariski trivial fibration). The image lies in

Λ⊗ΛΣn ΛΣk×Σn−k .

By a dimension consideration there is an isomorphism

H∗
T(Grk(Cn)) ≃ Λ⊗ΛΣn ΛΣk×Σn−k .

• It follows that for any vector bundle E → B of rank n

H∗
T(E) ≃ H∗(B)[c1, c2, . . . , ck, c

′
1, c

′
2, . . . , c

′
n−k]/I .

The ideal I is generated by the homogeneous components of the identity

(1 + c1 + · · ·+ ck)(1 + c′1 + · · ·+ c′n−k) = c(E) .

7.6 We denote the group of invertible upper-triangular matrices by Bn. The fixed points of T acting

on Fℓn = GLn(C)/Bn are given by the permutation matrices. The identity corresponds to the standard

flag V0. The quotient map GLn(C)→ Fℓn is T equivariant with respect to the action of T on GLn(C) by

conjugation. The tangent space of Fℓ(Cn) = GLn(C)/Bn at the point [id] is isomorphic to gln/b with

the adjoint action of the torus. The weights are tj− ti for i < j. At the remaining points corresponding

to permutations the weights differ by the action of the permutation.

7.7 Let X = Fℓ(Cn). We will apply AB-BV formula to integrate the class
∏n
i=1 c1(Li)

αi for some

choice of exponents αi ∈ N:

• The integration formula is of the form

(⋆) =
∑
σ∈Σn

∏n
i=1 t

αi

σ(i)∏
i<j(tσ(j) − tσ(i))

=

∣∣∣∣∣∣∣∣∣
tα1
1 tα2

1 . . . tαn
1

tα1
2 tα2

2 . . . tαn
2

...
tα1
n tα2

n . . . tαn
n

∣∣∣∣∣∣∣∣∣
Vandermonde(t1, t2, . . . , tn)

If αi is decreasing then we obtain the Schur function Sλ indexed by the sequence λi obtained as below

α1 > α2 > α3 > . . . > αn
∥ ∥ ∥ ∥

λ1 + n− 1 λ2 + n− 2 λ3 + n− 3 . . . λn

αk = λk + n− k

The Schur functions in n variables for λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) form an additive basis of symmetric

functions

Sλ =

∣∣∣∣∣∣∣∣∣
tn−1+λ1
1 tn−2+λ2

1 . . . tλn1
tn−1+λ1
2 tn−2+λ2

2 . . . tλn2
...

tn−1+λ1
n tn−2+λ2

n . . . tλnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
tn−1
1 tn−2

1 . . . 1

tn−1
2 tn−2

2 . . . 1
...

tn−1
n tn−2

n . . . 1

∣∣∣∣∣∣∣∣∣

= ±Generalized Undermined

Vandermonde
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It is equal (−1)
n(n−1)

2 (⋆).

7.8 Exercise (but maybe not for this course): Check that

Sλ = det (hλi+j−i)i,j=1,...,length(λ)

where hi is the complete symmetric function and hi = 0 for i < 0.

• The fixed points of G(k, n) are the coordinate subspaces (exercise), they correspond to k-element

subsets of n = {1, 2, . . . , n}. The weights at the point corresponding to I0 = {1, 2, . . . , k} can be

computed from the isomorphism

TI0G(k, n) ≃ gln/p

where. p = Lie(P ), P is the stabilizer of lin{ϵ1, ϵ2, . . . , ϵk}. This set is equal to

{tj − ti | i ≤ k < j} .

• At the point pI corresponding to the set I ⊂ {1, 2, . . . , n} the set of weights is equal to{tj−ti}i∈I, j ̸∈I .

7.9 Let a ∈ H∗
T(G(k, n)) be given by a polynomialW (c1(γ), c2(γ), . . . ck(γ), c1(Q), c2(Q), . . . , cn−k(Q))

written as a polynomial in x1, x2, . . . , xn, symmetric with respect to Σk × Σn−k. Then∫
G(k,n)

a =
∑

I⊂n |I|=k

W (tI , tI∨)∏
i∈I
∏
j∈I∨(tj − ti)

where I∨ = n \ I.

7.10 Let L = Λkγ∗ be the top exterior power of the dual tautological bundle on G(k, n). (This

bundle is the pull-back of O(1) for the Plücker embedding).

• Exercise: Compute the degree of G(k, n) under Plücker embedding: let m = dim(G(k, n) = k(m−k)∫
G(k,n)

c1(L)m = (−1)m
∑

I⊂n |I|=k

(∑
i∈I ti

)m∏
i∈I
∏
j∈I∨(tj − ti)

.

• In particular
(t1 + t2)

4

(t3 − t1)(t4 − t1)(t3 − t2)(t4 − t2)
+ other 5 summands = 2 .

Check it.

7.11 Tangent bundle of the Grassmannian Grk(Cn) = G(k, n): let γ
ι
↪→ 11n be the tautological bundle

and let Q = 11n/γ be the quotient bundle. There is an equivariant isomorphism

TG(k, n) ≃ Hom(γ,Q) .

• Proof. We define a map of vector bundles

Hom(γ, 11n)→ TG(k, n)

constructing a curve: for V ∈ G(k, n) let f ∈ Hom(V, 11n). The cure xf : (−ϵ, ϵ)→ G(k, n) is given by

xf (t) = image(ι+ tf) ∈ G(k, n)
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(well defined for small t). The bundle map is given by

Φ(f) = ẋf (0) .

This map invariant with respect to automorphisms of Cn. At a point V ∈ G(k, n) decompose Cn =

V ⊕W . In the affine neighbourhood of V

{V ′ ∈ G(k, n) | V ′ is transverse to W}

every element is a graph of a map V → W . The kernel of Φ is equal to Hom(γ, γ) ⊂ Hom(γ, 11n) (i.e.

at the point V the kernel is equal to Hom(V, V ) ⊂ Hom(V, V ⊕W )). Thus we have (equivariant) short

exact sequence of bundles

0→ Hom(γ, γ)→ Hom(γ, 11n)
Φ→ TG(k, n)→ 0

Hence

TG(k, n) ≃ Hom(γ,Q) .

8 Application of the integration formula

8.1 Let T ⊂ B ⊂ GLn(C) be the diagonal torus, B – the group of upper-triangular matrices. For

a character eλ : T → C∗ define a line bundle Lλ = GLn(C) ×B C−λ. Here B acts on C−λ via the

surjection B ↠ T e−λ

→ C∗. If λ = (λ1, λ2, . . . , λn), then the diagonal torus acts via the multiplication by

t−λ1t−λ2 . . . t−λn .

• If n = 2, then for λ = (1, 0) the bundle Lλ is isomorphic to O(1).

• Borel-Weil-Bott theorem: Suppose λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, then Vλ = H0(G/B;Lλ) is an irreducible

representation of GLm(C) and Hk(G/B;Lλ) = 0 for k > 0, [Fulton-Harris, p.392-394]

8.2 Character of a representation V is denoted by χV , it is the function from G = GLn → C:

χV (g) = tr(g : V → V ) .

• Since χV (g) = χV (hgh−1) the values of χV on the maximal torus determine χV .

• Let R(GL(n) be the representation ring. The map

χ : R(GL(n))→ C[t±1
1 , t±1

2 , . . . , t±1
n ]Σn

is an isomorphism after ⊗C.

8.3 The construction of the representation ring is generalized to the equivariant K-theory of an

algebraic variety (or to any category with exact sequences)

•

KG(X) =
⊕

Z[ Isomorphism classes of equivariant vector bundles ]/(short exact sequences)

0→ E1 → E2 → E3 → 0 ⇒ [E2] = [E1] + [E3] .

• We take the algebraic version of the K-theory, but there is a variant for topological spaces.

• If complex algebraic group G is reductive (all representations split into a direct sum of irreducible

representations), then KG(pt) = R(G). We will consider G reductive only, e.g. G = GLn(C).
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8.4 Instead of vector bundles we can take the isomorphism classes of coherent sheaves. If X is

smooth, then we obtain isomorphic K-theory.

8.5 Let f : X → Y be a proper G-equivariant map of smooth algebraic G-varieties. We define

f! : KG(X)→ KG(Y )

f!(E) =
dimX∑
k=0

(−1)k[Rkf∗(E)]

• The sheaf Rkf∗(E) is a coherent sheaf, should be replaced by its resolution by locally free sheaves,

i.e. by vector bundles. We take Y = pt, then

f!(E) =

dimX∑
k=0

(−1)kHk(X;E) ∈ R(G) ≃ KG(pt) .

