Equivariant cohomology in algebraic geometry: notes 2023 Andrzej Weber

1

1.1 Prehistory: Poincaré-Hopf theorem. Suppose M is a manifold, v a vector field with isolated zeros, then

$$\chi(M) = \sum_{p \in Zeros} Ind_p(v) \,,$$

where $Ind_p(v)$ is the index of the vector field, i.e. the degree of the map from a small sphere around $p S(p,\epsilon)$ to the unit sphere in T_pM given by v(p)/||v(p)||.

1.2 Suppose a circle S^1 acts smoothly on M with isolated fixed points. Let v be the fundamental field of the action, i.e.

$$v(x) = \frac{d}{dt}(t \cdot x)_{|t=0}.$$

Then if $p \in M^{S^1}$ the index $Ind_p(v) = 1$. Hence

$$\chi(M) = |M^{S^1}|.$$

This statement is true in a much greater generality.

1.3 Let X be a simplicial complex (or any decent compact topological space, e.g. a manifold). Suppose p is a prime number. Let P be a p-group acting on X. Then the Euler characteristic of fixed points $\chi(X^P) \equiv \chi(X) \mod p$.

Proof: We assume that P acts simplicially and the relation follows from the property of p groups acting on finite sets: $|X^{P}| \equiv |X| \mod p$.

1.4 Exercise: give a proof for compact manifolds, not using triangulations.

[Sören Illman, Smooth equivariant triangulations of G-manifolds for G a finite group. Math. Ann.233(1978), no.3, 199–220.]

See a far-reaching generalization: Dwyer–Wilkerson Smith theory revisited. Ann. of Math. (2) 127 (1988), no. 1, 191–198.

1.5 Corollary: no decent compact contractible space admits a finite group action without fixed points.

1.6 Theorem does not hold for infinite dimensional spaces, e.g. \mathbb{Z}_2 acts on $S^{\infty} \sim pt$ without fixed points (action via antipodism).

1.7 Theorem: Let X be a compact (decent) compact topological space (e.g. a manifold). Suppose $\mathbb{T} = (S^1)^r$ acts on X. Then $\chi(X) = \chi(X^{\mathbb{T}})$. Proof: $X^{S^1} = X^{\mathbb{Z}_p^{\infty}} = X^{\mathbb{Z}_{p^n}}$ for n >> 0.

Examples of the spaces with torus action.

1.8 $X = S^{2n+1} \subset \mathbb{C}^{n+1}$ with $S^1 \subset \mathbb{C}$ action via scalar multiplication. (No fixed points, $\chi(X) = 0$.)

1.9 The projective space $\mathbb{P}^n = \mathbb{CP}^n = \mathbb{P}^n(\mathbb{C}) = (\mathbb{C}^{n+1} \setminus \{0\})/\mathbb{C}^*$ can be presented as S^{2n+1}/S^1 .

1.10 $X = S^{2n} \subset \mathbb{C}^n \times \mathbb{R}$ with $S^1 \subset \mathbb{C}$ acting on the factor \mathbb{C}^n . ($\chi(X) = 2$, two fixed points.)

1.11 Projective space \mathbb{P}^n (in particular $\mathbb{P}^1 = S^2$) admits the action of $\mathbb{T}_{\mathbb{C}} = (\mathbb{C}^*)^{n+1}$. There are n+1 fixed points. Also the small torus consisting of the sequences $(1, t, t^2, \ldots, t^n)$ has the same fixed points. We check directly that $\chi(\mathbb{P}^n) = n+1$.

[For holomorphic actions does not matter whether we take compact torus S^1 or \mathbb{C}^* . The fixed points are the same.]

Białynicki-Birula decomposition by examples.

1.12 Let $X = \mathbb{P}^n$,

$$T = \{(1, t, t^2, \dots, t^n) \in \mathbb{T}_{\mathbb{C}} \mid t \in \mathbb{C}^*\}$$

acting as above. For $p \in X^T$ let

$$X_{p}^{+} = \{ z \in X \mid \lim_{t \to 0} t \cdot z = p \}.$$

The sets X_p^{\pm} are homeomorphic (isomorphic as algebraic varieties) with affine spaces. We obtain the well known decomposition of the projective space

$$\mathbb{P}^n = \mathbb{C}^n \sqcup \mathbb{C}^{n-1} \sqcup \mathbb{C}^{n-2} \sqcup \cdots \sqcup \mathbb{C}^0.$$

$$X^{+}_{[0:0:\dots:1:0:\dots:0]} = \{ z_k \neq 0, \ z_{\ell} = 0 \text{ for } \ell < k \} \simeq \mathbb{C}^{n-k}$$

1.13 The quadric $z_0 z_3 - z_1 z_2 = 0$ in \mathbb{P}^3 with the $T = \mathbb{C}^*$ action as above.

$$\begin{aligned} Q_{[1,0,0,0]} &= \{ [1:z_1:z_2:z_1z_2] \mid z_1, z_2 \in \mathbb{C} \} \simeq \mathbb{C}^2 \\ Q_{[0,1,0,0]} &= \{ [0:1:0:z_3] \mid z_3 \in \mathbb{C} \} \simeq \mathbb{C} \\ Q_{[0,0,1,0]} &= \{ [0:0:1:z_3] \mid z_3 \in \mathbb{C} \} \simeq \mathbb{C} \\ Q_{[0,0,0,1]} &= \{ [0:0:0:1] \} \simeq pt \end{aligned}$$

1.14 Theorem [Białynicki-Birula 1973] Let X be a complex projective algebraic variety with algebraic $T = \mathbb{C}^*$ action. For a component $F \subset X^T$ let

$$X_p^+ = \{ z \in X \mid \lim_{t \to 0} t \cdot z \in F \}.$$

(1) Then

$$X = \bigsqcup_F X_F^+$$

(the sum over connected components) is a decomposition into locally closed algebraic subsets.(2) The limit map

$$p_F = \lim_{t \to 0} : X_F^+ \to F$$

is an algebraic map. If X is smooth then p_F is a Zariski-locally trivial fibration with the fiber isomorphic to \mathbb{C}^{n_F} .

(3) The number n_F is the rank of $\nu_F^+ \subset \nu_F$, the subbundle of the normal bundle on which T acts with positive weights.

• The field $\mathbb C$ can be replaced by any algebraically closed field.

1.15 Note that existence of the limit $\lim_{t\to 0} t \cdot z$ follows from the fact that the closure of the orbit is an algebraic curve. The map

$$\alpha_z : \mathbb{C}^* \to \mathbb{P}^1 \times X$$
$$t \mapsto (t, t \cdot z)$$

extends to a map from \mathbb{P}^1 . To see that one can note that the image of \mathbb{C}^* is a constructible algebraic set (by Tarski-Seidenberg theorem), hence the closure is an algebraic curve, dominated by \mathbb{P}^1 . Hence we have a unique extension of α_z

$$\bar{\alpha}_z : \mathbb{P}^1 \to \mathbb{P}^1 \times X \xrightarrow{\pi} X$$

and

$$\lim_{t \to 0} t \cdot z := \pi(\bar{\alpha}_z(0))$$

• If the action is not algebraic, the above argument does not work: \mathbb{C}^* acts transitively on any elliptic curve, there are no fixed points.

2 Basics about actions of compact groups

2.1 Let $\mathbb{T} = (S^1)^r \subset \mathbb{C}^r$ and $\mathfrak{t} = i\mathbb{R}^r \subset \mathbb{C}^r$. The map exp coordinatewise induces the exact sequence

$$0 \longrightarrow \mathfrak{t}_{\mathbb{Z}} \longrightarrow \mathfrak{t} \xrightarrow{\exp} \mathbb{T} \longrightarrow 0,$$

where $\mathfrak{t}_{\mathbb{Z}} = 2\pi i \mathbb{Z}^r \subset i \mathbb{R}^r = \mathfrak{t}$ is the kernel, also denoted by N

2.2 Weights and characters. See [Anderson-Fulton, Ch. 3,§1]

• Homomorphisms $\operatorname{Hom}(\mathbb{T}, S^1)$ are called ,,characters". This set is a group with respect to multiplication pointwise. It is isomorphic to \mathbb{Z}^r . In toric geometry denoted by M.

• any character in coordinates is of the form

$$(t_1, t_2, \dots, t_r) \mapsto t_1^{w_1} t_2^{w_1} \dots t_r^{w_r}$$
 denoted by t^w .

- the sequence $(w_1, w_2, \ldots, w_r) \in \mathbb{Z}^r$ is the called weight.
- **2.3** Without coordinates:

Weights
$$= \operatorname{Hom}(N, \mathbb{Z})$$

In toric geometry $\operatorname{Hom}(N,\mathbb{Z})$ is denoted by M, in representation theory $\mathfrak{t}_{\mathbb{Z}}^*$.

For a weight $w \in \mathfrak{t}_{\mathbb{Z}}$ the corresponding character is denoted by e^w .

2.4 For the complex torus $\mathbb{T}_{\mathbb{C}} \simeq (\mathbb{C}^*)^r$ any polynomial map is determined by the values on $\mathbb{T} \simeq (S^1)^r$

$$\operatorname{Hom}_{alg}(\mathbb{T}_{\mathbb{C}},\mathbb{C}^*) = \operatorname{Hom}(\mathbb{T},S^1).$$

2.5 Linear actions of \mathbb{T} one a vector space \mathbb{C}^n can be diagonalized (Commuting linear maps of finite order have a common diagonalization.)

2.6 Exercise: for any field $\mathbb{F} = \overline{\mathbb{F}}$ any linear action of $\mathbb{T}_{\mathbb{F}} = (\mathbb{F}^*)^r$ on \mathbb{F}^n can be diagonalized.

2.7 Up to an isomorphism any linear action of \mathbb{T} on a complex vector space is determined by the multi-set of weights.

• Let \mathbb{C}_w be equal to \mathbb{C} as a vector space with the action of \mathbb{T} via $e^w : \mathbb{T} \to S^1 \subset \mathbb{C}^* = \mathrm{GL}_1(\mathbb{C})$

• If \mathbb{T} has fixed coordinates, i.e. it is identified with $(S^1)^r$ and $w = (w_1, w_2, \dots, w_r)$ then for $t \in \mathbb{T}$ the linear map $e^w(t) : \mathbb{C}_w \to \mathbb{C}_w$ is the multiplication by $t_1^{w_1} t_2^{w_2} \dots t_r^{w_r}$.

• We have a canonical decomposition

$$V = \bigoplus_{w \in M} V_w,$$

where $V_w = \{v \in V \mid \forall t \in \mathbb{T} \ t \cdot v = e^w(t)v\} \simeq \operatorname{Hom}_{\mathbb{T}}(\mathbb{C}_w, V)$ is the eigenspace (called *weight space*) corresponding to the weight w.

• For a vector bundle $E \to B$, with torus action such that \mathbb{T} acts on B trivially and on the fiber the action is linear we have a decomposition into a direct sum of subbundles $E = \bigoplus_w E_w$.

• The decomposition into weight subspaces can be noncannonically refined

$$V = \bigoplus_{k=1}^{\dim V} \mathbb{C}_{w_k}$$

(Note: If we have fixed coordinates of \mathbb{T} , then each w_k is a sequence of numbers $(w_{k,1}, w_{k,2}, \dots, w_{k,r})$.) • The element

$$e(V) = \prod_{k=1}^{\dim V} w_k = \prod_w w^{\dim V_w} \in Sym^{\dim V}(\mathfrak{t}^*_{\mathbb{Z}})$$

does not depend on the above decomposition and it is called the Euler class of the representation.

• The product

$$c(V) = \prod_{k=1}^{\dim V} (1+w_k) = \prod_w (1+w)^{\dim V_w} \in Sym(\mathfrak{t}_{\mathbb{Z}}^*)$$

is also well defined. It is called the Chern class of the representation

• After tensoring with \mathbb{R} (or \mathbb{Q}) we can identify $Sym(\mathfrak{t}^*_{\mathbb{Z}}) \otimes \mathbb{R}$ with polynomial functions on \mathfrak{t} .

2.8 Exercise: for a representation V of \mathbb{T} consider an action of $\tilde{\mathbb{T}} = \mathbb{T} \times S^1$ on $\tilde{V} = V$, where S^1 acts by the scalar multiplication. Denote by \hbar the weight corresponding to the character $\tilde{T} \to S^1$, which is the projection. Show that

$$c(V) = e(V)_{|\hbar=1}.$$

Action of a compact group (in particular torus) on a manifold

2.9 Exercise: (algebraic geometry) Let A be an algebra over a field \mathbb{F} and X = Spec(A). Defining an action of $\mathbb{G}_m = Spec(\mathbb{F}[t, t^{-1}])$ on X is equivalent to defining a \mathbb{Z} -gradation of A. Prove this correspondence and generalize it to an action of the algebraic torus \mathbb{G}_m^r .

2.10 Let X be a manifold with a smooth action of \mathbb{T} . Suppose $x \in X^{\mathbb{T}}$ is a fixed point. Then \mathbb{T} acts on $T_x X$. If x is an isolated fixed point, then the weight space $(T_x X)_0$ corresponding to the weight w = 0 is trivial.

2.11 Proposition. There exists a neighbourhood $x \in U \subset T_x X$ and an equivariant map $f: U \to X$, which is an isomorphism on the image.

Proof: Fix an S^1 invariant metric, take U to be the ball of a sufficiently small radius, $f = \exp$ in the sense of the differential geometry.

2.12 Reminder: Orbit, stabilizer(=isotopy group): Suppose a group G acts on $X, x \in X$

- the stabilizer $= G_x = \{g \in G \mid gx = x\}.$
- if y = gx then $G_y = gG_xg^{-1}$
- the orbit = $G \cdot x \simeq G/G_x$.
- the isotropy group G_x acts on the tangent space $T_x X$ and the fiber of the normal bundle $(\nu_{G \cdot x})_x$

2.13 Construction of the associated bundle: Suppose V be a representation of a group H, and suppose P be a H-principal bundle. Let us define

$$P \times^H V = P \times V / \{(ph, v) \sim (p, hv)\}.$$

The projection $P \times^H V \to P/H = Y$ is a vector bundle.