8.6 Equivariant Hirzebruch-Riemann-Roch theorem. Let G be an algebraic group acting on X.

td(X)ch(−)

KG(X) −→ Ĥ∗
G(X)

f! ↓ ↓f∗
R(G) ≃ KG(pt) −→ ĤG(pt)

ch

Here ch : R(G)→ ĤG(pt) maps a representation V to ch(EG×G V ). We need to take

Ĥ∗
G(pt) :=

∞∏
k=0

Hk
G(pt)

since the Chern character lives in infinite gradations.

• If G = T the image of ch : R(T)→ Ĥ∗T(pt) = Z[[t1, t2, . . . , tn]] lies in the ring of Laurent polynomial

Z[e±t1 , e±t2 , . . . , e±tn ].

8.7 There is a coincidence of standard notations:

— χ(X;L)=Euler characteristic of G/B with coefficients in the sheaf L
— if a group G acts on X, then naturally χ(X;L) ∈ R(G).

— χ(V ) = χV ∈ R(G) character of a representation.

8.8 We will compute the character of the representation Vλ using localization theorem for T-equivariant

cohomology.

χ(Fℓn;Lλ) =
∑

p∈(Fℓn)T

td(TFℓn)|p

eu(TFℓn)|p
ch(Lλ)

=
∑
σ∈Σn

1∏
i<j(1− e

−(tσ(j)−tσ(i)))

n∏
i=1

e−λitσ(i) .

With new variables xi = e−ti :

χ(Fℓn;Lλ) =
∑
σ∈Σn

1∏
i<j(1− xσ(j)/xσ(i))

n∏
i=1

xλiσ(i) .
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We introduce the notation

xλ =
n∏
i=1

xλii , σ(xλ) =
n∏
i=1

xλiσ(i) ,

xρ =
n∏
i=1

xn−i+1
i , xλ+ρ =

n∏
i=1

xλi+n−i+1
i .

Then

χVλ = χ(Fℓn;Lλ) =
∑
σ∈Σn

σ(xλ+ρ)∏
i<j(xσ(i) − xσ(j))

= Sλ(x1, x2, . . . , xn) .

• This is Weyl character formula describing the character of the representation Vλ

Goresky-Kottwitz-MacPherson: GKM spaces

8.9 Lemma [Chang, Skjelbred]. Suppose a torus acts on a topological space. Let F = XT and let

Y be the sum of F and 1-dimensional orbits. Assume that X is equivariantly formal space. Then the

sequence

0→ H∗
T(X)→ H∗

T(F )→ H∗+1
T (Y, F )

is exact.

• The lemma is equivalent to:

ker(H∗
T(F )→ H∗+1

T (Y, F )) = ker(H∗
T(F )→ H∗+1

T (X,F )) .

• We do not prove CS Lemma in full generality (see Matthias Franz, Volker Puppe, Exact sequences

for equivariantly formal spaces, arXiv:math/0307112 ). The proof will be given for spaces, which are

of special interest for geometers.

8.10 Definition of GKM-space: The torus T = (C∗)r acting algebraically on X – a compact algebraic

variety (there is a topological version as well). We assume że |XT| < ∞ and there are only finitely

many 1-dimensional orbits. We assume that X is equivariantly formal, e.g. X is smooth.

8.11 Assume X is smooth |XT| < ∞. For any x ∈ XT no two weights of TxX are proportional if

and only if there are only finitely many 1-dimensional orbits orbits.

8.12 Graph GKM (V,E,w),

- V = XT vertices

- E edges = 1-dimensional orbits. After fixing an isomorphism of the orbit with C∗ we get an oriented

graph

- edges are labeled with weights w : T→ C∗ of the action of T on C∗ ≃orbit.

All cohomologies are with coefficients in Q.

8.13 Basic Lemma: suppose X = P1, T acts via w ∈ t∗ ≃ H2
T(pt). Then

H∗
T(X) = {(u0, u∞) ∈ Λ2 | u0 ≡ u∞ mod w}

• It follows from the long exact sequence of the pair (P1, {0,∞}), since

H∗
T(P1, {0,∞}) ≃ Λ/(w) with a shift of gradation by 1 .
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8.14 Description of H∗
T(X) for GKM-spaces:

0→ H∗
T(X)→

⊕
x∈F

Λ→
⊕

1−orbits
Λ/(wℓ)

8.15 GKM-algebra associated with a graph (V,E,w : E → t∗Z)

A(V,E,w) := ker

(⊕
v∈V

Λ→
⊕
e∈E

Λ/(wℓ)

)

{av}v∈V 7→ {at(e) − as(e)}e∈E

(this description does not depend on the orientation of edges)

• The GKM-graph of Grassmannian Gr2(C4)

The weight associated to the edge with numbers i . . . j is equal to ti − tj or tj − ti depending on the

choice of the orientation.

8.16 Original reference: Goresky-Kottwitz-MacPherson Equivariant cohomology, Koszul duality, and

the localization theorem, Invent. math. 131, (1998). See [Anderson-Fulton, §7].

9 GKM spaces, differential model of equivariant cohomology

9.1 GKM graphs of Grassmannians Grk(Cn):

• vertices V : fixed points are the coordinate subspaces; bijection with subsets I ⊂ {1..n}
• edges E if I differs from J by one element; say i ∈ I is replaced by j ∈ J , then let

W = lin{εi + εj , εk k ∈ I ∩ J} .

The stabilizer of W has the equation ti = tj . Hence the orbit of W is 1-dimensional, with the weight

equal to ti − tj .
• Exercise: there are no other edges.

9.2 Moment map: GKM-graph of the Grassmannian can be realized in Rn. Let m =
(
n
k

)
, we identify

Rm with ∧kRm:

• We have a map:

Grk(Cn)
Plücker−→ P(∧kCn) = Pm µ−→ Rn ,
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where

µ : [. . . , zI , . . . ] 7→
1

||z||2
(. . . , |zI |, . . . ) 7→

1

|z|2
(. . . ,

∑
I∋i
|zI |2, . . . ) .

This map is the composition of the standard moment map from Pm to m-dimensional simplex

[· · · : z1 : . . . ] 7→ 1
||z||2 (. . . , |zI |2, . . . )

with a linear map Rm → Rn.

• The 1-dimensional orbits are mapped to intervals.

• The image is contained in {x1 + x2 + · · ·+ xm} = k.

• For Pn the GKM graph is the 1-skeleton of the standard n-simplex.

• For n = 4, m = 2 we get octahedron in {x1 + x2 + x3 + x4 = 2}

ε1 ∧ ε2 7→ (1, 1, 0, 0)
ε1 ∧ ε3 7→ (1, 0, 1, 0)
ε1 ∧ ε4 7→ (1, 0, 0, 1)
ε2 ∧ ε3 7→ (0, 1, 1, 0)
ε2 ∧ ε4 7→ (0, 1, 0, 1)
ε3 ∧ ε4 7→ (0, 0, 1, 1)

• It will follow from differential methods, that the GKM graph of a projective manifold is canonically

realized as a graph in t∗.

9.3 If X is smooth of dimension n, then there are n edges at each vertex. For singular spaces can be

more edges from one vertex:

• GKM graph for the Schubert variety X1 = {W ∈ Gr2(C4) | W ∩ lin{ε1, ε2} ̸= 0}. The point {1, 2}
is singular.

9.4 GKM-graph for the flag variety Fℓ(n)

• The vertices V are labeled by permutations

• Since Fℓ(n) ⊂
∏n−1
k=1 Grk(Cn) we see that one dimensional orbits join permutations if and only

permutations differ by a transposition τi,j

•One can realize the GKM graph in {
∑n

i=1 xi = n(n+1)
2 } ⊂ Rn. The permutation σ 7→ (σ(1), σ(2), . . . , σ(n)).

Note that there are internal edges.

• For n = 4
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Proof of Chang-Skjelbred lemma for smooth GKM spaces.

9.5 Notation:

• H∗
T(pt) = Λ = Q[t1, t2, . . . , tr]

• w : Edges→ Λ = Q[t1, t2, . . . , tr], ℓ 7→ wℓ

• ϕ ∈ Λ the least common multiple of all weights appearing as in the stabilizers (up to a coefficient

in Q ). For each weight appearing in the product let ψw := ϕ/w.

• Let ε1, ε2, . . . , εs be a basis over Λ of the free module H∗
T(X). By the first localization theo-

rem H∗
T(XT) ≃

⊕
x∈XT Λ. The isomorphism is induced by the inclusion ι : XT → X. The set

ι∗ε1, ι
∗ε2, . . . , ι

∗εs is a basis of K⊗ΛH
∗
T(XT) over the quotient field K = (Λ). Any element u ∈ H∗

T(XT)

can be written as

u = {ux}x∈XT =
∑ ri

si
ι∗εi ,

i.e. a sum of the basis vectors with the coefficients presented as irreducible fractions ri
si

(it is unique up

to a Q-factor). The denominators si are products of wℓ’s.

Goal: Show that the coefficients ri
si

are integral, i.e. si = 1, provided that the divisibility condition is

satisfied.

9.6 Suppose u ∈ H∗
T(XT) ≃

⊕
x∈XT Λ satisfies the divisibility condition

wℓ |us(ℓ) − ut(ℓ) ,

where s(ℓ) is the source, and t(ℓ) is the target of the edge in the GKM graph.

• Define

Xw = XT ∪ (sum of the orbits with T-action via kw , k ∈ Q).

With our assumptions Xw = XT∪(disjoint union of P1’s)

We claim, that the product of ψwu belongs to the image of H∗
T(Xw) in H∗

T(X).

• Proof of the claim:

— If no edges adjacent to x is proportional to w, then x is isolated in Xw. Then ψwux is equal to

(ιx)∗(
ψw

e(x) ux),where e(x) is the Euler class at x and ψw

e(x) ∈ Λ.

— If x and y are connected by the edge ℓ i.e. an orbit with T-action having the weight wℓ = qw, q ∈ Q,

then e(νx) = e(x)
qw ∈ Λ i e(νy) = e(y)

qw ∈ Λ are the Euler classes of the normal bundle of the closure2 of

the orbit≃ P1:

ν = f∗ℓ (TX)− TP1 , fℓ : P1 ↪→ X e(ν) = f∗ℓ (e(TX))/e(TP1) .

2In fact one has to take the normalization of the orbit.
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Hence

e(νx) = e(νy) mod w (2)

Let αx = ψw

e(νx)
∈ Λ, αy = ψw

e(νy)
∈ Λ. We have αxe(νx) = αye(νy), and w is not proportional to any

factor of that. From (2) it follows

αx = αy mod w .

Since by the assumption

ux = uy mod w

we have

αxux = αyuy mod w .

We deduce that {αxux, αyuy} defines an element of the cohomology of the closure of the orbit joining x

with y. The push-forward to X restricted to x is equal to ψwux and restricted to y respectively ψwuy.

♢

9.7 The end of the proof of CS Lemma: The coefficients of ψwu =
∑ ψwri

si
ι∗εi belong to Λ. The

weight w does not divide ψw, hence w does not divide si. Since w was arbitrary, si = 1. Finally we

conclude that u = ι∗ (
∑
riϵi).

□

Differential model of equivariant cohomology — an overview of the next few lectures

9.8 A model of Ω∗(ET) : It should be a differential graded algebra A•

• a module over H∗(BT) ≃ Sym•(t∗) = Polynomials(t)

• acyclic, i.e. H∗(A•) ≃ H∗(pt) ≃ R
• an action of λ ∈ t lowering degree by one - an analogue of the contraction of a form with the vector

field generated by λ.

• Economic solution: the Weil algebra W •(t) := Sym•t∗ ⊗ ∧•t∗. For ξ ∈ t∗ = ∧1t∗ = Sym1t∗

1⊗ ξ ∈W 1(t) , ξ ⊗ 1 ∈W 2(t) .

To define the differential let us fix a basis of t: α1, α2,. . .αr and the dual basis of t∗: α∗
1, α

∗
2,. . .α∗

r . For

f ∈ Sym•t∗, ξ ∈ Λ•t∗

d(f ⊗ ξ) :=
r∑
i=1

f · α∗
i ⊗ ιαiξ ,

where ιαi is the contraction of the form ξ with the vector αi

• Exercise: show that d2 = 0 and that the differential does not depend on the choice of a basis.

• Example n = 1. Let ξ = α∗
1:

W (t) ≃ R[t]⊗ (R⊕ Rξ)

d(tk ⊗ ξ) = tk+1 ⊗ 1 , d(tk ⊗ 1) = 0

9.9 There is a map from W •(t) to the forms on approximations of ET:

Ω•(ET) := lim
←
m

Ω•((Cm \ {0})r)

sending the generators of Sym•(t∗) to pull-backs of forms living on BT and the generators of ∧•(t∗) to

connection forms. (It will be explained later.)
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9.10 Similarly to the model of Ω•(EG) a model of Ω∗(ET ×T X) is obtained. The exterior algebra

∧•t∗ which serve as H∗(T) = Ω•(T)T is replaced by Ω•(X)T. The complex of twisted differential forms

is defined as

Sym•t∗ ⊗ Ω•(X)T

with the differential d̃, which is a map of Sym•t∗-modules. For a form α ∈ Ωk(X)T let

d̃(1⊗ α) ∈ R⊗ Ωk+1(X)T ⊕ t∗ ⊗ Ωk−1(X)T

d̃(1⊗ α) = 1⊗ dα+

r∑
i=1

α∗
i ⊗ ιvλα ,

where vλ is the fundamental field generated by λ ∈ t.

9.11 If T = S1 then we obtain the model constructed by Witten. The equivariant differential forms

are defined as Sym•t∗ ⊗ Ω•(X)T = Ω•(X)T[h], i.e.polynomials in h with coefficients in Ω•(X)T. The

standard differential is perturbed by the contraction

d̃(α) = dα− hιvα .

We think of h as something very small.

• From the Cartan formula expressing the Lie derivative Lv = ιvd+ dιv we compute d̃ = 0.

10 De Rham model of equivariant cohomology

Main reference:

Atiyah, M. F.; Bott, R. The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28.

Text-book: Guillemin, Victor W.; Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory.

Springer, 1999

10.1 Basics about differential forms Ω•(M) on a C∞ manifolds

• (Ω•(M), d) is a CDGA i.e. a graded-commutative algebra with a differential satisfying the Leibniz

rule

• vector fields act on forms: for X ∈ Γ(TM) there is a contraction operator:

ιX : Ωk(M)→ Ωk−1(M) .

such that for a function f ∈ Ω0(M) = C∞(M)

ιXdf = Xf .

The contraction is an odd derivative

ιX(a ∧ b) = ιXa ∧ b+ (−1)deg aa ∧ ιXb ,

ιX ◦ ιX = 0 .

• Lie derivative LX :

LXf = Xf , for f ∈ Ω0(M) ,
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LX(a ∧ b) = LXa ∧ b+ a ∧ LXb ,

d ◦ LX = LX ◦ d .

[LX ,LY ] = L[X,Y ] .

10.2 Cartan formula

LX = dιX + ιXd .

• Proof: it is enough to check that it agrees for functions (YES) and both sides of equations commute

with the differential and satisfy the (even) Leibniz rule:

d(dιX + ιXd) = d2ιX + dιXd = dιXd = dιXd+ ιXd
2 = (dιX + ιXd)d .

• Leibniz rule: this is a general phenomenon, that the super-commutator of two odd differentiations

is an even differentiation. Set U = ιX , V = d. We skip ∧ and write |a| for deg a

[U, V ] = UV + V U ,

UV (ab) = U((V a)b+ (−1)|a|a(V b))

= (UV a)b+ (−1)|a|−1(V a)(Ub) + (−1)|a|(Ua)(V b) + (−1)2|a|a(UV b)

V U(ab) = V ((Ua)b+ (−1)|a|a(Ub))

= (V Ua)b+ (−1)|a|−1(Ua)(V b) + (−1)|a|(V a)(Ub) + (−1)2|a|a(V Ub)

Hence

(UV + V U)(ab) = ((UV + V U)a)b+ a((UV + V U)b) .

10.3 We study manifolds with an action of a compact, connected Lie group G. Each element λ ∈
g = Lie(G) generates a vector field, denoted vλ. .

• Taking the fundamental field

g
v−→ {vector fields on M} .

is a map of Lie algebras, i.e.

[vλ, vµ] = v[λ,µ] .

• The contraction with vλ will be denoted by ιλ.

10.4 The structure which will be relevant in what follows is:

— M a graded vector space or an algebra

— M is equipped with a differential d of degree 1 and operations Lλ of degree 0 and ιλ of degree −1.

All together satisfy the commutative relations as described above.

• In other words M is a representation of the graded Lie algebra g⊕ g⊕ Rd

[ιλ, ιµ] = 0 , [Lλ, ιµ] = ι[λ,µ] , [d, ιλ] = Lλ ,

[Lλ,Lµ] = L[λ,µ] , [Lλ, d] = 0 , [d, d] = 0 .

• Later we will assume that g = t is commutative, i.e. [λ, µ] = 0.
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10.5 The group G acts on Ω•(M). If G is connected

Ω•(M)G = {α ∈ Ω•(M) | ∀λ ∈ g Lλα = 0} =: Ω•(M)g .

10.6 Assume G is connected. For all g ∈ G and [α] ∈ H∗(M) the transported form has the same

cohomology class [g∗α] = [α].

10.7 If G is compact, every form can be averaged. Hence

H∗(Ω∗(M)G) = H∗(Ω∗(X)) .