For the definition and basic facts about principal bundles [Anderson-Fulton, Ch.2.1]

2.14 Slice theorem for manifolds: Assume that X is a smooth manifold, G a compact Lie group (can assume a torus) acting smoothly. Let $V = (\nu_{G \cdot x})_x$. There exist an equivariant neighbourhood of $0 \in S \subset V$, such that the map $G \times^{G_x} S \to X$ induced by $\exp : G \times^{G_x} V \to X$ is an equivariant diffeomorphism onto the image. This image is a neighbourhood of $G \times^{G_x} \{0\} \simeq G \cdot x$. The set S or its image is called the slice, whole neighbourhood is called the tube. See [Anderson-Fulton, Ch.5 Th.1.4].

• In other words: any orbit has a neighbourhood isomorphic to the disk bundle of the associated vector bundle over the orbit.

• Proof. The map $\exp: \mathbb{T} \times V \to X$ induces

$$(g, v) \mapsto g \cdot \exp(v)$$
.

Exp is G_x -invariant, i.e. $\exp(g \cdot v) = g \cdot \exp(v)$ for $g \in G_x$. Hence the above map factorizes $G \times^{G_x} V \to X$.

• Exercise: Show that the above map is well defined.

2.15 Exercise: Let G be a group, H a subgroup, $E \to G/H$ be a vector bundle with G-action, such that for any $g \in G$, $x \in G/H$ the map $g : E_x \to E_{gx}$ is linear. Show that $E \simeq G \times^H E_{[e]}$. Here [e] denotes the coset eH.

2.16 There is a more general theorem for topological spaces:

- If X is a topological space (completely regular), G a compact Lie group, then a slice V is a certain subspace of X, invariant with respect to G_x . [Bredon, Introduction to Compact Transformation Groups. Section II.5] – In algebraic geometry [Luna slice theorem] we assume that G is reductive $((\mathbb{C}^*)^r)$ is fine, $\operatorname{GL}_n(\mathbb{C})$ too) X is an affine variety, and the orbit is closed. The neighbourhood is in the étal topology. [Luna, Domingo (1973), *Slices étales*, Sur les groupes algébriques, Bull. Soc. Math. France, Paris, Mémoire, vol. 33]

3 Classifying spaces

3.1 It is convenient to introduce a notion of G-CW-complex. By definition, we assume that X admits a filtration

$$X_{-1} = \emptyset \subset X_0 \subset X_1 \subset \cdots \subset X_N$$

such that

$$X_i = X_{i-1} \cup_{\phi} (G \times^H D^{n_i}),$$

where D^{n_i} is the unit disk of a linear orthogonal representation of $H \to Aut(\mathbb{R}^{n_i})$,

$$\phi: G \times^H S^{n_i - 1} \to X_{i-1}.$$

(with weak topology.)

3.2 Any smooth action of a compact Lie group G on a compact manifold admits a G-CW-decomposition.

3.3 Example: S^2 with the standard S^1 action has 3 cells 0, ∞ and $S^1 \times D^1$.

3.4 Exercise: find a CW-decomposition of \mathbb{P}^n with the standard action of $(S^1)^{n+1}$

3.5 The topological spaces we study will be assumed to admit a G-CW-decomposition

3.6 Equivariant cohomology of a G space:

• topological model $H^*_G(X) = H^*(EG \times^G X)$, where EG is a contractible free G-space (unfortunately in almost all cases EG is of infinite dimension)

- differential model if X is a G-manifold $H^*_{G,dR}(X) = H^*(\Omega^*(X,G))$
- de Rham theorem $H^*_G(X;\mathbb{R})\simeq H^*_{G,dR}(X)$

3.7 We will assume, that G is compact (or linear algebraic reductive, e.g. $(\mathbb{C}^*)^r$).

3.8 A G bundle $P \to B = E/G$ is universal if for any G bundle $P' \to B'$ there exist a map $f : B' \to B$ such that $F^*(P) = P'$. Moreover f is unique up to homotopy.

• Hence

$$\{G$$
-bundles on $X\} = [X, B]$

where [X, B] means homotopy classes of maps (X is assumed to be CW-complex).

3.9 We will show that a universal *G*-bundle exists.

• Notation $EG \rightarrow BG$, should be understood as a homotopy type, which has various realizations.

• A G bundle $P \to B$ is universal if and only if E is contractible.

• Proof: Assume that P is contractible. Suppose $P' \to B'$ be an arbitrary G-bundle. We construct a mapping by induction on skeleta. We assume that P' is a CW-complex, glued from cells with trivial stabilizers, i.e. each cell is of the form $D^n \times G$.

it is enough to construct a mapping $S^{n-1} \times \{1\} \to P$ do $D^n \times \{1\} \to EG$ and use G-action to spread the definition on the whole tube $D^n \times G$. Similarly we construct a homotopy between two maps.

Hence if P is contractible then it is universal. If we have another bundle $P' \to B'$ which is universal, then there are G maps $P' \to P$ and $P \to P'$ and their compositions are homotopic to identities (this is a general nonsens about universal objects).

3.10 Corollary: by the homotopy exact sequence for $G \subset EG \to BG$ we have homotopy group isomorphism $\pi_k(BG) \simeq \pi_{k-1}(G)$. In particular, if G is connected, then BG is 1-connected.

3.11 Since any nontrivial compact Lie group contains torus, hence elements of finite orders, the space EG cannot be of finite dimension (by Euler characteristic argument).

3.12 Examples: $ES^1 = S^{\infty} \to \mathbb{P}^{\infty} = BS^1 \text{ (of the type } K(\mathbb{Z}, 2))$ $E(S^1)^r = (S^{\infty})^r \to (\mathbb{P}^{\infty})^r = B(S^1)^r$ $BU(n) = \lim_{N \to \infty} Gras_n(\mathbb{C}^N)$

3.13 For $G = \mathbb{T}$ or U(n) one can approximate BG by compact algebraic manifolds, which admit a decomposition into algebraic cells (BB-decomposition's).

3.14 For all linear algebraic groups $G \subset \operatorname{GL}_m(C)$ we can take EG =Steel manifold

$$St_m(\mathbb{C}^N) := \text{Monomorphisms}(\mathbb{C}^m, \mathbb{C}^N) \subset \text{Hom}(\mathbb{C}^m, \mathbb{C}^N)$$

See [Anderson-Fulton, Ch.2, Lemma 2.1]

• Exercise: Show that

$$\lim_{N\to\infty} \operatorname{codim}(\operatorname{Hom}(\mathbb{C}^m,\mathbb{C}^N)\setminus St_m(\mathbb{C}^N)) = \infty$$

• For any algebraic group Totaro constructs approximation of BG by algebraic varieties in a more systematic way.

3.15 If $H \subset G$, then as a model for EH we can take EG. Hence we get a fibration $G/H \to BH \to BG$.

3.16 If $H \triangleleft G$ is a normal subgroup, K = G/H then there is a fibration $BH \rightarrow BG \rightarrow BK$. (Take EH := EG and $E'G = EG \times EK$, taking the fibration $E'G/G \rightarrow EK/K$ we find that the fiber is $EG \times^G G/H = BH$.) **3.17** Characteristic classes for G-bundles [see e.g. Guillemn-Sternberg §8] Consider two contravariant functors:

$$Gbdl := \{G - bundles\} / \sim: hTop \to sets$$

 $H := H^*(-\mathbb{Z}) : hTop \to sets$

$$Map_{Functors}(Gbdl, H) = H^*(BG; \mathbb{Z})$$

• This is just Yoneda Lemma: if $F, H : \mathcal{C} \to \mathcal{S} \sqcup f$ and F is representable by $A \in Ob(\mathcal{C})$, i.e.

$$F(X) = Mor_{\mathcal{C}}(X, A) \,,$$

then

$$Mor_{Functors}(F, H) = F(A)$$

Given a transformation of functors

$$\alpha: Mor_{\mathcal{C}}(-, A) \to H(-)$$

We construct an element in H(A) setting X = A

$$\alpha \mapsto \alpha(Id_A) \in H(A) \,.$$

Conversely: given $f: X \to A$ and $\alpha \in H(A)$ define

$$\alpha(f) = f^*(\alpha).$$

3.18 Characteristic classes for *n*-dimensional vector bundles.

• Each vector bundle is determined by its associated principal bundle. Thus $Vect_n(X) = [X, BGL_n(\mathbb{C})]$ and $BGL_n(\mathbb{C}) = BU_n$. Hence

characteristic classes of n-vector bundles = $H^*(BU(n))$

- $H^*(BU(n),\mathbb{Z})\simeq\mathbb{Z}[c_1,c_2,\ldots,c_n]$
- The map $H^*(BU(n+1)) \to H^*(BU(n))$ is surjective given by $c_{n+1} := 0$.

3.19 For the torus we have

• $G = \mathbb{C}^*, EG = \mathbb{C}^{\infty} \setminus \{0\}; B\mathbb{C}^* = \mathbb{P}^{\infty} = \bigcup_n \mathbb{P}^n$

• $H^*(B\mathbb{C}^*) \simeq \mathbb{Z}[t]$, it is convenient to take $t = c_1(\mathcal{O}(1))$, where $\mathcal{O}(1)$ is the dual of the tautological bundle.

• For S^1 we can take $ES^1 = S^\infty = \bigcup_n S^{2n-1}$

3.20 Corollary:

{topological vector bundles over X} $\simeq H^2(X; \mathbb{Z})$

 ${\text{characteristic classes of line bundles}} = H^*(\mathbb{P}^{\infty}) = \mathbb{Z}[t]$

3.21 For $\mathbb{T} = (S^1)^n$:

$$H^*(B\mathbb{T}) = \mathbb{Z}[t_1, t_2, \dots, t_n]$$

3.22 The inclusion $\mathbb{T} \to U(n)$ induces $B\mathbb{T} \to BU(n)$ and $H^*(BU(n)) \to H^*(\mathbb{T})$ which is injective

$$H^*(BU(n)) = \mathbb{Z}[c_1, c_2, \dots, c_n] = \mathbb{Z}[t_1, t_2, \dots, t_n]^{S_n} \hookrightarrow \mathbb{Z}[t_1, t_2, \dots, t_n] = H^*(B\mathbb{T})$$

Compare [Anderson-Fulton, Ch2, Proposition 4.1]

3.23 The above statement and many others in this course follows from Leray-Hirsch theorem:

• Let $F \to E \to B$ be a fibration. Assume that $H^*(F)$ is free (in our case over \mathbb{Z}). Suppose there is a linear map $\phi : H^*(F) \to H^*(E)$, a splitting of the restriction map $H^*(E) \to H^*(F)$. Then $H^*(E)$ is a free module over $H^*(B)$.

3.24 We have the bundle $E = B\mathbb{T} \to BU_n = B$ the fiber is $F = U_n/\mathbb{T}$. The base and the fiber (F =Flag manifold) admit a cell decompositions into even dimensional cells — see explanation below. Hence we have a cell decomposition of $E\mathbb{T}$ which is compatible with the decomposition of the base. (Note that here as a model of $E\mathbb{T}$ is not taken S^{∞} .)

• Hence $H^*(E) \to H^*(F)$ is split-surjective.

By the Leray-Hirsh theorem $H^*(B\mathbb{T})$ is a free $H^*(BU_n)$ -module of the rank dim $H^*(F)$,

• $H^*(F) \simeq H^*(E)/(H^{>0}(B))$ as algebras (also we can write $H^*(F) \simeq \mathbb{Z} \otimes_{H^*(B)} H^*(E)$)

3.25 We look at the cell decomposition of the approximation $Gras_n(\mathbb{C}^n)$ of BU(n) (see [Anderson-Fulton, Ch. 4, §5]

• The cells are indexed by the sequences

$$0 < i_1 < i_2 < \dots i_k \le n$$
$$\begin{pmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix} \quad i_1 = 1, \ i_2 = 3$$

Equivalently

 $(n-k \ge \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k \ge 0)$ = number of * in the reduced form of the matrix.

3.26 Computation of $H^*(BU(n))$. The map $H^*(BU(n)) \to H^*(B\mathbb{T})$ is injective. The image is invariant with the symmetric group action S_n , since each permutation $\sigma : \mathbb{T} \to \mathbb{T} \to U_n$ is homotopic to the inclusion.

• First we give an argument over \mathbb{Q} . We show that in each gradation dim $H^{2k}(BU_n) = \dim \mathbb{Q}[t_1, t_2, \dots, t_n]^{S_n}$. - dim $H^{2k}(BU(n))$ = number of sequences $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_k \ge 0$ (no restriction on λ_1), such that $\sum_i \lambda_i = k$

 $-\dim H^{2k}(B\mathbb{T})^{S_n} = \mathbb{Z}[t_1, t_2, \dots, t_n]_k^{S_n} =$ the number of monomials with non-increasing exponents.

• We conclude that $H^{2k}(BU(n); \mathbb{Q}) = H^{2k}(B\mathbb{T}; \mathbb{Q})^{S_n}$

• Moreover $H^*(Fl(n);\mathbb{Z}) = \mathbb{Z}[t_1, t_2, \dots, t_n]/(H^{>0}(BU_n;\mathbb{Z}))$ is torsion-free. Hence $H^*(BU_n;\mathbb{Z}) = \mathbb{Z}[t_1, t_2, \dots, t_n]^{S_n}$

3.27 Corollary: We have a description of the cohomology ring

$$H^*(Fl(n)) \simeq \mathbb{Z}[t_1, t_2, \dots, t_n] / (\mathbb{Z}[t_1, t_2, \dots, t_n]_{>0}^{S_n}).$$

3.28 Exercise: Compute the cohomology ring $H^*(Gras(k,n))$ using the fibration $Gras_k(\mathbb{C}^n) \to B(U_k \times U_{n-k}) \to BU_n$.