Principal bundles

10.8 Let p : P → B = M/G be a principal bundle. The group is assumed to be compact and

connected. Let us define basic forms [Guillemin-Sternberg §2.3.5]:

Ω∗(P )bas = {α ∈ Ω∗(P ) | ∀v0 ∈ g Lvα = 0 , ιvα = 0} = {α ∈ Ω∗(P ) | ∀v0 ∈ g ιvα = 0 , ιvdα = 0} .

This is a subcomplex.

10.9 Theorem:

Ω∗(P )bas = p∗Ω∗(B) ≃ Ω∗(B) .

10.10 For M with an action of T = S1. For short let ι = ιλ for a fixed λ ∈ t. Let us define a

differential in R[h]⊗ Ω∗(M)T

dh(ω) = d− hι .

This is called the Cartan construction, also appears in a Witten’s paper [Supersymmetry and Morse

theory, J. Differential Geometry 17 (1982), no. 4, 661-692]. The symbol h stands for an independent

variable, which lives in the gradation 2. If we specialize h to a number, then we obtain a Z2-graded

complex. (Sometimes it is more convenient to have +hι, but we obtain an isomorphic complex).

10.11 The cohomology H∗
T,dR(M) = H∗(Ω∗(M)T[h], dh) is a module over the polynomial ring R[h].

If M = pt then H∗
T,dR(M) = R[h].

10.12 We will show, that H∗
T,dR(M) ≃ H∗

T(M ;R), first constructing a map on the level of differential

forms.

• There is a mapping R[h] → Ω2(Pn), h 7→ ωn, where ωn is the Fubini-Study form. (It is enough to

assume that [ωn] generates H2(Pn) and (ωn+1)|Pn = ωn to get a map to lim←−.)

• Define MT,n = S2n+1 ×TM , an approximation of the Borel construction. The polynomial ring R[h]

acts on Ω∗(MT,n), h acts as the pull back of ωn.

10.13 We will construct a map of R[h] modules

R[h]⊗ Ω∗(M)T → Ω∗(MT,n) = Ω∗(S2n+1 ×M)bas

First approximation: For α ∈ Ω∗(M)T

1⊗ α 7→ p∗α ,
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where p : S2n+1 ×M →M is the projection.

• We check if the image is a basic form:

— p∗α is T-invariant (YES)

— ι(p∗α) = 0? (NO)

Some correction needs to be done.

10.14 The principal bundle and its connection: Suppose P → P/T = B is a principal bundle.

The tangent space of the fiber at each point is canonically isomorphic to t. With fixed λ ∈ t, the vector

vλ spans that fiber.

• The connection is a T-invariant 1-form θ, such that θ(vλ) = 1. Such form can be constructed having

a T-invariant metric.

θ(w) =
(vλ, w)

(vλ, vλ)
.

This is just the orthogonal projection from TP to the tangent space of the fiber, i.e. to ker(TP → TB)

• In general a connection is a 1-form with values in g, which is G invariant, with G acting on g via

the adjoint representation..

10.15 Let θ ∈ Ω1(S2n+1)T, be the connection. This is equivalent to ιθ = 1. It is elementary to check

that

θ = − i

2π
∂ log ||z||2

is a good choice. When restricted to the points of the form (z0, 0, . . . , 0) it is equal to

− i

2π

z̄0 dz0
|z0|2

= − i

2π

dz0
z0

.

For the parametrization of the orbit γz(t) = e2πitz we compute

θ(γ̇(0)) =
〈
− i

2πγ
∗
z (dzz ), ddt

〉
=
〈
− i

2π
2πie2πitz dt
e2πitz

, ddt

〉
= 1

The differential dθ is a basic form and it is the Kähler form ωn on Pn.

• It follows that in general dθ is a basic form: [dθ] ∈ H2(P/T) is the first Chern class of the line

bundle associated to P (up to a scalar).

10.16 Correction: We identify θn with its pull-back to S2n+1 ×M .

• Let

α′ = p∗α− θn ∧ p∗ια .

We have

ια′ = ιp∗α− ι(θn ∧ p∗ια) = ιp∗α− 1 ∧ p∗ια+ θn ∧ ιp∗ια = 0 .

• We check that the map ϕ : f(h)⊗ α 7→ f(ωn) ∧ (p∗α − θ ∧ p∗(ια)) is a chain map. It is enough to

check for f(h) = 1

dϕ(1⊗ α) = d
(
p∗α− θn ∧ p∗(ια)

)
= dp∗α− dθn ∧ p∗(ια) + θn ∧ dp∗(ια) ,

ϕ(dh(1⊗ α)) = ϕ(1⊗ dα− h⊗ ια) = ϕ(1⊗ dα)− ϕ(h⊗ ια)

= p∗dα− θn ∧ p∗(ιdα)− ωn ∧ p∗(ια)
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Since α is T invariant

dp∗(ια) = p∗(dια) = p∗(−ιdα)

we obtain that dϕ(1⊗ α) = ϕ(dh(1⊗ α)).

10.17 Theorem: the map ϕ : R[h]⊗ Ω•(M)T → lim←−Ω•(S2n+1 ×M)bas is a quasiisomorphism, i.e. an

isomorphism of cohomologies.

• Proof:

— The complex R[h]⊗ Ω•(M) is filtered (a decreasing filtration) by the powers the ideal (h).

— The complex lim←−Ω•(S2n+1 ×M)bas is filtered by

ker
(
lim←−Ω•(S2n+1 ×M)bas → Ω•(S2n+1 ×M)bas

)
.

The map ϕ is a quasiisomorphism on the associated graded complexes. Hence it is a quasiisomorphism.

(This is an exercise in homological algebra.)

11 Models for higher dimensional Lie groups. Moment map M → t∗

11.1 Reference to general theory of G∗ modules: Guillemin-Sternberg §2. We make the assump-

tion G = T simplifying radically the formulas.

11.2 Let p : P → B be a S1-principal bundle (i.e. S1 acts freely on P and B = P/S1). We identify

S1 with the image

R→ C , t 7→ e2πit ,

hence we have determined the choice of λ ∈ t ≃ R.

• Let θ ∈ Ω1(P ; t)T ≃ Ω1(P )T be a connection, i.e. ιθ = 1.

• The form dθ is closed. We check that dθ is a basic form

ιdθ = Lθ − dιθ = 0− d1 = 0 .

Hence dθ defines an element of H2(B).

• Exercise: [dθ] = c1(L), where L is the associated line bundle L = P ×S1 C. In particular the

cohomology class does not depend on the choice of the connection. Hint for B = Pn we have dθ = −ωFS .

11.3 The case of a higher dimensional torus T = (S1)n acting on a smooth manifold M :

• Set A = Ω•(M). Let

Ã = Polynomial functions(t, A)T ≃ Sym t∗ ⊗AT

Here

Sym t∗ =

∞⊕
k=0

Symkt∗ = Polynomial functions on t .

• The constructions below are purely algebraic. Thus we consider a G∗ module A i.e a graded vector

space equipped with operations d, ιλ, Lλ for λ ∈ t satisfying the relations 10.3.

• We set

Ahor = {α ∈ A | ∀λ ∈ t ιλα = 0} horizontal submodule
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and

Abas = AT
hor = {α ∈ A | ∀λ ∈ t ιλα = 0, ιλdα = 0} .

• The differential in Ã is Sym t∗-linear and for α ∈ Ak

d̃(1⊗ α)(λ) = dα− ιλα

viewed as a function on t, which is linear with respect to λ, i.e. it belongs to

R⊗Ak+1 ⊕ t∗ ⊗Ak−1 .

In a basis λ1, . . . λn of t

d̃(1⊗ α) = 1⊗ dα−
n∑
i=1

λ∗i ⊗ ιλiα .

•We will use physicists notation. The vectors will have superscripts, and functionals subscripts. Also

the running index will be a instead if i, which can easily confused with ι. We write

d̃(1⊗ α) = 1⊗ dα−
n∑
a=1

λa ⊗ ιλaα

or according to the Einstein notation

d̃(1⊗ α) = 1⊗ dα− λa ⊗ ιλaα .

11.4 [Guillemin-Sternberg §3.2] If A = Ω•(T), then AT = ∧t∗. The resulting Ã is the Weil algebra of

t

W (t) = Sym(t∗)⊗ ∧t∗ .

• Theorem: H0(W (t)) = R and Hk(W (t)) = 0 for k > 0.

Proof: Since W (t1 ⊕ t2) = W (t1) ⊗W (t2) as dg-algebra, it is enough to compute cohomology for t of

dimension 1. This was an easy check.

• Since Ω•(T)T = ∧t∗, if dimT = 1 an explicit map from W (t) = R[h]⊗ (R + t∗) to

(Ω•(S2m+1 \ 0)× ∧t∗)bas

was already given in the previous section:

f ⊗ ξ 7→ f(ωFS)(ξ − θ ∧ ιξ) .