3.29 General theorem: if G is connected, \mathbb{T} maximal torus, $W = N\mathbb{T}/\mathbb{T}$ the Weyl group, then $H^*(BG; \mathbb{Q}) = H^*(B\mathbb{T}; \mathbb{Q})^W$ is a polynomial ring in the variables of even degrees, e.g.

- $H^*(BSp(n); \mathbb{Q}) = \mathbb{Q}[c_2, c_4, \dots, c_{2n}],$ (valid also over \mathbb{Z}),
- $H^*(BO_{2n}; \mathbb{Q}) = \mathbb{Q}[p_1, p_2, \dots, p_n, e]/(e^2 = p_n), \deg p_i = 4i, \deg e = 2n \text{ (valid also over } \mathbb{Z}[\frac{1}{2}])$

• BE_8 is he worst, one has to invert 2, 3, 5. The generators of $H^{2*}(BE_8)$ are in the degrees $2 \times :2, 8, 12, 14, 18, 20, 24, 30.$

[Burt Totaro: The torsion index of E_8 and other groups, Duke Math. J. 129 (2005), no. 2, 219–248]

4 Recollection on Chern classes

What you need to know about Chern classes

4.1 Let $Vect_1$ denote the functor $hTop \to Sets$

 $Vect_1(X) =$ Isomorphism classes of line bundles over X

• This functor factors through the category of abelian groups (tensor product of line bundles behaves like addition).

• Vect(X) denotes isomorphism classes of vector bundles. This is a semi-ring. Here \oplus is the addition, \otimes is the multiplication.

4.2 The first Chern class

$$c_1 \in Mor_{Functors}(Vect_1, H^2(-, \mathbb{Z})) = H^2(K(\mathbb{Z}, 2)) = H^2(BS^1) = H^2(\mathbb{P}^\infty) = H^2(\mathbb{P}^1)$$

We chose the generator of $H^2(\mathbb{P}^1)$ so that $c_1(\mathcal{O}(1)) = [pt]$. Here the bundle $\mathcal{O}(1) = \gamma^*$ is the dual of the tautological bundle.

• In other words: the Chern class c_1 is determined by the choice made for $\mathcal{O}(1)$.

- **4.3** Chern classes of vector bundles: $c(E) = 1 + c_1(E) + \cdots + c_{rk(E)}(E)$.
- functoriality (c is a transformation of functors $Vect(-) \to H^*(-,\mathbb{Z})$
- for line bundles $c(L) = 1 + c_1(L)$
- Whitney formula $c(E \oplus F) = c(E) c(F)$

• Note c is not a group homomorphism. One can repair that, but has to use \mathbb{Q} coefficients. The resulting transformation is called Chern character. For line bundles

$$ch(L) = \exp(c_1(L))$$

Chern character is additive and multiplicative

$$ch(E \oplus F) = ch(E) + ch(F)$$
,
 $ch(E \otimes F) = ch(E) ch(F)$.

4.4 If L is a holomorphic line bundle over a complex manifold, with a meromorphic section s, then $c_1(L)$ is equal to Poincaré dual of Zero(s) - Poles(s).

4.5 Projective bundle theorem. For a vector bundle $E \to B$ let $\mathbb{P}(E) \to B$ be the projectivization¹, $L = \mathcal{O}_{\mathbb{P}(E)}(1)$ the tautological line bundle, then $H^*(\mathbb{P}(E))$ is a free module over $H^*(B)$

$$h^r + a_1 h^{r-1} + \dots + ra_r = 0.$$

Then $a_i = c_i(E)$.

• There are other conventions of signs, but let's check: If E is a line bundle, then $L = E^*$. We have relation $h + a_1 = c_1(L) + c_1(E) = 0$.

4.6 Corollary: Chern classes of E and the ring structure of $H^*(B)$ determine the ring structure

$$H^*(\mathbb{P}(E)) = H^*(B)[h]/(h^r + c_1h^{r-1} + \dots + c_{r-1}h + c_r).$$

4.7 Splitting principle: for any line bundle $E \to B$ there exists $f: B' \to B$ such that, f^*E is a sum of line bundles and f^* is injective on cohomology. E.g.

$$B' = Flags(E) = B \times_{BU(n)} B\mathbb{T},$$

where \mathbb{T} is the maximal torus in U(n).

4.8 The generator of $H^2(B\mathbb{C}^*)$ is identified with $c_1(\mathcal{O}(1))$. Thus the generators of

$$H_T^*(B\mathbb{T}) = \mathbb{Z}[t_1, t_2, \dots, t_n]$$

can be presented as

$$t_i = c_1(L_i) \,,$$

where $L_i = E\mathbb{T} \times^{\mathbb{T}} \mathbb{C}_{t_i}$ is the line bundle associated to the representation of T in $GL_1(\mathbb{C})$ given by the projection of the *i*-th factor.

4.9 Let $\chi : \mathbb{T} \to \mathbb{C}^*$ be a character, then $c_1(ET \times^{\mathbb{T}} \mathbb{C}_{\chi}) = \chi$. Here we identify

$$\operatorname{Hom}(\mathbb{T},\mathbb{C}^*) = \mathfrak{t}^* = H^2(B\mathbb{T}).$$

Borel's definition of equivariant cohomology [finally, see [Anderson-Fulton, Ch.2 §2]]

4.10 Borel construction $X_G = EG \times^G X$ sometimes is called the mixing space.

4.11 Basic properties:

- It is a module over $H^*_G(pt) = H^*(BG)$
- Contravariant functoriality with respect to X i G.

• If the action is free then $X_G \to X/G$ is a fibration with the contractible fiber EG, hence $H^*_G(X) = H^*(X/G)$. [Anderson-Fulton, Ch 3, §4]

• For $K \subset G$, X = G/H we have $X_G = EG \times^G G/K \simeq EG/K = BK$.

• More generally $H^*_G(G \times^K X) \simeq H^*_K(X)$ for any K-space X..

• If the action is trivial then $X_G = BG \times X$. If $H^*(BG)$ has no torsion (e.g. G = T, $\operatorname{GL}_n(\mathbb{C})$, $Sp_n(\mathbb{C})$) then $H^*_G(X) = H^*(BG) \otimes H^*(X)$. For coefficients in \mathbb{Q} we do need the assumption about the torsion. [Anderson-Fulton, Ch 3, §4]

¹this is the naive projectivization, i.e. the fiber over $x \in B$ consist of the lines in E_x .

4.12 Basic properties of equivariant cohomology of smooth compact algebraic varieties: (*G* connected, coefficients of cohomology in \mathbb{Q})

• (*) $H^*_G(X)$ is a free module over $H^*(BG)$ hence $H^*_G(BG) \simeq H^*(BG) \otimes H^*(X)$, the information of the action of G is hidden in the multiplication,

• $H^*_{\mathbb{T}}(X) \to H^*_{\mathbb{T}}(X)^T$ is injective.

4.13 Example: [Anderson-Fulton, Ch.2, §6] \mathbb{P}^n with the standard action of $\mathbb{T} = (\mathbb{C}^*)^{n+1}$. We identify $X_{\mathbb{T}}$ with $\mathbb{P}(\bigoplus_{i=0}^n \mathbb{C}_{t_i})$. By the projective bundle theorem

$$H^*_{\mathbb{T}}(\mathbb{P}^n) = \mathbb{Z}[t_0, t_2, \dots, t_n, h] / (\prod_{i=0}^n (t_i + h))$$

- It is a free module over $H_T^*(pt) = H^*(B\mathbb{T}) = \mathbb{Z}[t_0, t_2, \dots, t_n]$
- The map to $H^*(\mathbb{P}^n) = \mathbb{Z}[h]/(h^{n+1})$ is a surjection.
- We have an isomorphism of modules over $H^*(B\mathbb{T})$

$$H^*_{\mathbb{T}}(\mathbb{P}^n) \simeq H^*(B\mathbb{T}) \otimes H^*(\mathbb{P}^n).$$

We will see that for compact smooth algebraic varieties (or Kähler) the above holds always over \mathbb{Q} .

• The map

$$H^*_{\mathbb{T}}(\mathbb{P}^n) \to H^*_{\mathbb{T}}((\mathbb{P}^n)^{\mathbb{T}}) = \bigoplus_{i=0}^n H^*_{\mathbb{T}}(pt) = \bigoplus_{i=0}^n \mathbb{Z}[t_0, t_1, \dots, t_n]$$

by

,

$$[f(\underline{t},h)] \mapsto \{f_i\}_{i=0,1,\dots,n}, \qquad f_i(\underline{t}) = f(\underline{t},-t_i).$$

Exercise: this map is injective.

4.14 Example: $\mathbb{T} = \mathbb{C}^*$ acting on $\mathbb{P}^1 \simeq S^2$ via $[t^\ell z_0, t^k z_1]$

$$X_{\mathbb{T}} = \mathbb{P}(\mathcal{O}(\ell) \oplus \mathcal{O}(k))$$

$$H^*_{\mathbb{T}}(\mathbb{P}^1) = \mathbb{Z}[h, t] / ((h + kt)(h + \ell t))$$

• The elements 1 and h generate over $\mathbb{Z}[t] = H^*(BT)$. This is a free module [We have $h^2 = -(k+\ell)th - k\ell t^2$, so any polynomial in t and h can be written modulo the ideal $(h^2 + ht)$ as $f_0(t) + f_1(t)h$.]

• The restriction to the fixed points

$$[f(t,h)] \mapsto (f(t,-\ell t), f(t,-kt)) \,.$$

is injective.

[If f(t, -kt) = 0, then f is divisible by $h + kt \dots$]

4.15 Let $\mathbb{T} = \mathbb{C}^*$ act on $X = \mathbb{C}^*$ via the multiplication by z^k

• We identify \mathbb{C}^* with the subset of \mathbb{P}^1

$$\{[1,z] \in \mathbb{P}^1 \mid z \neq 0\}$$

the action of \mathbb{C}^* is as in 4.14 for $\ell = 0$. To compute $H^*_{\mathbb{T}}(\mathbb{C}^*)$ use the Mayer-Vietoris exact sequence [Anderson-Fulton, Ch. 3, §5]: for even degrees we have

$$\begin{split} 0 &\to H^{2i-1}_{\mathbb{T}}(\mathbb{C}^*) \to H^{2i}_{\mathbb{T}}(\mathbb{P}^1) \xrightarrow{\alpha} H^{2i}_{\mathbb{T}}(\mathbb{C}) \oplus H^{2i}_{\mathbb{T}}(\mathbb{C}) \to H^{2i}_{\mathbb{T}}(\mathbb{C}^*) \to 0 \\ 0 &\to ? \to \mathbb{Z}[t,h]/(h(h+kt)) \xrightarrow{\alpha} \mathbb{Z}[t] \oplus \mathbb{Z}[t] \to ? \to 0 \\ \alpha(t) &= (t,t) \,, \qquad \alpha(h) = (kt,0) \,. \end{split}$$

The restriction map to the open \mathbb{C} 's can be identified with the restriction to the fixed points. The one but last map α is injective, thus $H_{\mathbb{T}}^{2i-1}(\mathbb{C}^*) = 0$ and

$$H^{2i}_{\mathbb{T}}(\mathbb{C}^*) = coker(\alpha) = \langle t_1^i, t_2^i \rangle / \langle \alpha(t^a h^b) \rangle = \langle t_1^i, t_2^i \rangle / \langle t_1^i + t_2^i, kt_1^i \rangle = \mathbb{Z}/k\mathbb{Z}.$$

• Corollary:

$$H^{i}(B\mathbb{Z}_{k} \mathbb{Z}) = H^{i}_{\mathbb{C}^{*}}(\mathbb{C}_{k}^{*};\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } i = 0\\ \mathbb{Z}_{k} & \text{if } i \text{ is even} \\ 0 & \text{if } i \text{ is odd.} \end{cases}$$

(Here \mathbb{Z}_k denotes $\mathbb{Z}/k\mathbb{Z}$.)

4.16 In general, if G is a finite group $H^{>0}(BG;\mathbb{Z})$ is torsion.

• $p: EG \to BG$ is a finite covering, thus $p_*p^* \in \text{End}(H^i(BG))$ is the multiplication by |G|. Since for i > 0 it factors through trivial group for we have $|G|H^i(BG) = 0$.

• We will mainly perform computation over \mathbb{Q} , so will ignore finite groups.

5 Equivariant formality, localization I

5.1 The condition

(*) $H^*_{\mathbb{T}}(X)$ is a free module over $H^*_{\mathbb{T}}(pt)$

Is called *equivariant formality* It can be reformulated

 $-H^*_{\mathbb{T}}(X)\otimes_{H^*_{\mathbb{T}}(pt)}\mathbb{Q}\simeq H^*(X)$

 $-H^*(X) \otimes H^*_{\mathbb{T}}(pt) \simeq H^*_{\mathbb{T}}(X)$ (it is enough to know that there is an isomorphism of graded vector spaces) $-H^*_{\mathbb{T}}(X) \to H^*(X)$ is surjective, compare [Anderson-Fulton, Ch. 6, §3].

5.2 The basic argument is analysis of the fibration $X \subset E\mathbb{T} \times^{\mathbb{T}} X \to B\mathbb{T}$ and Serre spectral sequence

$$E_2^{p,q} = H^p_{\mathbb{T}}(pt) \otimes H^q(X) \Rightarrow H^{p+q}_{\mathbb{T}}(X).$$

5.3 If X is a sum of even dimensional cells then (*) holds. It is enough to assume $H^{odd}(X;\mathbb{Q}) = 0$.

5.4 Theorem: If X is smooth algebraic manifold with an algebraic torus $\mathbb{T} = (\mathbb{C}^*)^r$ action, then X is equivariantly formal.

• See [Anderson-Fulton, Ch. 5, Cor. 3.3]

• (Much more difficult result of McDuff is equivariant formality of X symplectic manifolds with Hamiltonian torus action.)