For higher dimensional tori we take the product of these maps and obtain a quasiisomorphism

W (t)→ Ω•(ET×T T)
qis
≃ Ω•(ET) .

The right hand side is understood as the inverse limit of forms on finite dimensional representations.

Note that W (t) is a very economic model of forms on ET.

Mathai-Quillen twist See [Mathai-Quillen: Superconnections, Thom classes, and equivariant differ-

ential forms. Topology25(1986), no.1, 85-110], [Guillemin-Sternberg §7.2]

We construct an explicit map of complexes

Ã→ (W (t)⊗A)bas
qis
≃ (Ω•(EG)⊗A)bas ,

which for A ≃ Ω•(M) will provide a convenient model for the equivariant cohomology.
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11.5 [Guillemin-Sternberg §2.3.4] Let A be a T∗ module. We say that A is locally free if there exists

a connection, i.e. θ ∈ t⊗ (A1)T, in a basis of t it can be written as

n∑
a=1

λa ⊗ θa .

such that for

θa(λ
b) = δba .

• Differential forms Ω•(M) is a locally free T∗ module if the action of T is locally free, i.e. the

stabilizers of points are finite.

11.6 Mathai-Quillen twist: consider T∗-algebras W and A, with W locally free (e.g. W = W (t). Let

γ =
∑

θa ⊗ ιλa ,

ϕ = exp(γ) ∈ Aut(W ⊗A) = 1 + γ + 1
2γ ◦ γ + . . .

It is well defined since γn+1 = 0 for n = dim(T).

11.7 The map γ, hence also ϕ, is T -invariant.

• Theorem. [Guillemin-Sternberg , chapter 4, Theorem 4.1.1] For any λ ∈ t

ϕ ◦ (ιλ ⊗ 1 + 1⊗ ιλ) ◦ ϕ−1 = ιλ ⊗ 1

ϕ ◦ (d⊗ 1 + 1⊗ d) ◦ ϕ−1 = (d⊗ 1 + 1⊗ d)−
∑

νa ⊗ ιλa +
∑

θa ⊗ Lλa

where νa = dθa

• This is a direct computation. See [W. Greub, S. Halperin, S, Vanstone: Curvature, Connections

and Cohomology, vol. III Academic Press New York. (1976)] Prop. V, p.286,, or better compute it

manually. This is an Exercise.

11.8 After the twist

ϕ((W ⊗A)hor) = Whor ⊗A

For W = W (t)

ϕ((W ⊗A)bas) = S(t)⊗A

with the differential

d̃ = 1⊗ d−
∑

λa ⊗ ιλa

That is exactly the Cartan model of equivariant cohomology. [Guillemin-Sternberg §4.2]

11.9 The construction can be carried out for noncommutative connected groups. The action of G on

g has to be taken into account. Then the cohomology of

(Sym g∗ ⊗ Ω•(M))G

with an appropriate differential serves, as a model for equivariant cohomology. Reference: Guillemin-

Sternberg §3-4

Moment map
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11.10 Assume T = S1. Let α ∈ Ω2(M)T. Suppose dα = 0. An equivariant enhancement of α is a

function f ∈ Ω0(M), such that

dh(1⊗ α− h⊗ f) = 0 ,

i.e.

1⊗ dα− h⊗ ια+ h⊗ df = 0 .

This reduces to

ια = df .

11.11 Basic example: Moment map f : P1 → R.

• Suppose T = S1 acts on P1 with the weights (λ0, λ1). In the 0-th affine standard chart the action

is linear and the weights are λ1 − λ0. The fundamental field at the point z is equal to

v =
d

dt
(e(λ1−λ0)2πitz)|t=0 = 2πi(λ1 − λ0)z = 2π(λ1 − λ0)(−y + ix)

i.e.

v = 2π(λ1 − λ0)
(
−y d

dx + x d
dy

)
.

Let α = ωFS . In the affine coordinate

ωFS =
i

2π
∂∂̄ log(1 + |z|2) =

i

2π

dz ∧ dz̄
(1 + |z|2)2

=
1

π

dx ∧ dy
(1 + x2 + y2)2

.

We compute the contraction

ιvωFS = 2π(λ1 − λ0) (−yιxωFS + xιyωFS) = −2π(λ1 − λ0)
ydy + xdx

(1 + x2 + y2)2
.

Let

f =
λ0 + λ1|z|2

1 + |z|2
=
λ0 + λ1(x

2 + y2)

1 + x2 + y2
,

df = (λ1 − λ0)
2xdx+ 2ydy

(1 + x2 + y2)2
.

The form

1⊗ ωFS − h⊗ πf

is a closed equivariant form.

• Globally f is defined by the formula

f([z0, z1]) =
λ0|z0|2 + λ1|z1|2

||z||2
.

11.12 In general, if the action on Pn has weights (λ0, λ1, . . . , λn) we set

f([z]) =

∑n
i=0 λi|zi|2

||z||2

Then 1⊗ ωn − h⊗ πf is an equivariant dh-closed form.

• An element f ∈ t∗ ⊗ Ω0(M) = Hom(t, C∞(M)) by adjunction is the same as a map µ : M → t∗

⟨µ(x), λ⟩ = f(λ)(x) .
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• For T = (S1)n+1 acting on Pn we obtain the map

µ([z]) =
1

||z||2
(|z0|2, |z1|2, . . . , |zn|2) .

Symplectic geometry [Guillemin-Sternberg §9], but before beginning see [V. I. Arnold, Mathematical

Methods Of Classical Mechanics. Graduate Texts in Mathematics 60. Springer 1989] chapter 8.

11.13 The most interesting case is when M is a symplectic manifold e.g. Kähler manifold and the

symplectic ω has a lift to an equivariant form, then µ : M → t∗ is defined.

• Of course µ is constant on the components of XT.

11.14 Symplectic manifold (M,ω) such that ω is a nondegenerate 2-form, dω = 0

• basic examples:

— M complex Kähler manifold,

— M = T ∗N , where N is a real smooth manifold, ω = d(Liouville form

• ω induces an isomorphism TM ≃ T ∗M : v 7→ ιvω

– a function f defines a vector field Xf . It is the field, such that ιXf
ω = df

– the symplectic structure defines a structure of a Lie algebra of functions (Poisson bracket)

{f, g} = ω(Xf , Xg) = (ιXf
ω)(Xg) = df(Xg) = Xgf .

• Definition: Action of S1 is Hamiltonian iff the fundamental field v is equal to Xf for some f

ιvω = df i.e. v = Xf .

If that is so then ω + h f is a closed equivariant form.

12 Hamiltonian action and the moment map

[Dusa McDuff, Dietmar Salamon ; Introduction to Symplectic Topology (Oxford Mathematical Mono-

graphs) §5]

[ Anna Cannas da Silva Lectures on Symplectic Geometry.]

12.1 Physical motivation:

• Hamiltonian system q position, p = mv momentum, H(p, q) a C∞ function{
q̇ = ∂H

∂p

ṗ = −∂H
∂q

• Motion of a particle in the constant gravitation field, H=energy, q = h height:

H(q, p) = mv2

2 +mgq = p2

2m +mgq ,

{
q̇ = p

m = v

ṗ = −mg

• Conservation energy law: H is constant along trajectories
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12.2 Poisson bracket in local Darboux coordinates

ω =
n∑
i=1

dpi ∧ dqi , {f, g} =
n∑
i=1

∂f
∂qi

∂g
∂pi
− ∂f

∂pi
∂g
∂qi

.

• The Hamiltonian equations take the form q̇ = {q,H}, ṗ = {p,H}.

12.3 Let ω be a symplectic form on M and f : M → R. Then ω is invariant with respect to the

Hamiltonian flow generated by f

LXf
ω = dιXf

ω + ιXf
dω = dιXf

ω = ddf = 0 .

We also note that ιXf
ω is closed.

12.4 The commutator of the Hamiltonian fields is related with the Poisson bracket

[Xf , Xg] = −X{f,g} .

• We have to show that

ι[Xf ,Xg ]ω = d{g, f} which is by definition d(ω(Xg, Xf )) .

• We compute the Lie derivative

LXf
(ιXgω) = ιLXf

Xgω = ι[Xf ,Xg ]ω

since LXf
ω = 0. By the Cartan formula

LXf
(ιXgω) = dιXf

ιXgω + ιXf
dιXgω = d(ω(Xg, Xf )) .

12.5 Let C∞(M ;TM) be the space of smooth vector fields. It is a Lie algebra with respect to the

Poisson bracket. The map

−X : C∞(M)→ C∞(M ;TM) , f 7→ −Xf

is a map of Lie algebras. (Applying alternative conventions we can get rid of ,,–”.)

• For an arbitrary Lie group: The G-action defines a map of Lie algebras

v : g→ C∞(M ;TM) .