5.5 To show (5.4) we need some basic tools.

• Fundamental class of a subvariety $Y \subset X$: it is the Poincaré dual of the homology class. We denote it $[Y] \in H^{2\operatorname{codim} Y}(X)$. (We do not have to assume that X is compact.) • Equivariant fundamental class of an equivariant subvariety. Let $E_n \to B_n = (\mathbb{P}^n)^r$ be the approximation of the universal \mathbb{T} -bundle. He define $[Y] \in H^*_{\mathbb{T}}(X)$ as the fundamental class of $E_n \times^{\mathbb{T}} Y \subset E_n \times^{\mathbb{T}} X$

$$[E_n \times^{\mathbb{T}} Y] \in H^{2\mathrm{codim}Y}(E_n \times^{\mathbb{T}} X) \simeq H^{2\mathrm{codim}Y}_{\mathbb{T}}(X) \qquad \text{for sufficiently large } n \,.$$

• Exercise: Show that the definition does not depend on n >> 0.

• Exercise: Define the equivariant fundamental class not passing through approximation, but using the equivariant normal bundle on Y_{smooth} .

5.6 Correspondences: (for cohomology with rational coefficients). Suppose X and Y are compact C^{∞} manifolds. We have

$$\operatorname{Hom}(H^*(Y), H^*(X)) \simeq (H^*(Y))^* \otimes H^*(X) \stackrel{\operatorname{Poincar\acute{e}}}{\simeq} H^*(Y) \otimes H^*(X) \stackrel{\operatorname{Künneth}}{\simeq} H^*(X \times Y)$$

Having a cohomology class $a \in H^k(X \times Y)$ we define $\phi_a : H^*(Y) \to H^*(X)$

$$\begin{array}{cccc} H^{i}(Y) & H^{i}(X \times Y) & H^{i+k}(X \times Y) & H^{i+k-\dim Y}(X) \\ \alpha & \mapsto & \pi_{Y}^{*}\alpha & \mapsto & a \cdot (\pi_{Y}^{*}\alpha) & \mapsto & \pi_{X*}(a \cdot (\pi_{Y}^{*}\alpha)). \end{array}$$

Here \cdot is the product in cohomology. Puritans would denote it by \cup . The push-forward (a.k.a Gysin homomorphism) π_{X*} can be defined as the map in homology composed with Poincaré dualities. See [Anderson-Fulton, Ch. 3, §6]

• If a is the class of a graph of $f: X \to Y$, dim Y = k i.e. $a = [graph(f)] \in H^k(X \times Y)$. Then $\phi_a = f^*$. (Exercise.)

• Suppose X and Y smooth an compact algebraic varieties and $Z \subset X \times Y$ any subvariety. Take $a = [Z], \phi_Z := \phi_a$. Then $\phi_Z : H^i(Y) \to H^{i+2c}(X)$ with $c = \operatorname{codim} Z - \dim Y = \dim X - \dim Z$.

• One can drop the assumption that X is compact. It is enough to assume that the projection $Z \to X$ is proper:

$$\alpha \mapsto \pi_Y^* \alpha \mapsto (\pi_Y^* \alpha)_{|Z} \mapsto \pi_{X*}(\pi_Y^* \alpha)_{|Z}).$$

5.7 Proof of 5.4. Let $B_n = (\mathbb{P}^n)^r$, $X_n = (\mathbb{C}^{n+1} - 0)^r \times^{\mathbb{T}} X$ be the approximation of the Borel construction. We show that $H^*(X_n) \to H^*(X)$ surjective. It is enough, since $H^k(X_n) \simeq H^*_{\mathbb{T}}(X)$ for large n.

The bundle $(\mathbb{C}^{n+1}-0)^r \to (\mathbb{P}^n)^r$ is trivial over the set standard affine open set $U \simeq (\mathbb{C}^n)^r$:

$$U \times X \subset X_n$$

The projection $p: U \times X \to X$ extends to the correspondence

$$\phi_Z: X_n \to X, \qquad Z = closure(graph(p)).$$

The map p^* has a left inverse inverse i'^* induced by $i': X = \{pt\} \times X \to U \times X$, i.e. $pi' = id_X$

$$\begin{array}{ccccccc}
 & H^*(X) & & & \\
 & i^* & \nearrow & & i'^* \\
 & H^*(X_n) & \longrightarrow & H^*(U \times X) \\
 & \phi_Z & & & & \\
 & & & & H^*(X) & & \\
\end{array}$$

 $i^* \phi_Z = i d_{H^*(X)}$ because $i'^* p^* = i d_{H^*(X)}$.

 \bullet Exercise: show that all works for cohomology with \mathbbm{Z} coefficients.

5.8 Example of a space which is not equivariantly formal: Let $\mathbb{T} = \mathbb{T}_1 \times \mathbb{T}_2$ with $\mathbb{T}_i = \mathbb{C}^*$, $X = \mathbb{T}/\mathbb{T}_1 \simeq \mathbb{T}_2$:

$$H^*_{\mathbb{T}}(\mathbb{T}/\mathbb{T}_1) = H^*(E\mathbb{T} \times^{\mathbb{T}} \mathbb{T}/\mathbb{T}_1) = H^*(B\mathbb{T}_1)$$

The map to $H^*(X)$ for *=1 is not surjective.

5.9 Example: $\mathbb{T} = S^1$ acting on $X = S^3$ with the quotient S^2 (the Hopf fibration). Then $H^*_{\mathbb{T}}(S^3) \simeq H^*(S^2)$ cannot be surjective to $H^*(S^3)$.

5.10 If X is a free \mathbb{T} space then X is not equivariantly formal (since $H^*_{\mathbb{T}}(X)$ is of finite dimension, cannot be a free module over a polynomial ring).

5.11 Localization 1.0: Let X be a finite \mathbb{T} -CW complex. Then the kernel and the cokernel of the restriction to the fixed point set $H^*_{\mathbb{T}}(X) \to H^*_{\mathbb{T}}(X^T)$ are torsion $H^*_T(pt)$ -modules.

• Other formulation: Let $\Lambda = H_T^*(pt) = \mathbb{Q}[t_1, t_2, \dots, t_3]$, and K = be the fraction field. Then the restriction

$$K \otimes_{\Lambda} H^*_{\mathbb{T}}(X) \to K \otimes_{\Lambda} H^*_{\mathbb{T}}(X^T).$$

is an isomorphism. • It will be clear from the proof what elements of Λ should be inverted.

• Proof in the case of the finite $X^{\mathbb{T}}$, see [Anderson-Fulton, Ch. 5, Th. 1.8]. For nonsingular varieties [Anderson-Fulton, Ch 5. Th. 1.13]

5.12 Let M be a Λ -module (it is enough to assume that Λ is a domain). Localization

$$K \otimes_{\Lambda} M = \{\frac{m}{a} \mid a \neq 0\} / \sim$$
$$\frac{m_1}{a_1} \sim \frac{m_2}{a_2} \iff \exists b \in \Lambda^* \ ba_2 m_1 = ba_1 m_2 \,.$$

5.13 Lemma: The localization functor

$$\Lambda - modules \longrightarrow K - modules$$

is exact. (Exercise)

5.14 Proof of 5.11. Induction with respect to the number of cells: Assume that if $X = Y \cup \mathbb{T} \times_G D$. Then the sequence

$$\to K \otimes_{\Lambda} H^*_{\mathbb{T}}(X,Y) \to K \otimes_{\Lambda} H^*_{\mathbb{T}}(X) \to K \otimes_{\Lambda} H^*_{\mathbb{T}}(Y) \to$$

is exact. Assume that $G \neq \mathbb{T}$. We will show that $H^*_{\mathbb{T}}(X, Y)$ is a torsion Λ -module.

$$H^*_{\mathbb{T}}(X,Y) \simeq H^*_{\mathbb{T}}(\mathbb{T} \times_G D, T \times_G S) \simeq H^*_G(D,S)$$

(see (4.11)) The action of Λ on $H^*_G(D, S)$ factorizes through $H^*_{\mathbb{T}}(\mathbb{T}/G) = H^*_G(pt) = \Lambda/(\text{characters anihilating } G)$, hence $H^*_G(pt)$ is a torsion Λ -module. **5.15** Exercise: see what goes wrong for \mathbb{T} replaced by a nonabelian groups. For tori the orbit $H^*_{\mathbb{T}}(\mathbb{T}/G)$ turned out to be a torsion $H^*_{\mathbb{T}}(pt)$ -module. (Is $H^*_{GL_n}(GL_n/B_n)$ a torsion $H^*_{GL_n}(pt)$ -module?)

5.16 Example: \mathbb{P}^1 with the standard $\mathbb{T} = (\mathbb{C}^*)^2$ action

$$K \otimes_{\Lambda} H^*_{\mathbb{T}}(\mathbb{P}^1) = K[h]/((t_0 + h)(t_1 + h)) \xrightarrow{\simeq} K \oplus K$$
$$f[h] \mapsto \left(f(-t_0), f(-t_1) \right).$$

(Chinese reminder theorem.)

5.17 If X is equivariantly formal, then all mappings below are injective

$$\begin{array}{ccccc}
H^*_{\mathbb{T}}(X) & \longrightarrow & H^*_{\mathbb{T}}(X^{\mathbb{T}}) \\
\downarrow & & \downarrow \\
K \otimes_{\Lambda} H^*_{\mathbb{T}}(X) & \xrightarrow{\simeq} & K \otimes_{\Lambda} H^*_{\mathbb{T}}(X^{\mathbb{T}})
\end{array}$$

If $|X| < \infty$ then

$$K \otimes_{\Lambda} H^*_{\mathbb{T}}(X^{\mathbb{T}}) \simeq K^{|X^{\mathbb{T}}|}$$

Therefore instead of computation in a possibly difficult ring $H^*_{\mathbb{T}}(X)$ it is enough to make calculations with rational functions.

5.18 Example: (exercise) $X = \mathbb{P}^n$, \mathbb{T} the standard one, the image

$$H^*_{\mathbb{T}}(\mathbb{P}^n) \hookrightarrow \bigoplus_{k=0}^n \Lambda = \Lambda^{n+1}$$

consists of such sequences $(f_0, f_1, \ldots, f_n) \in \mathbb{Q}[t_0, t_1, \ldots, t_n]^{n+1}$, such that $t_i - t_j$ divides $f_i - f_j$.

Plans for the future:

5.19 Assume that X is equivariantly formal, $|X^T| < \infty$. Question: how to describe $H_T^*(X) \hookrightarrow \bigoplus_{x \in X^T} \Lambda$? (an answer for GKM-spaces is easy and handy to use).

5.20 Assume, that X is equivariantly formal and $|X^{\mathbb{T}}| < \infty$.

Question: how to reconstruct an element $\alpha \in H^*_{\mathbb{T}}(X)$ knowing the restrictions $\alpha_{|\{x\}} \in \Lambda$? Answer: Atiyah-Bott and Beline-Vergne theorem: assuming that X compact manifold

$$\alpha = \sum_{x \in X^T} (i_x)_* \left(\frac{i_x^* \alpha}{e(T_x X)} \right) \in K \otimes_{\Lambda} H^*_{\mathbb{T}}(X),$$

where $i_x : \{x\} \to X$, and $e(T_x X) \in \Lambda$ is the equivariant Euler class of $T_x X \to \{x\}$, see 2.7.

5.21 Corollary (with the assumptions as above):

$$\int_X \alpha = \sum_{x \in X^T} \frac{i_x^* \alpha}{e(T_x X)} \,.$$

5.22 Corollary: $X = \mathbb{P}^n$, $\alpha = (c_1(\mathcal{O}(1))^n)$

$$\sum_{i=0}^{n} \frac{(-t_i)^n}{\prod_{j \neq i} (t_j - t_i)} = ?$$

6 Localization and integration on manifolds

[Anderson-Fulton, Ch. 5]

6.1 Corollary: If X is equivariantly formal, then $H^{even}(X; \mathbb{Q}) \simeq H^{even}(X^T; \mathbb{Q})$ and $H^{odd}(X; \mathbb{Q}) \simeq H^{odd}(X^T; \mathbb{Q})$

• By elementary arguments we already new that $\chi(X) = \chi(X^{\mathbb{T}})$.

6.2 Remark: From Białynicki-Birula decomposition one can derive more: the correspondences

$$\Gamma_i = closure(X_F^+ \to F) \subset F \times X$$

induce

$$H^*(X;\mathbb{Z}) \simeq \bigoplus_{F \subset X^{\mathbb{T}}} H^{*-2n_F^+}(F,\mathbb{Z}),$$

where n_F^+ is the dimension of the fiber of the *limit map* $X_F^+ \to F$. [proof by Carrell].

6.3 Let $f: X \to Y$ be a map of compact oriented manifolds. Then the push-forward (or the Gysin map [Anderson-Fulton, Ch.3, §6]) $f_*: H^*(X) \to H^*_T(Y)$ may be defined by Poincaré duality

$$PD_X : H^k(X) \to H_{\dim X - k}(X)$$

 $a \mapsto a \cap [X],$

We define f_* to be the composition

6.4 Another construction for an embedding: Let U be a tubular neighbourhood of X in Y, i.e. U is diffeomorphic to the space of the normal bundle $\pi : \nu \to X$, $c = \operatorname{codim} X$. Let $\tau \in H^c(U, U \setminus X)$ be the Thom class. This means that τ restricted to any fiber of $U \simeq \nu \to X$ is the generator of $H^c(\nu_x, \nu_x \setminus \{0\}) \simeq H^c(\mathbb{R}^c, \mathbb{R}^c \setminus \{0\})$ (i.e. we have a continuous choice of orientations in the fibers). We define f_* :

$$H^k(X) \xrightarrow{\text{Thom}} H^{c+k}(U, U \setminus X) \xleftarrow{\text{excision}} H^{c+k}(Y, Y \setminus X) \longrightarrow H^{c+k}(Y).$$

The Thom isomorphism is given by $H^k(X) \xrightarrow{\simeq} H^{c+k}(U, U \setminus X), a \mapsto \tau \cdot \pi^*(a)$, where $\pi : U \to X$ is the projection in the bundle $\nu \simeq U \to X$.