We say that the action is Hamiltonian if there exists a linear map of Lie algebras µ̃ : g → C∞(M)

making the following diagram commutative up to a sign

C∞(M)

µ̃ ↗ ↓X

g
v−→ C∞(M ;TM)

Existence of the map µ̃ is equivalent to having a map µ : M → t∗, called the moment map.

12.6 From now on we assume that G = T = (S1)n. The moment map is given in coordinates

µ = (µ1, . . . , µn) ∈ t∗ = Rn. The Hamiltonian flows associated to µi commute, moreover we assume

{µi, µj} = 0, so that µ̃ : t→ C∞(M) is a map of Lie algebras.
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12.7 The map µ restricted to the fixed points is locally constant. The moment map µ ∈ C∞(M, t∗)

evaluated at λ ∈ t is a function whose differential vanishes at zeros of the fundamental vector field:

dµ(λ)(x) = 0 iff vλ(x) = 0 .

12.8 The map µ is constant on the orbits:

dµi(vλj ) = (ιvλiω)(vλj ) = ω(vλi , vλj ) = {µi, µj} = 0 .

12.9 Theorem [Atiyah, Guillemin-Sternberg]. If M is compact, then ∆M,T := µ(M) is a convex

polytope

∆M,T = Conv(µ(MT )) .

See [McDuff-Salamon §5.5, Theorem 5.47]

• Note that the image of the moment map µ restricted to a 1-dimensional TC = T ⊗ C orbit is an

interval.

12.10 Assume M ⊂ Pm is a smooth projective variety, ω = (ωFS)|M .

12.11 The most important example M = Pn, T = (S1)n+1, µ = const 1
||z]]2 (. . . , |zi|2, . . . ) ∈ Rn+1 .

The constant depends on the convention.

12.12 If M is a smooth projective variety with an algebraic action of TC ≃ (C∗)n then it can be

equivariantly embedded into P(V ) for some representation V of a finite cover of T. Hence it admits a

moment map (possibly after a modification of ω).

• If M is a smooth projective toric variety (i.e. M has a dense and open orbit of TC), then M/T =

∆M,T.

12.13 Suppose M is equivariantly embedded into P(V ), L = O(1)|M an equivariant vector bundle.

The form ω = ωFS|M represents c1(L) ∈ H2
T(M). Let x ∈ MT be a fixed point. Then c1(L)|x ∈

H2
T(pt) ≃ Hom(T, S1) is the character of the action of T on Lx. We claim that

µ(x) = c1(L) ∈ Hom(T, S1)⊗ R = t∗ .

• That is true for M = Pn with the action of (S1)n+1, since

µ([0 : · · · : 0 : 1 : 0 : · · · : 0]) = (0, . . . , 0, 1, 0, . . . , 0) with the preferred normalization.

In general chose coordinates of V = Cm+1, such that T action is diagonal. Consider the embedding

T ↪→ Tbig = (S1)m+1 and the natural maps

M
µ−→ t∗

↓ ↑

Pm
µbig−→ t∗big

The claim follows from the commutativity of the diagram.
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12.14 (!!!) Note that the moment polytope does not depend on the C∞ consideration with the

symplectic form. It only depends on the action of T on L. It can be defined purely in the realm of

algebraic geometry as

∆M,T = Conv{χ(Lx) | x ∈MT} .

12.15 Example. Let M = Fℓ(n) be the flag manifold. We have an equivariant embedding

Fℓ(n) ↪→
n−k∏
k=1

Grk(Cn) ↪→
n−k∏
k=1

P(∧kCn) .

Let pi : Fℓ(n) → P(∧kCn) be the projection and let ωk be the Fubini-Study form on P(∧kCn). For a

sequence of positive numbers ai ∈ Rn let

ωa =
n−1∑
k=1

akp
∗
k(ωk) .

This is a symplectic form and the T action admits a moment map

µa =
n−1∑
k=1

ak µk ◦ pk ,

where µk is the moment map for P(∧kCn).

12.16 Suppose

(V1 ⊂ · · · ⊂ Vn−1) ∈ Fℓ(n)T .

Such a point corresponds to a permutation σ ∈ Σn

V1 = lin{ϵσ(1)} , V2 = lin{ϵσ(1), ϵσ(2)} , . . . , Vn−1 = lin{ϵσ(1), ϵσ(2), . . . , ϵσ(n−1)} .

Denote it by Vσ

12.17 The value of the map Grk(Cn)→ P(∧kCn)
µk→ Rn restricted at the point

lin{ϵσ(i) | i ≤ k}

is equal to

−
k∑
i=1

ϵσ(i) .

• For n = 4 the moment polytopes for Gr1(C4) and Gr3(C4) are tetrahedra, and Gr2(C4) is the

octahedron.

12.18 Take a = (1, 1, . . . , 1) then

µa(Vσ) = −
n−1∑
k=1

k∑
i=1

ϵσ(i) = −
n−1∑
k=1

(n− k)ϵσ(k) ,

which is equal up to the shift by n
∑n

k=1 ϵk to
∑n

k=1 kϵσ(k).

• This way we obtain the permutohedron in Rn which can also be defined as the convex hull of Σn

orbit of (1, 2, . . . , n).

12.19 Taking various values of ai we obtain deformations of the permutohedron

Conv(Σn(a1, a1 + a2, . . . , a1 + a2 + · · ·+ an)) up to a shift.

The extreme values with some ai’s equal to 0, the images are moment polytopes for partial flag varieties.
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a={1, 0, 0} a={0, 1, 0}

a={0, 0, 1} a={1, 1, 0}

a={1, 0, 1} a={0, 1, 1} a={1, 1, 1}

a={0.5, 1, 4} a={3, 1, 4} a={3, 4, 1}



13 Moment map and quotients

13.1 Suppose a compact group G acts on a symplectic manifold (M,ω) with a moment map µ : M →
g∗. Recall that ω is G invariant Lλω = 0 and µ is G invariant with respect to the coadjoint action on

g∗.

13.2 Symplectic reduction [Guillemin-Sternberg §9.6], [McDuff,Salamon §5.4]

• Assume that a ∈ g∗ is an invariant element with respect to the coadjoint action. Then µ−1(a) is

G-invariant manifold.

• Furthermore assume that G action on µ−1(a) is free. Then the quotient X = µ−1(a)/G is denoted

by M//µ,aG. Often a is assumed to be 0 and we write M//µG. This is called the symplectic quotient.

We will assume that a = 0.

13.3 Let x ∈ µ−1(0). The tangent space TxGx is coisotropic and (TxGx)⊥ω = Txµ
−1(0).

• For λ ∈ g, v ∈ Txµ−1(0) compute ω(Xλ, v) = dµλ(v), where µλ(x) = µ(x)(λ). But since µ−1(0)

is mapped by µ to 0, the tangent vectors are mapped to 0 as well. Hence (TxGx)⊥ω ⊂ Txµ
−1(0).

Since dim((TxGx)⊥ω) = dimG and Txµ
−1(0) = dimM − dimG and ω is nondegenerate, the opposite

inclusion holds.

13.4 The manifold X has a canonical symplectic structure induced from M : For v, w ∈ TyX find the

lifts ṽ, w̃ ∈ TxM (with x mapping to y) and apply ω. It is well defined because ω is G-invariant and

the orbits lie in the kernel of ω. Moreover the induced form is nondegenerate (it is an exercise in the

linear algebra).

13.5 Example 1. M = Cn with the standard form, G = S1 acting by scalar multiplication, µ(z) =

|z|2, a ∈ 1. Then

Cn//µ,aS1 = Pn−1

with the Fubini-Study form.

13.6 Example 2 (slightly more general): M = Hom(Ck,Cn), k < n with the action of U(k). Let

A∗ = A
T

. Note that u(k) = {X ∈ glk | X∗ = −X}. The moment map is defined by

µ(A) = iA∗A ∈ u(k) ≃ u(k)∗ .

a = iI. Then µ−1(a) is equal to unitary k-tuples of vectors in Cn, and X//µ,aU(k) is equal to the

Grassmannian Grk(Cn).

• Exercise: Compute that this is a moment map.

13.7 Kirwan [Cohomology of Quotients in Symplectic and Algebraic Geometry] compared symplectic

quotients with GIT quotients in algebraic geometry. They basically coincide: the symplectic quotient

by a compact group G is equal to the GIT quotient by the complexification GC (as C∞ manifolds).

The symplectic quotients depends on the choice of the moment map (and a ∈ g) and GIT quotient

depends on the linearization and stability condition. These notions can be translated one to another.
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13.8 Example 3 (still more general): We want to obtain Fℓn = GLn/Bn as a symplectic quotient.