6.5 Exercise: show that both constructions of f_* are equivalent. Hint $\tau \cap [U] = [X] \in H_{\dim X}(U) \simeq H_{\dim X}(X)$, where $[U] \in H_{\dim Y}(\overline{U}, \partial U)$ is the orientation class.

6.6 Key formula. Let $e(\nu) \in H^c(X)$ be the Euler class, $i: X \hookrightarrow Y$ the inclusion. We have

$$i^*i_*(a) = e(\nu) \cdot a$$

• Since

$$e(\nu) = i^*(\tau), \qquad \tau \in H^c(\nu, \nu \setminus X) \simeq H^c(Y, Y \setminus X)$$

by the definition, we get $i^*i_*(a) = i^*(\tau \cdot \pi^*(a)) = i^*(\tau) \cdot i^*\pi^*(a) = e(\nu) a$.

6.7 If $X \subset Y$ is a T-invariant. Let us define i_* as in (6.4). The equivariant class of an invariant submanifold is defined as $i_*(1_X) \in H^*_{\mathbb{T}}(Y)$.

6.8 Suppose, that X is a T-manifold, $i: X^T \to X$ is an embedding,

$$i^*: K \otimes_{\Lambda} H^*_T(X) \xrightarrow{\simeq} K \otimes_{\Lambda} H^*_T(X^T).$$

The composition i_*i^* by the Euler class of the normal bundle X^T . (over each component $F \subset X^T$ the normal bundle can have a different dimension.)

6.9 Fundamental Lemma: The Euler class $e(\nu(X^{\mathbb{T}} \text{ in } X) \in H^*_{\mathbb{T}}(X))$ is invertible in $K \otimes_{\Lambda} H^*_{\mathbb{T}}(X)$.

- It has to be checked for every component of $F \subset X^{\mathbb{T}}$ that the Euler class in invertible.
- If $F = \{x\}$ is a point,

$$e(\nu_F) = \prod_i w_i \in Z[t_1, t_2, \dots, t_r]$$

where w_1, \ldots, w_c are weights of the torus representation $\nu_F = T_x X$. The weights are non-zero, since x is an isolated fixed point.

• E.g. if $x = [0 : \cdots : 0 : 1 : 0 : \cdots : 0] \in \mathbb{P}^n$ (1 on k-th position), then $e(\nu_{\{x\}}) = \prod_{i \neq k} (t_i - t_k)$.

6.10 Proof of the fundamental lemma in the general case: We decompose $\nu = \bigoplus_{w \in \mathcal{W}} \nu_w$. We can assume that ν_w is a complex bundle. (We do not assume that X is a complex manifold but the torus action allows to define complex structure.) Each summand ν_w has a complement μ_w such that

 $\nu_w \oplus \mu_w = \mathbb{1}^{d_w}$ a trivial bundle of dimension d_w

The above isomorphism can be made equivariant, when we act on μ_w with the character w Then $e(\nu_w \oplus \mu_w) = w^{d_w}$. Let $\mu = \bigoplus_w \mu_w$. We have

$$e(\nu\oplus\mu)=\prod_{w\in\mathcal{W}}w^{d_v}$$

hence

$$e(\nu) \cdot \left(e(\mu) / \prod_{w \in \mathcal{W}} w^{d_w} \right) = 1$$

6.11 Localization formula (Atiyah-Bott, Berline-Vergne). Assume, that X is a compact \mathbb{T} -manifold, which is equivariantly formal. For $a \in H^*_{\mathbb{T}} * X$) we have

$$a = \sum_{F} (i_F)_* \left(\frac{i_F^*(a)}{e(\nu(F))}\right) \tag{1}$$

summation over the connected components $F \subset X^{\mathbb{T}}$. Here $i_F : F \to X$ is the inclusion.

• Proof. Let ϕ be the composition

$$K \otimes_{\Lambda} H^*_T(X) \xrightarrow{i^*} \bigoplus_F K \otimes_{\Lambda} H^*_T(F) \xrightarrow{1/e(\nu)} \bigoplus_F K \otimes_{\Lambda} H^*_T(F)$$

Note, that $i_* \circ \phi = Id$. Since $K \otimes_{\Lambda} H^*_T(X)$ is of a finite dimension over K, thus $\phi \circ i_* = Id$. Hence we have an equality (1) in $K \otimes_{\Lambda} H^*_T(X)$.

• Note that we have an expression in $K \otimes_{\Lambda} H^*_T(X)$, but the sum belongs to $H^*_T(X)$, i.e. it is integral.

• The above argument reoproves the statement that the restriction to $X^{\mathbb{T}}$ is an isomorphism after tensoring with K.

• It is enough to invert the weights appearing in the normal bundles ν_F .

• We do not have to assume that X is compact. It is enough to know that $X^{\mathbb{T}}$ is compact and X is formal.

6.12 [Anderson-Fulton, Ch. 5, §2] AB-BV integration formula: Let $p_X : X \to pt$ be the constant map. With the assumption as above

$$\int_X a := (p_X)_*(a) = \sum_F (p_F)_* \left(\frac{i_F^*(a)}{e(\nu(F))}\right) \in \Lambda.$$

- The sum is in Λ although the summands belong to K.
- If $|X^T| < \infty$

$$\int_X a = \sum_{p \in X^T} \frac{a_{|p|}}{e(T_p X)}$$

6.13 Example [Anderson-Fulton, Ch 5, Ex. 2.5] \mathbb{P}^n . Let $h = c_1(\mathcal{O}(1))$:

• Subexample, n = 1

$$\int_{\mathbb{P}^1} h = \frac{-t_0}{t_1 - t_0} + \frac{-t_1}{t_0 - t_1} = \dots = 1.$$

• In general

$$\int_{\mathbb{P}^n} h^{k+n} = \sum_{i=0}^n \frac{(-t_i)^{k+n}}{\prod_{j \neq i} (t_j - t_i)}$$
$$= (-1)^k \sum_{i=0}^n \operatorname{Res}_{z=t_i} \frac{z^{k+n}}{\prod_{j=1}^n (z - t_j)} = \dots$$

The result is:

$$(-1)^k S_k(t_0, t_1, \dots, t_n) = (-1)^k \sum_{\ell_0 + \ell_1 + \dots + \ell_n = k} t_0^{\ell_0} t_1^{\ell_1} \dots t_n^{\ell_n}$$

i.e. the complete symmetric function.

• Exercise: Check at least that $\int_{\mathbb{P}^n} h^n = 1$.

Application to compute Euler characteristic of holomorphic bundles.

6.14 Riemann-Roch theorem: Let E be a holomorphic bundle over a compact complex manifold, then

$$\chi(X; E) = \int_X t d(TX) ch(E) \,.$$

• Remainder: the Todd class td is a multiplicative characteristic class i.e. $td(E \oplus F) = td(E)td(F)$ and for a line bundle $td(L) = \frac{t}{1-e^{-t}}$, where $t = c_1(L)$.

• If a torus \mathbb{T} acts on X with a finite number of fixed points, and E is a vector bundle admitting \mathbb{T} action, the td(TX) and ch(E) naturally lift to equivariant cohomology (via Borel construction). Then

$$\chi(X; E) = \sum_{x \in X^{\mathbb{T}}} \frac{i_x^*(td(TX)ch(E))}{e(T_x X)} \,.$$

• For simplicity assume that E = L is a line bundle. Each summand is equal to

$$\frac{\prod_{i=1}^{n} \frac{w_{x,i}}{1-e^{-w_{x,i}}}}{\prod_{i=1}^{n} w_{x,i}} e^{\alpha_x} = \frac{e^{\alpha}}{\prod_{i=1}^{n} (1-e^{-w_{x,i}})},$$

where $w_{x,i}$ are the weights of the T action on the tangent space $T_x X$ and α_x is the weight of T acting on L_x .

• Exercise: compute from above $\chi(\mathbb{P}^n; \mathcal{O}(k))$.

7 Flag variety and flag bundles

[Anderson-Fulton, Ch.4, §4]

7.1 Let $E \to B$ be a complex vector bundle of rank $n, \pi : \mathcal{F}\ell(E) \to B$ the associated bundle of complete flag varieties. A point of $\mathcal{F}\ell(E)$ mapping to $x \in B$ is a sequence

$$V_{\bullet} = \{0 = V_0 \subset V_1 \subset V_2 \subset \cdots \subset V_n = E_x \mid \dim(V_i) = i\}.$$

The quotients $L_i = V_i/V_{i-1}$ with V_{\bullet} varying form a line bundle. Let $x_i = c_1(L_i)$.

7.2 Theorem. Cohomology $H^*(\mathcal{F}\ell(E))$ is generated by x_i as a $H^*(B)$ algebra:

$$H^*(\mathcal{F}\ell(E)) \simeq H^*(B)[x_1, x_2, \dots, x_n]/I,$$

where I is the ideal generated by

$$\sigma_i(x_1, x_2, \dots, x_n) - \pi^* c_i(E)$$
 for $i = 1, 2, \dots, n$,

so that in $H^*(\mathcal{F}\ell(E))$

$$\pi^*(c(E)) = \prod_{i=1}^n (1+x_i)$$

7.3 The proof by induction.

- For n = 1: $\mathcal{F}\ell(E) = B$, $H^*(B)[x_1]/(x_1 c_1(E)) = H^*(B)$.
- Let $B' = \mathbb{P}(E)$ with the projection to B denoted by p. The bundle p * (E) fits to the exact sequence

$$0 \to \mathcal{O}(-1) \to p^*(E) \to E'$$
.

By the projective bundle theorem

$$H^*(B') \simeq H^*(B)[h] / \left(\sum_{i=0}^n h^i p^*(c_{n-i}(E))\right)$$

Here $h = c_1(\mathcal{O}(1))$. By Whitney formula

$$c(E') = p^*(c(E))(1-h)^{-1}$$

i.e.

$$c_k(E') = \sum_{i=0}^k h^i p^*(c_{k-i}(E))$$

(The expression for $0 = c_n(E')$ is exactly the relation in the Projective Bundle Theorem,.) We identify the flag bundle $\mathcal{F}\ell(E')$ with $\mathcal{F}\ell(E)$. The generators in cohomology of $\mathcal{F}\ell(E)$ correspond to generators for $\mathcal{F}\ell(E')$:

$$x_1 = -h$$
, $x_2 = x'_1$, $x_3 = x'_2$... $x_n = x'_{n-1}$

.

We have by the inductive assumption

$$H^*(\mathcal{F}\ell(E')) \simeq H^*(B)[h, x'_1, x'_2, \dots, x'_{n-1}]/J$$
$$J = \left\langle \pi'^*(c_i(E')) - \sigma_i(x'_1, x'_2, \dots, x'_n) \text{ for } i = 1, 2, \dots, n-1, \sum_{i=0}^n h^i \pi^* c_{n-i}(E) \right\rangle.$$

It is enough to change the name of variables and conclude that J = I.

- The inclusion $I \subset J$ follows since (topologically) $E \simeq \bigoplus_{i=1}^{n} L_i$.
- Example: n = 4. The generator of J (we drop pull-backs in the notation)

$$c_{1}(E') - \sigma_{1}(x'_{1}, x'_{2}, x'_{3}) = c_{1}(E) - x_{1} - \sigma_{1}(x_{2}, x_{3}, x_{4})$$

$$c_{2}(E') - \sigma_{2}(x'_{1}, x'_{2}, x'_{3}) = c_{2}(E) - x_{1}c_{1}(E) + x_{1}^{2} - \sigma_{2}(x_{2}, x_{3}, x_{4})$$

$$c_{3}(E') - \sigma_{3}(x'_{1}, x'_{2}, x'_{3}) = c_{3}(E) - x_{1}c_{2}(E) + x_{1}^{2}c_{1}(E) - x_{1}^{3} - \sigma_{3}(x_{2}, x_{3}, x_{4})$$

$$c_{4}(E) - x_{1}c_{3}(E) + x_{1}^{2}c_{2}(E) - x_{1}^{3}c_{1}(E) + x_{1}^{4}$$

We perform computations in $H^*(B)[x_1, x_2, ..., x_n]/I$. By induction show that the generators of J are trivial. We abbreviate $(x_1, x_2, ...)$ by \underline{x}

$$c_{1}(E') - \sigma_{1}(\underline{x}') = c_{1}(E) - x_{1} - \sigma_{1}(\underline{x}') = c_{1}(E) - \sigma_{1}(\underline{x})$$

$$c_{2}(E') - \sigma_{2}(\underline{x}') = c_{2}(E) - x_{1}\sigma_{1}(\underline{x}) + x_{1}^{2} - \sigma_{2}(\underline{x}') = c_{2}(E) - \sigma_{2}(\underline{x})$$

$$c_{3}(E') - \sigma_{3}(\underline{x}') = c_{3}(E) - x_{1}\sigma_{2}(\underline{x}) + x_{1}^{2}\sigma_{1}(\underline{x}) - x_{1}^{3} - \sigma_{3}(\underline{x}') = c_{3}(E) - \sigma_{3}(\underline{x})$$

$$c_{4}(E) - x_{1}\sigma_{3}(\underline{x}) + x_{1}^{2}\sigma_{2}(\underline{x}) - x_{1}^{3}\sigma_{1}(\underline{x}) + x_{1}^{4} = c_{4}(E) - \sigma_{4}(\underline{x})$$

We apply the formula

$$\sum_{i=0}^{k} (-1)^{i} x_{1}^{i} \sigma_{k-i}(\underline{x}) = \sigma_{k}(\underline{x}')$$

and for the last row

$$\sum_{i=0}^{n} (-1)^{i} x_1^i \sigma_{n-i}(\underline{x}) = 0$$

• Conceptually: the relations in J say that $c(E)(1+x_1)^{-1}$ lives in the gradations < n and $c(E)(1+x_1)^{-1} = \prod_{k=2}^{n} (1+x_k)$. That follows from the identities of I.