The Borel group is not a complexification of a compact group. Thus we take a presentation of the flag

manifold in terms of a quiver:

1→ 2→ · · · → n− 1→ n

• Let M =
∏n−1
k=1 Hom(Ck,Ck+1), G =

∏n−1
k=1 U(k). The moment map is given by

(A1, A2, . . . , An−1) 7→ (A∗
1A1, A

∗
2A2, . . . , A

∗
n−1An−1)

and a is the sequence of i times the identity matrices.

• µ−1(a) is a sequence of isometric embeddings Ck ↪→ Ck+1, the quotient is the flag variety. Taking

the quotient we forget about the particular coordinates on Vk ⊂ Cn.

13.9 [Kirwan] If M is a compact symplectic manifold with a G action admitting a moment map µ,

X = M//µ,a, then the map

κ : H∗
G(M)→ H∗

G(µ−1(a)) ≃ H∗(X)

is surjective.

[D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Results in Math-

ematics and Related Areas (2). Springer-Verlag, third edition, 1994. §8], compare [Megumi Harada,

Gregory D. Landweber, Surjectivity for Hamiltonian G-spaces in K-theory, Trans. Amer. Math. Soc.

359 (2007), 6001-6025]

• The assumptions of the theorem can be relaxed. Just assume that µ is proper.

• A double-equivariant version: Assume that a group T acts on M , and T action commutes with

G-action, then

κ : H∗
T×G(M)→ H∗

T×G(µ−1(a)) ≃ H∗
T(X)

is surjective.

13.10 Back to Example 1:

κ : H∗
C∗(Cn) ≃ Q[h] ↠ H∗(Pn−1) ≃ Q[h]/(hn)

κ : H∗
T×C∗(Cn) ≃ Q[t1, t2, . . . tn, h] ↠ H∗

T(Pn−1) ≃ Q[t1, t2, . . . , tn.h]/(
∏

(h+ ti))

13.11 Back to Example 2:

κ : H∗
U(k)(Hom(Ck,Cn)) ≃ Q[c1, c2, . . . , ck] ↠ H∗(Grk(Cn))

κ : H∗
T×U(k)(Hom(Ck,Cn)) ≃ Q[t1, t2, . . . tn, c1, c2, . . . , ck] ↠ H∗

T(Grk(Cn))

13.12 Projective toric varieties (without fans, but via polytopes), compare [Anderson-Fulton, Ch 8].

• Let X be a smooth compact algebraic manifold with a torus action. Assume that dimX = dimTC

and TC has an open orbit and dense. We can assume that TC action is free on the open orbit. Then X

is determined by a certain combinatorial data involving characters.

• Assume that the action of T admits a moment map to t∗ ≃ Rn. If the moment map is the restriction

of the standard moment map X ↪→ PN → t∗N → t∗, then the moment polytope ∆X has integral vertices.
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• Since we assume that X is smooth, thus locally, around any fixed point X looks like Cn with the

standard action of (C∗)n, so the moment polytope locally is linearly isomorphic to a neighbourhood of

0 ∈ Cn/(S1)n ≃ Rn≥0.

• Each facet Fi (a codimension 1 face) of ∆X ⊂ t∗ we set vi ∈ (t∗)∗ = t, the normal vector (integral,

minimal length). Let Ti be the 1-dimensional subtorus corresponding to vi

13.13 For p ∈ Fi1 ∩Fi2 ∩ · · · ∩Fiℓ let Tp = Ti1Ti2 . . .Tiℓ ≃ (S1)ℓ. Topologically X = ∆X × (S1)n/ ∼.

The pairs (p, t) and (p, t′) are identified if and only if t′t−1 ∈ Tp.

13.14 The inverse images µ−1(xi) are divisors (=codimension 1 subvarieties) in X.

13.15 Theorem [Dani lov, Jurkiewicz, Davis-Januszkiewicz] The cohomology ring is generated by

the classes of [Di] ∈ H2(X). Assume that ∆X has d facets:

H∗(X) = Z[x1, . . . , xd]/(I + J) ,

I = (xi1xi2 . . . xiℓ | Fi1 ∩ Fi2 ∩ · · · ∩ Fiℓ is not a codimension ℓ face of ∆X) .

J = (
∑
⟨u, vi⟩xi | u ∈ t∗Z) .

Here the left hand side is written in the additive notation, but it concerns the monomials.

• The quotient Z[x1, . . . , xd]/I is called the Stanley Reisner ring. [Anderson-Fulton, §8.3] • Similarly

the equivariant cohomology. Let Λ = Sym(t∗Z) = H∗
T(pt)

H∗
T(X) = Λ[x1, . . . , xd]/(I

′ + J ′) ,

I ′ = Λ⊗ I .

J ′ = (u−
∑
⟨u, vi⟩xi | u ∈ t∗Z) .

• Note that

Z[x1, . . . , xd]/I ≃ Λ[x1, . . . , xd]/(I
′ + J ′)

and

Z[x1, . . . , xd]/(I + J) ≃ Λ[x1, . . . , xd]/(I
′ + J ′)⊗Λ Z .

13.16 Connection with the Kirwan map: any toric variety can be obtained by the Cox construction

X = U/T′ ,

Where U ⊂ Cd,
U = Cd \

⋃
I

VI

where sum runs over the sequences i1, i2, . . . , iℓ such that
⋂ℓ
j=1 Fij is not a face and

VI = {xi1 = xi2 = · · · = xiℓ = 0} ,

T′=some subtorus of (C∗)d. Decomposing (C∗)d = T′ × T we obtain an action of T on U/T′.
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13.17 Example Pn = Cn+1 \ {0}/(diagonal torus). Let T = {t ∈ (C∗)n+1 | t0 = 1}.

H∗
T(Pn) = Z[x0, x1, . . . , xn]/(x0x1 . . . xn, )

The Λ-module structure is given by the relations in J ′: the vectors vi consists of the standard basis

vectors ϵi, v0 = −
∑
ϵi. For the generator ti ∈ Λ, i > 0

⟨ti, vj⟩ =

{
−δi,j for j > 0

1 for j = 0

hence

ti 7→ xi − x0 for i > 0 .

13.18 The ranks of H∗
T(X) can be easily computed inductively from the exact sequence of a pair: for

a smooth closed invariant submanifold N ⊂M we have

→ H∗−2codimN
T (N)→ H∗

T(M)→ H∗
T(M \N)→ H∗−2codimN+1

T (N)→ .

Note that if X is a sum of T orbits, then each Hodd
T (orbit) = 0 and the sequence splits.

•
H∗

T(X) ≃
⊕

O orbit

H∗−2codimO
T (BTO) , TO ≃ (C∗)codimO

• Let us compute the equivariant Poincaré polynomial: set q = t2

PT(X) =
∑
O
qcodimO(1− q)−codimO

• The nonequivariant Poincaré polynomial can be computed due to equivariant formality:

PT(X) = P (X)P (BT) ,

hence

P (X) = PT(X)P (BT)−1 =

(∑
O
qcodimO(1− q)−codimO

)
(1− q)n =

∑
O
qcodimO(1− q)dimO

13.19 Example: X = P2

3 fixed points → 3q2

3 lines → 3q(1− q)
1 open orbit → (1− q)2

3q2 + 3q(1− q) + (1− q)2 = 3q2 + 3q − 3q2 + 1− 2q + q2 = q2 + q + 1

14 Equivariant Schubert Calculus on Grassmannians

This section contains mainly the example of the calculus on Grassmannian Gr2(C4). See [Anderson-

Fulton, Chapter 9] for the explanation.
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14.1 The GrassmannianGrd(Cn) = GLn/Bn is the union of Schubert cells Ω◦
λ, λ = (λ1 ≥ λ2 ≥ λd ≥ 0

with i1 ≤ n−d. For convenience we set λd+1 = 0. Set e = n−d. We fix the standard flag E• preserved

by the Borel group and define

Ω◦
λ(E•) = {V ⊂ Cn | dim(Eq ∩ V ) = k for q ∈ [e+ k − λk, e+ k − λk+1]} ,

i.e. the sets Ω◦
λ are defined by the strict Schubert conditions. • For n = 4, d = 2,

Ω◦
00(E•) =

{
V ⊂ C4 :

dim(Eq ∩ V ) = 1 for q ∈ [3− 0, 3− 0]
dim(Eq ∩ V ) = 2 for q ∈ [4− 0, 4− 0]

}
.

(The dimensions of the intersections are generic.)

Ω◦
22(E•) =

{
V ⊂ C4 :

dim(Eq ∩ V ) = 1 for q ∈ [3− 2, 3− 2]
dim(Eq ∩ V ) = 2 for q ∈ [4− 2, 4− 2]

}
.

(The dimensions are the maximal possible, i.e. Ω◦
22 = {E2}.)