7.4 Corollary: Let \mathbb{T} be the maximal torus in $\operatorname{GL}_n(\mathbb{C})$ acting on

$$\mathcal{F}\ell(\mathbb{C}^n) = \mathrm{GL}_n(\mathbb{C})/(\mathrm{upper-triangular}) \simeq U(n)/(U(n) \cap \mathbb{T}) \,.$$
$$H^*_{\mathbb{T}}(\mathcal{F}\ell(\mathbb{C}^n) \simeq \Lambda[x_1, x_2, \dots, x_n]/\langle \sigma_i(\underline{t}) - \sigma_i(\underline{x}) \rangle \mid i = 1, 2, \dots, n \rangle \,.$$
$$H^*_{\mathbb{T}}(\mathcal{F}\ell(\mathbb{C}^n) \simeq \Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda \,.$$

• Note

$$H^*_{\mathrm{GL}_n(\mathbb{C})}(\mathcal{F}\ell(\mathbb{C}^n) \simeq \Lambda)$$

7.5 [Anderson-Fulton, Ch. 4, §5] For Grassmannian $Gr_k(\mathbb{C}^n)$ the computation follows. The projection $\mathcal{F}\ell(\mathbb{C}^n) \to Gr_k(\mathbb{C}^n)$ induces the inclusion

$$H^*_{\mathbb{T}}(Gr_k(\mathbb{C}^n)) \hookrightarrow H^*_{\mathbb{T}}(\mathcal{F}\ell(\mathbb{C}^n)) \simeq \Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda,$$

(as for any locally-Zariski trivial fibration). The image lies in

$$\Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda^{\Sigma_k \times \Sigma_{n-k}}$$

By a dimension consideration there is an isomorphism

$$H^*_{\mathbb{T}}(Gr_k(\mathbb{C}^n)) \simeq \Lambda \otimes_{\Lambda^{\Sigma_n}} \Lambda^{\Sigma_k \times \Sigma_{n-k}}$$

• It follows that for any vector bundle $E \to B$ of rank n

$$H^*_{\mathbb{T}}(E) \simeq H^*(B)[c_1, c_2, \dots, c_k, c'_1, c'_2, \dots, c'_{n-k}]/I.$$

The ideal I is generated by the homogeneous components of the identity

$$(1 + c_1 + \dots + c_k)(1 + c'_1 + \dots + c'_{n-k}) = c(E).$$

7.6 We denote the group of invertible upper-triangular matrices by B_n . The fixed points of \mathbb{T} acting on $\mathcal{F}\ell_n = GL_n(\mathbb{C})/B_n$ are given by the permutation matrices. The identity corresponds to the standard flag V_0 . The quotient map $GL_n(\mathbb{C}) \to \mathcal{F}\ell_n$ is \mathbb{T} equivariant with respect to the action of \mathbb{T} on $GL_n(\mathbb{C})$ by conjugation. The tangent space of $\mathcal{F}\ell(\mathbb{C}^n) = \operatorname{GL}_n(\mathbb{C})/B_n$ at the point [id] is isomorphic to $\mathfrak{gl}_n/\mathfrak{b}$ with the adjoint action of the torus. The weights are $t_j - t_i$ for i < j. At the remaining points corresponding to permutations the weights differ by the action of the permutation.

7.7 Let $X = \mathcal{F}\ell(\mathbb{C}^n)$. We will apply AB-BV formula to integrate the class $\prod_{i=1}^n c_1(L_i)^{\alpha_i}$ for some choice of exponents $\alpha_i \in \mathbb{N}$:

• The integration formula is of the form

$$(\bigstar) = \sum_{\sigma \in \Sigma_n} \frac{\prod_{i=1}^n t_{\sigma(i)}^{\alpha_i}}{\prod_{i < j} (t_{\sigma(j)} - t_{\sigma(i)})} = \frac{\begin{vmatrix} t_1^{\alpha_1} & t_1^{\alpha_2} & \dots & t_1^{\alpha_n} \\ t_2^{\alpha_1} & t_2^{\alpha_2} & \dots & t_2^{\alpha_n} \\ \vdots & & & \\ t_n^{\alpha_1} & t_n^{\alpha_2} & \dots & t_n^{\alpha_n} \end{vmatrix}}{\text{Vandermonde}(t_1, t_2, \dots, t_n)}$$

If α_i is decreasing then we obtain the Schur function S_{λ} indexed by the sequence λ_i obtained as below

The Schur functions in n variables for $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0)$ form an additive basis of symmetric functions

$$S_{\lambda} = \frac{\begin{vmatrix} t_{1}^{n-1+\lambda_{1}} & t_{1}^{n-2+\lambda_{2}} & \dots & t_{1}^{\lambda_{n}} \\ t_{2}^{n-1+\lambda_{1}} & t_{2}^{n-2+\lambda_{2}} & \dots & t_{2}^{\lambda_{n}} \\ \vdots & & & \\ t_{n}^{n-1+\lambda_{1}} & t_{n}^{n-2+\lambda_{2}} & \dots & t_{n}^{\lambda_{n}} \end{vmatrix}}{\begin{vmatrix} t_{n}^{n-1} & t_{n}^{n-2} & \dots & 1 \\ t_{2}^{n-1} & t_{2}^{n-2} & \dots & 1 \\ \vdots & & & \\ t_{n}^{n-1} & t_{n}^{n-2} & \dots & 1 \end{vmatrix}} = \pm \frac{\text{Generalized Undermined}}{\text{Vandermonde}}$$

It is equal $(-1)^{\frac{n(n-1)}{2}}(\bigstar)$.

7.8 Exercise (but maybe not for this course): Check that

$$S_{\lambda} = \det (h_{\lambda_i+j-i})_{i,j=1,\dots,length(\lambda)}$$

where h_i is the complete symmetric function and $h_i = 0$ for i < 0.

• The fixed points of G(k, n) are the coordinate subspaces (exercise), they correspond to k-element subsets of $\underline{n} = \{1, 2, ..., n\}$. The weights at the point corresponding to $I_0 = \{1, 2, ..., k\}$ can be computed from the isomorphism

$$T_{I_0}G(k,n) \simeq \mathfrak{gl}_\mathfrak{n}/\mathfrak{p}$$

where. $\mathfrak{p} = Lie(P)$, P is the stabilizer of $lin\{\epsilon_1, \epsilon_2, \ldots, \epsilon_k\}$. This set is equal to

$$\left\{ t_j - t_i \mid i \le k < j \right\}.$$

• At the point p_I corresponding to the set $I \subset \{1, 2, ..., n\}$ the set of weights is equal to $\{t_j - t_i\}_{i \in I, j \notin I}$.

7.9 Let $a \in H^*_{\mathbb{T}}(G(k,n))$ be given by a polynomial $W(c_1(\gamma), c_2(\gamma), \ldots, c_k(\gamma), c_1(Q), c_2(Q), \ldots, c_{n-k}(Q))$ written as a polynomial in x_1, x_2, \ldots, x_n , symmetric with respect to $\Sigma_k \times \Sigma_{n-k}$. Then

$$\int_{G(k,n)} a = \sum_{I \subset \underline{n} \mid I \mid = k} \frac{W(t_I, t_{I^{\vee}})}{\prod_{i \in I} \prod_{j \in I^{\vee}} (t_j - t_i)}$$

where $I^{\vee} = \underline{n} \setminus I$.

7.10 Let $L = \Lambda^k \gamma^*$ be the top exterior power of the dual tautological bundle on G(k, n). (This bundle is the pull-back of $\mathcal{O}(1)$ for the Plücker embedding).

• Exercise: Compute the degree of G(k, n) under Plücker embedding: let $m = \dim(G(k, n) = k(m-k))$

$$\int_{G(k,n)} c_1(L)^m = (-1)^m \sum_{I \subset \underline{n} \ |I| = k} \frac{\left(\sum_{i \in I} t_i\right)^m}{\prod_{i \in I} \prod_{j \in I^{\vee}} (t_j - t_i)} \cdot$$

• In particular

$$\frac{(t_1 + t_2)^4}{(t_3 - t_1)(t_4 - t_1)(t_3 - t_2)(t_4 - t_2)} + \text{other 5 summands} = 2$$

Check it.

7.11 Tangent bundle of the Grassmannian $Gr_k(\mathbb{C}^n) = G(k, n)$: let $\gamma \stackrel{\iota}{\hookrightarrow} \mathbb{1}^n$ be the tautological bundle and let $Q = \mathbb{1}^n / \gamma$ be the quotient bundle. There is an equivariant isomorphism

$$TG(k,n) \simeq \operatorname{Hom}(\gamma,Q)$$

• Proof. We define a map of vector bundles

$$\operatorname{Hom}(\gamma, \mathbb{1}^n) \to TG(k, n)$$

constructing a curve: for $V \in G(k,n)$ let $f \in \text{Hom}(V,\mathbb{1}^n)$. The cure $x_f: (-\epsilon,\epsilon) \to G(k,n)$ is given by

$$x_f(t) = image(\iota + tf) \in G(k, n)$$

(well defined for small t). The bundle map is given by

$$\Phi(f) = \dot{x}_f(0) \, .$$

This map invariant with respect to automorphisms of \mathbb{C}^n . At a point $V \in G(k, n)$ decompose $\mathbb{C}^n = V \oplus W$. In the affine neighbourhood of V

$$\{V' \in G(k,n) \mid V' \text{ is transverse to } W\}$$

every element is a graph of a map $V \to W$. The kernel of Φ is equal to $\operatorname{Hom}(\gamma, \gamma) \subset \operatorname{Hom}(\gamma, \mathbb{1}^n)$ (i.e. at the point V the kernel is equal to $\operatorname{Hom}(V, V) \subset \operatorname{Hom}(V, V \oplus W)$). Thus we have (equivariant) short exact sequence of bundles

$$0 \to \operatorname{Hom}(\gamma, \gamma) \to \operatorname{Hom}(\gamma, \mathbb{1}^n) \xrightarrow{\Phi} TG(k, n) \to 0$$

Hence

$$TG(k, n) \simeq \operatorname{Hom}(\gamma, Q)$$
.

8 Application of the integration formula

8.1 Let $\mathbb{T} \subset B \subset \operatorname{GL}_n(\mathbb{C})$ be the diagonal torus, B – the group of upper-triangular matrices. For a character $e^{\lambda} : \mathbb{T} \to \mathbb{C}^*$ define a line bundle $\mathcal{L}_{\lambda} = \operatorname{GL}_n(\mathbb{C}) \times^B \mathbb{C}_{-\lambda}$. Here B acts on $\mathbb{C}_{-\lambda}$ via the surjection $B \to \mathbb{T} \xrightarrow{e^{-\lambda}} \mathbb{C}^*$. If $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$, then the diagonal torus acts via the multiplication by $t^{-\lambda_1} t^{-\lambda_2} \ldots t^{-\lambda_n}$.

• If n = 2, then for $\lambda = (1, 0)$ the bundle \mathcal{L}_{λ} is isomorphic to $\mathcal{O}(1)$.

• Borel-Weil-Bott theorem: Suppose $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$, then $V_{\lambda} = H^0(G/B; \mathcal{L}_{\lambda})$ is an irreducible representation of $\operatorname{GL}_m(\mathbb{C})$ and $H^k(G/B; \mathcal{L}_{\lambda}) = 0$ for k > 0, [Fulton-Harris, p.392-394]

8.2 Character of a representation V is denoted by χ_V , it is the function from $G = \operatorname{GL}_n \to \mathbb{C}$:

$$\chi_V(g) = tr(g: V \to V) \,.$$

- Since $\chi_V(g) = \chi_V(hgh^{-1})$ the values of χ_V on the maximal torus determine χ_V .
- Let R(GL(n)) be the representation ring. The map

$$\chi: R(\mathrm{GL}(n)) \to \mathbb{C}[t_1^{\pm 1}, t_2^{\pm 1}, \dots, t_n^{\pm 1}]^{\Sigma_n}$$

is an isomorphism after $\otimes \mathbb{C}$.

8.3 The construction of the representation ring is generalized to the equivariant K-theory of an algebraic variety (or to any category with exact sequences)

•

$$K_G(X) = \bigoplus \mathbb{Z}[$$
 Isomorphism classes of equivariant vector bundles $]/($ short exact sequences $)$

$$0 \to E_1 \to E_2 \to E_3 \to 0 \qquad \Rightarrow \qquad [E_2] = [E_1] + [E_3]$$

• We take the algebraic version of the K-theory, but there is a variant for topological spaces.

• If complex algebraic group G is reductive (all representations split into a direct sum of irreducible representations), then $K_G(pt) = R(G)$. We will consider G reductive only, e.g. $G = \operatorname{GL}_n(\mathbb{C})$.

8.4 Instead of vector bundles we can take the isomorphism classes of coherent sheaves. If X is smooth, then we obtain isomorphic K-theory.

8.5 Let $f : X \to Y$ be a proper *G*-equivariant map of smooth algebraic *G*-varieties. We define $f_! : K_G(X) \to K_G(Y)$

$$f_!(E) = \sum_{k=0}^{\dim X} (-1)^k [R^k f_*(E)]$$

• The sheaf $R^k f_*(E)$ is a coherent sheaf, should be replaced by its resolution by locally free sheaves, i.e. by vector bundles. We take Y = pt, then

$$f_!(E) = \sum_{k=0}^{\dim X} (-1)^k H^k(X; E) \in R(G) \simeq K_G(pt) \,.$$

8.6 Equivariant Hirzebruch-Riemann-Roch theorem. Let G be an algebraic group acting on X.

$$\begin{array}{cccc} & & & & & & & & \\ & & & K_G(X) & \longrightarrow & \hat{H}^*_G(X) \\ & & & & & & & \\ f_! \downarrow & & & \downarrow^{f_*} \\ R(G) \simeq & K_G(pt) & \longrightarrow & \hat{H}_G(pt) \\ & & & & & ch \end{array}$$

Here $ch: R(G) \to \hat{H}_G(pt)$ maps a representation V to $ch(EG \times^G V)$. We need to take

$$\hat{H}_G^*(pt) := \prod_{k=0}^{\infty} H_G^k(pt)$$

since the Chern character lives in infinite gradations.

• If $G = \mathbb{T}$ the image of $ch : R(\mathbb{T}) \to \hat{H}^*\mathbb{T}(pt) = \mathbb{Z}[[t_1, t_2, \dots, t_n]]$ lies in the ring of Laurent polynomial $\mathbb{Z}[e^{\pm t_1}, e^{\pm t_2}, \dots, e^{\pm t_n}].$

8.7 There is a coincidence of standard notations:

 $-\chi(X;\mathcal{L})$ =Euler characteristic of G/B with coefficients in the sheaf \mathcal{L}

— if a group G acts on X, then naturally $\chi(X; \mathcal{L}) \in R(G)$.

 $-\chi(V) = \chi_V \in R(G)$ character of a representation.

8.8 We will compute the character of the representation V_{λ} using localization theorem for T-equivariant cohomology.

$$\chi(\mathcal{F}\ell_n; \mathcal{L}_{\lambda}) = \sum_{p \in (\mathcal{F}\ell_n)^T} \frac{t d(T\mathcal{F}\ell_n)_{|p}}{e u(T\mathcal{F}\ell_n)_{|p}} ch(\mathcal{L}_{\lambda})$$
$$= \sum_{\sigma \in \Sigma_n} \frac{1}{\prod_{i < j} (1 - e^{-(t_{\sigma(j)} - t_{\sigma(i)})})} \prod_{i=1}^n e^{-\lambda_i t_{\sigma(i)}}.$$

With new variables $x_i = e^{-t_i}$:

$$\chi(\mathcal{F}\ell_n; \mathcal{L}_{\lambda}) = \sum_{\sigma \in \Sigma_n} \frac{1}{\prod_{i < j} (1 - x_{\sigma(j)} / x_{\sigma(i)})} \prod_{i=1}^n x_{\sigma(i)}^{\lambda_i}.$$

We introduce the notation

$$\begin{aligned} x^{\lambda} &= \prod_{i=1}^{n} x_{i}^{\lambda_{i}}, \qquad \sigma(x^{\lambda}) = \prod_{i=1}^{n} x_{\sigma(i)}^{\lambda_{i}}, \\ x^{\rho} &= \prod_{i=1}^{n} x_{i}^{n-i+1}, \qquad x^{\lambda+\rho} = \prod_{i=1}^{n} x_{i}^{\lambda_{i}+n-i+1}. \end{aligned}$$

Then

$$\chi_{V_{\lambda}} = \chi(\mathcal{F}\ell_n; \mathcal{L}_{\lambda}) = \sum_{\sigma \in \Sigma_n} \frac{\sigma(x^{\lambda+\rho})}{\prod_{i < j} (x_{\sigma(i)} - x_{\sigma(j)})} = S_{\lambda}(x_1, x_2, \dots, x_n).$$

• This is Weyl character formula describing the character of the representation V_{λ}

Goresky-Kottwitz-MacPherson: GKM spaces

8.9 Lemma [Chang, Skjelbred]. Suppose a torus acts on a topological space. Let $F = X^{\mathbb{T}}$ and let Y be the sum of F and 1-dimensional orbits. Assume that X is equivariantly formal space. Then the sequence

$$0 \to H^*_{\mathbb{T}}(X) \to H^*_{\mathbb{T}}(F) \to H^{*+1}_{\mathbb{T}}(Y,F)$$

is exact.

• The lemma is equivalent to:

$$ker(H^*_{\mathbb{T}}(F) \to H^{*+1}_{\mathbb{T}}(Y,F)) = ker(H^*_{\mathbb{T}}(F) \to H^{*+1}_{\mathbb{T}}(X,F)) + ker(H^*_{\mathbb{T}}(F) \to H^{*+1}_{\mathbb{T}}(Y,F)) + ker(H^*_{\mathbb{T}}(F) \to H^{$$

• We do not prove CS Lemma in full generality (see Matthias Franz, Volker Puppe, Exact sequences for equivariantly formal spaces, arXiv:math/0307112). The proof will be given for spaces, which are of special interest for geometers.

8.10 Definition of GKM-space: The torus $\mathbb{T} = (\mathbb{C}^*)^r$ acting algebraically on X – a compact algebraic variety (there is a topological version as well). We assume $\dot{z} \in |X^{\mathbb{T}}| < \infty$ and there are only finitely many 1-dimensional orbits. We assume that X is equivariantly formal, e.g. X is smooth.

8.11 Assume X is smooth $|X^{\mathbb{T}}| < \infty$. For any $x \in X^{\mathbb{T}}$ no two weights of $T_x X$ are proportional if and only if there are only finitely many 1-dimensional orbits orbits.

8.12 Graph GKM (V, E, w),

- $V = X^{\mathbb{T}}$ vertices

- E edges = 1-dimensional orbits. After fixing an isomorphism of the orbit with \mathbb{C}^* we get an oriented graph

- edges are labeled with weights $w : \mathbb{T} \to \mathbb{C}^*$ of the action of \mathbb{T} on $\mathbb{C}^* \simeq$ orbit.

All cohomologies are with coefficients in \mathbb{Q} .

8.13 Basic Lemma: suppose $X = \mathbb{P}^1$, \mathbb{T} acts via $w \in \mathfrak{t}^* \simeq H^2_{\mathbb{T}}(pt)$. Then

$$H^*_{\mathbb{T}}(X) = \{ (u_0, u_\infty) \in \Lambda^2 \mid u_0 \equiv u_\infty \mod w \}$$

• It follows from the long exact sequence of the pair $(\mathbb{P}^1, \{0, \infty\})$, since

 $H^*_{\mathbb{T}}(\mathbb{P}^1, \{0, \infty\}) \simeq \Lambda/(w)$ with a shift of gradation by 1.

8.14 Description of $H^*_{\mathbb{T}}(X)$ for GKM-spaces:

$$0 \to H^*_{\mathbb{T}}(X) \to \bigoplus_{x \in F} \Lambda \to \bigoplus_{1 - orbits} \Lambda / (w_{\ell})$$

8.15 GKM-algebra associated with a graph $(V, E, w : E \to \mathfrak{t}^*_{\mathbb{Z}})$

$$A(V, E, w) := ker\left(\bigoplus_{v \in V} \Lambda \to \bigoplus_{e \in E} \Lambda/(w_{\ell})\right)$$
$$\{a_v\}_{v \in V} \mapsto \{a_{t(e)} - a_{s(e)}\}_{e \in E}$$

(this description does not depend on the orientation of edges)

• The GKM-graph of Grassmannian $Gr_2(\mathbb{C}^4)$

The weight associated to the edge with numbers $i \dots j$ is equal to $t_i - t_j$ or $t_j - t_i$ depending on the choice of the orientation.

8.16 Original reference: Goresky-Kottwitz-MacPherson Equivariant cohomology, Koszul duality, and the localization theorem, Invent. math. 131, (1998). See [Anderson-Fulton, §7].

9 GKM spaces, differential model of equivariant cohomology

- **9.1** GKM graphs of Grassmannians $Gr_k(\mathbb{C}^n)$:
- vertices V: fixed points are the coordinate subspaces; bijection with subsets $I \subset \{1..n\}$
- edges E if I differs from J by one element; say $i \in I$ is replaced by $j \in J$, then let

$$W = lin\{\varepsilon_i + \varepsilon_j, \varepsilon_k \ k \in I \cap J\}.$$

The stabilizer of W has the equation $t_i = t_j$. Hence the orbit of W is 1-dimensional, with the weight equal to $t_i - t_j$.

• Exercise: there are no other edges.

9.2 Moment map: GKM-graph of the Grassmannian can be realized in \mathbb{R}^n . Let $m = \binom{n}{k}$, we identify \mathbb{R}^m with $\wedge^k \mathbb{R}^m$:

• We have a map:

$$Gr_k(\mathbb{C}^n) \stackrel{\text{Plücker}}{\longrightarrow} \mathbb{P}(\wedge^k \mathbb{C}^n) = \mathbb{P}^m \stackrel{\mu}{\longrightarrow} \mathbb{R}^n$$

where

$$\mu: [\ldots, z_I, \ldots] \mapsto \frac{1}{||z||^2} (\ldots, |z_I|, \ldots) \mapsto \frac{1}{|z|^2} (\ldots, \sum_{I \ni i} |z_I|^2, \ldots) .$$

This map is the composition of the standard moment map from \mathbb{P}^m to *m*-dimensional simplex

$$[\cdots:z_1:\ldots]\mapsto \frac{1}{||z||^2}(\ldots,|z_I|^2,\ldots)$$

with a linear map $\mathbb{R}^m \to \mathbb{R}^n$.

- The 1-dimensional orbits are mapped to intervals.
- The image is contained in $\{x_1 + x_2 + \dots + x_m\} = k$.
- For \mathbb{P}^n the GKM graph is the 1-skeleton of the standard *n*-simplex.
- For n = 4, m = 2 we get octahedron in $\{x_1 + x_2 + x_3 + x_4 = 2\}$

$\varepsilon_1 \wedge \varepsilon_2$	\mapsto	(1, 1, 0, 0)
$\varepsilon_1 \wedge \varepsilon_3$	\mapsto	(1, 0, 1, 0)
$\varepsilon_1 \wedge \varepsilon_4$	\mapsto	(1, 0, 0, 1)
$\varepsilon_2 \wedge \varepsilon_3$	\mapsto	(0, 1, 1, 0)
$\varepsilon_2 \wedge \varepsilon_4$	\mapsto	(0, 1, 0, 1)
$\varepsilon_3 \wedge \varepsilon_4$	\mapsto	(0, 0, 1, 1)

• It will follow from differential methods, that the GKM graph of a projective manifold is canonically realized as a graph in \mathfrak{t}^* .

9.3 If X is smooth of dimension n, then there are n edges at each vertex. For singular spaces can be more edges from one vertex:

• GKM graph for the Schubert variety $X_1 = \{ W \in Gr_2(\mathbb{C}^4) \mid W \cap \lim\{\varepsilon_1, \varepsilon_2\} \neq 0 \}$. The point $\{1, 2\}$ is singular.

9.4 GKM-graph for the flag variety $\mathcal{F}\ell(n)$

• The vertices V are labeled by permutations

• Since $\mathcal{F}\ell(n) \subset \prod_{k=1}^{n-1} Gr_k(\mathbb{C}^n)$ we see that one dimensional orbits join permutations if and only permutations differ by a transposition $\tau_{i,j}$

• One can realize the GKM graph in $\{\sum_{i=1}^{n} x_i = \frac{n(n+1)}{2}\} \subset \mathbb{R}^n$. The permutation $\sigma \mapsto (\sigma(1), \sigma(2), \dots, \sigma(n))$. Note that there are internal edges.

• For n = 4

Proof of Chang-Skjelbred lemma for smooth GKM spaces.

9.5 Notation:

- $H^*_{\mathbb{T}}(pt) = \Lambda = \mathbb{Q}[t_1, t_2, \dots, t_r]$
- $w: Edges \to \Lambda = \mathbb{Q}[t_1, t_2, \dots, t_r], \ \ell \mapsto w_\ell$

• $\phi \in \Lambda$ the least common multiple of all weights appearing as in the stabilizers (up to a coefficient in \mathbb{Q}). For each weight appearing in the product let $\psi_w := \phi/w$.

• Let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s$ be a basis over Λ of the free module $H^*_{\mathbb{T}}(X)$. By the first localization theorem $H^*_{\mathbb{T}}(X^{\mathbb{T}}) \simeq \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$. The isomorphism is induced by the inclusion $\iota : X^{\mathbb{T}} \to X$. The set $\iota^* \varepsilon_1, \iota^* \varepsilon_2, \ldots, \iota^* \varepsilon_s$ is a basis of $K \otimes_{\Lambda} H^*_{\mathbb{T}}(X^{\mathbb{T}})$ over the quotient field $K = (\Lambda)$. Any element $\underline{u} \in H^*_{\mathbb{T}}(X^{\mathbb{T}})$ can be written as

$$\underline{u} = \{u_x\}_{x \in X^{\mathbb{T}}} = \sum \frac{r_i}{s_i} \iota^* \varepsilon_i \,,$$

i.e. a sum of the basis vectors with the coefficients presented as irreducible fractions $\frac{r_i}{s_i}$ (it is unique up to a Q-factor). The denominators s_i are products of w_{ℓ} 's.

Goal: Show that the coefficients $\frac{r_i}{s_i}$ are integral, i.e. $s_i = 1$, provided that the divisibility condition is satisfied.

9.6 Suppose $\underline{u} \in H^*_{\mathbb{T}}(X^{\mathbb{T}}) \simeq \bigoplus_{x \in X^{\mathbb{T}}} \Lambda$ satisfies the divisibility condition

$$w_\ell \,|\, u_{s(\ell)} - u_{t(\ell)}$$

where $s(\ell)$ is the source, and $t(\ell)$ is the target of the edge in the GKM graph.

• Define

 $X_w = X^{\mathbb{T}} \cup$ (sum of the orbits with \mathbb{T} -action via $kw, k \in \mathbb{Q}$).

With our assumptions $X_w = X^{\mathbb{T}} \cup (\text{disjoint union of } \mathbb{P}^{1})$

We claim, that the product of $\psi_w \underline{u}$ belongs to the image of $H^*_{\mathbb{T}}(X_w)$ in $H^*_{\mathbb{T}}(X)$.

• Proof of the claim:

— If no edges adjacent to x is proportional to w, then x is isolated in X_w . Then $\psi_w u_x$ is equal to $(\iota_x)_*(\frac{\psi_w}{e(x)}u_x)$, where e(x) is the Euler class at x and $\frac{\psi_w}{e(x)} \in \Lambda$.