Ω◦
10(E•) =

{
V ⊂ C4 :

dim(Eq ∩ V ) = 1 for q ∈ [3− 1, 3− 0]
dim(Eq ∩ V ) = 2 for q ∈ [4− 0, 4− 0]

}
.

(The only nontrivial condition is dim(E2 ∩ V ) = 1 but E1 ̸⊂ V , V ̸⊂ E3)

Ω◦
11(E•) =

{
V ⊂ C4 :

dim(Eq ∩ V ) = 1 for q ∈ [3− 1, 3− 1]
dim(Eq ∩ V ) = 2 for q ∈ [4− 1, 4− 0]

}
.

(This means, that V ⊂ E3.)

Ω◦
20(E•) =

{
V ⊂ C4 :

dim(Eq ∩ V ) = 1 for q ∈ [3− 2, 3− 0]
dim(Eq ∩ V ) = 2 for q ∈ [4− 0, 4− 0]

}
.

(This means E1 ⊂ V , V ̸= E2.)

Ω◦
21(E•) =

{
V ⊂ C4 :

dim(Eq ∩ V ) = 1 for q ∈ [3− 2, 3− 1]
dim(Eq ∩ V ) = 2 for q ∈ [4− 1, 4− 0]

}
.

(E1 ⊂ V and V ⊂ E3.)

14.2 For the standard flag the Schubert cells are the Bn orbits of the torus-fixed points. Let xi,j =

lin{ϵi, ϵj}
Ω◦
00(Est) = B4x34 , open cell

Ω◦
22(Est) = B4x12 , a point

Ω◦
10(Est) = B4x24 , divisor

Ω◦
11(Est) = B4x23 , dim=2, closure ≃ P2

Ω◦
20(Est) = B4x14 , dim=2, closure ≃ P2

Ω◦
21(Est) = B4x13 ,dim=1, closure ≃ P1

14.3 If we reverse the reference flag, then the Schubert cells are the orbits of the opposite Borel group

B−
n , consisting of the lower triangular matrices.

Ω◦
00(Eop) = B−

4 x12 , open cell
Ω◦
22(Eop) = B−

4 x34 , a point
Ω◦
10(Eop) = B−

4 x13 , divisor
Ω◦
11(Eop) = B−

4 x23 , dim=2, closure ≃ P2

Ω◦
20(Eop) = B−

4 x14 , dim=2, closure ≃ P2

Ω◦
21(Eop) = B−

4 x24 , dim=1, closure ≃ P1

(we replace xi,j by x5−j,5−i).

• Let us work with the opposite flag. We set σλ = [Ω◦
λ(Eop)].

48



14.4 The main statements of nonequivariant Schubert calculus are the following:

• The Giambelli formula says, that the classes of Schubert varieties can be expressed by the Chern

classes of the (dual) tautological bundle V ∗

[Ωλ] = Sλ(V ∗) .

• The rules how to multiply σλ[Ωλ]’s: Pieri rule and more general Littlewood-Richardson rule.

14.5 For example for d = 1, Gr1(Cn) = Pn−1, V ∗ = O(1) and [Ωi] = [Pn−1−i] = c1(O(1))i.

14.6 Nonequivariant multiplication for Gr2(C4)

σ00 σ10 σ11 σ20 σ21 σ22
σ00 σ00 σ10 σ11 σ20 σ21 σ22
σ10 σ10 σ11 + σ20 σ21 σ21 σ22 0
σ11 σ11 σ21 σ22 0 0 0
σ20 σ20 σ21 0 σ22 0 0
σ21 σ21 σ22 0 0 0 0
σ22 σ22 0 0 0 0 0

14.7 The product σλ · σµ can be written as
∑

ν c
ν
λµσν . The coefficients are called the Littlewood-

Richardson coefficients. They are nonnegative integers:

cνλµ = |g1Ωλ(Fst) ∩ g2Ωµ(Fst) ∩ g3Ων∨(Fst)| ,

where ν∨ is the opposite partition ν∨ = Reverse((n− k)k − ν), gi are general elements of GLn. In the

equivariant calculus the coefficients cνλµ are polynomials in t1, t2, . . . , tn.

14.8 In the nonequivariant case the reference flag is irrelevant for computing cohomology classes.

Instead of Bn orbits one can take the orbits of the opposite Borel group B−
n .

14.9 Equivariant cohomology contains more information. There are at least three important bases

of H∗
T(Grd(Cn):

• The basis on [σλ] — the natural choice;

• The bases of Schur classes of V ∗ — convenient for functorial reasoning;

• The basis of the fixed point classes (this is a basis after the localization in S = ⟨ti − tj | i ̸= j⟩) —

here the multiplication is easy.
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14.10 The analogues of the Giambelli formulas are the Kempf-Laksov formulas. In [Anderson-Fulton,

9.2] given for B−
n orbit closures.

14.11 Table of the restrictions of Schubert classes at the fixed points

x34 x24 x23 x14 x13 x12

σ0 1 1 1 1 1 1
σ10 t1 + t2 − t3 − t4 t1 − t4 t2 − t4 t1 − t3 t2 − t3 0
σ11 (t1 − t3) (t1 − t4) (t1 − t2) (t1 − t4) 0 (t1 − t2) (t1 − t3) 0 0
σ20 (t1 − t4) (t2 − t4) (t1 − t4) (t3 − t4) (t2 − t4) (t3 − t4) 0 0 0
σ21 (t1 − t3) (t1 − t4) (t2 − t4) (t1 − t2) (t1 − t4) (t3 − t4) 0 0 0 0
σ22 (t1 − t3) (t2 − t3) (t1 − t4) (t2 − t4) 0 0 0 0 0

14.12 The formula for σ10: in nonequivariant cohomology σ1 = c1(V
∗) = c1(O(1)) (the bundle O(1)

comes from the Plücker embedding).

• The equivariant formula is of the form

σ10 = c1(V
∗) + linear form(t1, t2, t3, t4) .

The form is chosen in such way that (σ10)|x1,2 = 0, i.e. it is equal t1 + t2. This reasoning works in

general.

14.13 Equivariant multiplication table.

• Multiplication by σ10
σ10σ22 = (t1 + t2 − t3 − t4)σ22
σ10σ21 = (t1 − t4)σ21 + σ22
σ10σ20 = (t2 − t4)σ20 + σ21
σ10σ11 = (t1 − t3)σ11 + σ21
σ210 = (t2 − t3)σ10 + σ11 + σ20

According to the equivariant Monk formula

σ10σλ =
∑
λ+

σλ+ + (σ10)|xλ σλ ,

where xλ is the fixed point in Ω◦
λ(Eop).

• The remaining multiplications

σ222 = (t1 − t3) (t2 − t3) (t1 − t4) (t2 − t4)σ22
σ21σ22 = (t1 − t3) (t1 − t4) (t2 − t4)σ22
σ20σ22 = (t1 − t4) (t2 − t4)σ22
σ11σ22 = (t1 − t3) (t1 − t4)σ22
σ221 = (t1 − t4) 2σ22 + (t1 − t2) (t1 − t4) (t3 − t4)σ21

σ20σ21 = (t1 − t4)σ22 + (t1 − t4) (t3 − t4)σ21
σ11σ21 = (t1 − t2) (t1 − t4)σ21 + (t1 − t4)σ22
σ220 = (t2 − t4) (t3 − t4)σ20 + (t3 − t4)σ21 + σ22

σ11σ20 = (t1 − t4)σ21
σ211 = (t1 − t2) (t1 − t3)σ11 + (t1 − t2)σ21 + σ22

14.14 Knutson-Tao puzzles: we draw a triangle with all edges of length n and fill them with pieces

of the following shapes

• Three nonequivariant puzzles and one equivariant:
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The last one is not rotatable.

• We change the coding of Schubert varieties. Instead of partitions we use 0-1 sequences of length n.

We walk along the edges of Young diagram NE → SW : the sequence has 1 if we go S, 0 if we go W .

00 → 0011
10 → 0101
11 → 0110
20 → 0110
21 → 1010
22 → 1100

We label the edges of the triangle with the codes

•
λ↗ ↘ µ
• −→ •

ν

14.15 Multiplication in P1 = Gr1(C2)

σ0σ1 = σ1 σ1σ1 = (t1 − t2)σ1 σ0σ0 = σ0 .

14.16 Multiplication in Gr2(C4)

Three coefficients of the expansion of σ10σ10 in H∗
T(Gr2(C4)

c1010,10 = t2 − t3 , c1110,10 = 1 , c2010,10 = 1 .

14.17 [Anderson-Fulton, §9, Theorem 8.4] The equivariant Littlewood-Richardson coefficient is equal

to

cνλµ =
∑

puzzle fillings

∏
special pieces

(
tleft leg − tright leg

)
.

• In [Anderson-Fulton, §9] the signs of the variables are reversed, due to a different convention.
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