— If x and y are connected by the edge ℓ i.e. an orbit with T-action having the weight $w_{\ell} = qw, q \in \mathbb{Q}$, then $e(\nu_x) = \frac{e(x)}{qw} \in \Lambda$ i $e(\nu_y) = \frac{e(y)}{qw} \in \Lambda$ are the Euler classes of the normal bundle of the closure² of the orbit $\simeq \mathbb{P}^1$:

$$\nu = f_{\ell}^*(TX) - T\mathbb{P}^1, \quad f_{\ell}: \mathbb{P}^1 \hookrightarrow X \quad e(\nu) = f_{\ell}^*(e(TX))/e(T\mathbb{P}^1).$$

 $^{^{2}}$ In fact one has to take the normalization of the orbit.

Hence

$$e(\nu_x) = e(\nu_y) \mod w \tag{2}$$

Let $\alpha_x = \frac{\psi_w}{e(\nu_x)} \in \Lambda$, $\alpha_y = \frac{\psi_w}{e(\nu_y)} \in \Lambda$. We have $\alpha_x e(\nu_x) = \alpha_y e(\nu_y)$, and w is not proportional to any factor of that. From (2) it follows

$$\alpha_x = \alpha_y \mod w$$

Since by the assumption

$$u_x = u_y \mod w$$

we have

$$\alpha_x u_x = \alpha_y u_y \mod w$$
.

We deduce that $\{\alpha_x u_x, \alpha_y u_y\}$ defines an element of the cohomology of the closure of the orbit joining x with y. The push-forward to X restricted to x is equal to $\psi_w u_x$ and restricted to y respectively $\psi_w u_y$. \diamond

9.7 The end of the proof of CS Lemma: The coefficients of $\psi_w \underline{u} = \sum \frac{\psi_w r_i}{s_i} \iota^* \varepsilon_i$ belong to Λ . The weight w does not divide ψ_w , hence w does not divide s_i . Since w was arbitrary, $s_i = 1$. Finally we conclude that $\underline{u} = \iota^* (\sum r_i \epsilon_i)$.

Differential model of equivariant cohomology — an overview of the next few lectures

- **9.8** A model of $\Omega^*(E\mathbb{T})$: It should be a differential graded algebra A^{\bullet}
- a module over $H^*(B\mathbb{T}) \simeq Sym^{\bullet}(\mathfrak{t}^*) = Polynomials(\mathfrak{t})$
- acyclic, i.e. $H^*(A^{\bullet}) \simeq H^*(pt) \simeq \mathbb{R}$

• an action of $\lambda \in \mathfrak{t}$ lowering degree by one - an analogue of the contraction of a form with the vector field generated by λ .

• Economic solution: the Weil algebra $W^{\bullet}(\mathfrak{t}) := Sym^{\bullet}\mathfrak{t}^* \otimes \wedge^{\bullet}\mathfrak{t}^*$. For $\xi \in \mathfrak{t}^* = \wedge^1 \mathfrak{t}^* = Sym^1 \mathfrak{t}^*$

$$1 \otimes \xi \in W^1(\mathfrak{t}), \qquad \xi \otimes 1 \in W^2(\mathfrak{t}).$$

To define the differential let us fix a basis of \mathfrak{t} : $\alpha_1, \alpha_2, \ldots \alpha_r$ and the dual basis of \mathfrak{t}^* : $\alpha_1^*, \alpha_2^*, \ldots \alpha_r^*$. For $f \in Sym^{\bullet}\mathfrak{t}^*, \xi \in \Lambda^{\bullet}\mathfrak{t}^*$

$$d(f\otimes\xi):=\sum_{i=1}^r f\cdot\alpha_i^*\otimes\iota_{\alpha_i}\xi\,,$$

where ι_{α_i} is the contraction of the form ξ with the vector α_i

- Exercise: show that $d^2 = 0$ and that the differential does not depend on the choice of a basis.
- Example n = 1. Let $\xi = \alpha_1^*$:

$$W(\mathfrak{t}) \simeq \mathbb{R}[t] \otimes (\mathbb{R} \oplus \mathbb{R}\xi)$$

 $d(t^k \otimes \xi) = t^{k+1} \otimes 1, \qquad d(t^k \otimes 1) = 0$

9.9 There is a map from $W^{\bullet}(\mathfrak{t})$ to the forms on approximations of $E\mathbb{T}$:

$$\Omega^{\bullet}(E\mathbb{T}) := \lim_{\stackrel{\leftarrow}{m}} \Omega^{\bullet}((\mathbb{C}^m \setminus \{0\})^r)$$

sending the generators of $Sym^{\bullet}(\mathfrak{t}^*)$ to pull-backs of forms living on $B\mathbb{T}$ and the generators of $\wedge^{\bullet}(\mathfrak{t}^*)$ to connection forms. (It will be explained later.)

9.10 Similarly to the model of $\Omega^{\bullet}(EG)$ a model of $\Omega^*(E\mathbb{T} \times^{\mathbb{T}} X)$ is obtained. The exterior algebra $\wedge^{\bullet} \mathfrak{t}^*$ which serve as $H^*(\mathbb{T}) = \Omega^{\bullet}(\mathbb{T})^{\mathbb{T}}$ is replaced by $\Omega^{\bullet}(X)^{\mathbb{T}}$. The complex of twisted differential forms is defined as

$$Sym^{\bullet}\mathfrak{t}^* \otimes \Omega^{\bullet}(X)^{\mathbb{T}}$$

with the differential \tilde{d} , which is a map of $Sym^{\bullet}t^*$ -modules. For a form $\alpha \in \Omega^k(X)^{\mathbb{T}}$ let

$$\tilde{d}(1 \otimes \alpha) \in \mathbb{R} \otimes \Omega^{k+1}(X)^{\mathbb{T}} \oplus \mathfrak{t}^* \otimes \Omega^{k-1}(X)^{\mathbb{T}}$$
$$\tilde{d}(1 \otimes \alpha) = 1 \otimes d\alpha + \sum_{i=1}^r \alpha_i^* \otimes \iota_{v_\lambda} \alpha ,$$

where v_{λ} is the fundamental field generated by $\lambda \in \mathfrak{t}$.

9.11 If $\mathbb{T} = S^1$ then we obtain the model constructed by Witten. The equivariant differential forms are defined as $Sym^{\bullet}\mathfrak{t}^* \otimes \Omega^{\bullet}(X)^{\mathbb{T}} = \Omega^{\bullet}(X)^{\mathbb{T}}[h]$, i.e.polynomials in h with coefficients in $\Omega^{\bullet}(X)^{\mathbb{T}}$. The standard differential is perturbed by the contraction

$$\tilde{d}(\alpha) = d\alpha - h\iota_v \alpha$$

We think of h as something very small.

• From the Cartan formula expressing the Lie derivative $\mathcal{L}_v = \iota_v d + d\iota_v$ we compute $\tilde{d} = 0$.

10 De Rham model of equivariant cohomology

Main reference:

Atiyah, M. F.; Bott, R. The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1-28.
Text-book: Guillemin, Victor W.; Sternberg, Shlomo. Supersymmetry and equivariant de Rham theory.
Springer, 1999

10.1 Basics about differential forms $\Omega^{\bullet}(M)$ on a C^{∞} manifolds

• $(\Omega^{\bullet}(M), d)$ is a CDGA i.e. a graded-commutative algebra with a differential satisfying the Leibniz rule

• vector fields act on forms: for $X \in \Gamma(TM)$ there is a contraction operator:

$$\iota_X: \Omega^k(M) \to \Omega^{k-1}(M) \,.$$

such that for a function $f \in \Omega^0(M) = C^\infty(M)$

$$\iota_X df = X f \, .$$

The contraction is an odd derivative

$$\iota_X(a \wedge b) = \iota_X a \wedge b + (-1)^{\deg a} a \wedge \iota_X b$$

$$\iota_X \circ \iota_X = 0$$

• Lie derivative \mathcal{L}_X :

$$\mathcal{L}_X f = X f$$
, for $f \in \Omega^0(M)$,

$$\mathcal{L}_X(a \wedge b) = \mathcal{L}_X a \wedge b + a \wedge \mathcal{L}_X b,$$
$$d \circ \mathcal{L}_X = \mathcal{L}_X \circ d.$$
$$[\mathcal{L}_X, \mathcal{L}_Y] = \mathcal{L}_{[X,Y]}.$$

10.2 Cartan formula

 $\mathcal{L}_X = d\iota_X + \iota_X d \,.$

• Proof: it is enough to check that it agrees for functions (YES) and both sides of equations commute with the differential and satisfy the (even) Leibniz rule:

$$d(d\iota_X + \iota_X d) = d^2\iota_X + d\iota_X d = d\iota_X d = d\iota_X d + \iota_X d^2 = (d\iota_X + \iota_X d)d$$

• Leibniz rule: this is a general phenomenon, that the super-commutator of two odd differentiations is an even differentiation. Set $U = \iota_X$, V = d. We skip \wedge and write |a| for deg a

$$[U,V] = UV + VU,$$

$$UV(ab) = U((Va)b + (-1)^{|a|}a(Vb))$$

= $(UVa)b + (-1)^{|a|-1}(Va)(Ub) + (-1)^{|a|}(Ua)(Vb) + (-1)^{2|a|}a(UVb)$

$$VU(ab) = V((Ua)b + (-1)^{|a|}a(Ub))$$

= $(VUa)b + (-1)^{|a|-1}(Ua)(Vb) + (-1)^{|a|}(Va)(Ub) + (-1)^{2|a|}a(VUb)$

Hence

$$(UV + VU)(ab) = ((UV + VU)a)b + a((UV + VU)b).$$

10.3 We study manifolds with an action of a compact, connected Lie group G. Each element $\lambda \in \mathfrak{g} = Lie(G)$ generates a vector field, denoted v_{λ} .

• Taking the fundamental field

 $\mathfrak{g} \xrightarrow{v} \{ \text{vector fields on } M \}.$

is a map of Lie algebras, i.e.

$$[v_{\lambda}, v_{\mu}] = v_{[\lambda, \mu]}.$$

• The contraction with v_{λ} will be denoted by ι_{λ} .

10.4 The structure which will be relevant in what follows is:

— ${\cal M}$ a graded vector space or an algebra

— M is equipped with a differential d of degree 1 and operations \mathcal{L}_{λ} of degree 0 and ι_{λ} of degree -1. All together satisfy the commutative relations as described above.

• In other words M is a representation of the graded Lie algebra $\mathfrak{g}\oplus\mathfrak{g}\oplus\mathbb{R}d$

$$\begin{split} [\iota_{\lambda}, \iota_{\mu}] &= 0, \qquad [\mathcal{L}_{\lambda}, \iota_{\mu}] = \iota_{[\lambda, \mu]}, \qquad [d, \iota_{\lambda}] = \mathcal{L}_{\lambda}, \\ [\mathcal{L}_{\lambda}, \mathcal{L}_{\mu}] &= \mathcal{L}_{[\lambda, \mu]}, \qquad [\mathcal{L}_{\lambda}, d] = 0, \qquad [d, d] = 0. \end{split}$$

• Later we will assume that $\mathfrak{g} = \mathfrak{t}$ is commutative, i.e. $[\lambda, \mu] = 0$.

10.5 The group G acts on $\Omega^{\bullet}(M)$. If G is connected

$$\Omega^{\bullet}(M)^G = \{ \alpha \in \Omega^{\bullet}(M) \mid \forall_{\lambda} \in \mathfrak{g} \ \mathcal{L}_{\lambda} \alpha = 0 \} =: \Omega^{\bullet}(M)^{\mathfrak{g}}.$$

10.6 Assume G is connected. For all $g \in G$ and $[\alpha] \in H^*(M)$ the transported form has the same cohomology class $[g^*\alpha] = [\alpha]$.

10.7 If G is compact, every form can be averaged. Hence

$$H^*(\Omega^*(M)^G) = H^*(\Omega^*(X)).$$

Principal bundles

10.8 Let $p : P \to B = M/G$ be a principal bundle. The group is assumed to be compact and connected. Let us define *basic forms* [Guillemin-Sternberg §2.3.5]:

$$\Omega^*(P)_{bas} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \mathcal{L}_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v d\alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v d\alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v d\alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v d\alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v d\alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \} = \{ \alpha \in \Omega^*(P) \mid \forall v_0 \in \mathfrak{g} \ \iota_v \alpha = 0 \ , \ \iota_v \alpha = 0 \$$

This is a subcomplex.

10.9 Theorem:

$$\Omega^*(P)_{bas} = p^* \Omega^*(B) \simeq \Omega^*(B) \,.$$

10.10 For M with an action of $\mathbb{T} = S^1$. For short let $\iota = \iota_{\lambda}$ for a fixed $\lambda \in \mathfrak{t}$. Let us define a differential in $\mathbb{R}[h] \otimes \Omega^*(M)^{\mathbb{T}}$

$$d_h(\omega) = d - h\iota$$

This is called the Cartan construction, also appears in a Witten's paper [Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661-692]. The symbol h stands for an independent variable, which lives in the gradation 2. If we specialize h to a number, then we obtain a \mathbb{Z}_2 -graded complex. (Sometimes it is more convenient to have $+h\iota$, but we obtain an isomorphic complex).

10.11 The cohomology $H^*_{\mathbb{T},dR}(M) = H^*(\Omega^*(M)^{\mathbb{T}}[h], d_h)$ is a module over the polynomial ring $\mathbb{R}[h]$. If M = pt then $H^*_{\mathbb{T},dR}(M) = \mathbb{R}[h]$.

10.12 We will show, that $H^*_{\mathbb{T},dR}(M) \simeq H^*_{\mathbb{T}}(M;\mathbb{R})$, first constructing a map on the level of differential forms.

• There is a mapping $\mathbb{R}[h] \to \Omega^2(\mathbb{P}^n)$, $h \mapsto \omega_n$, where ω_n is the Fubini-Study form. (It is enough to assume that $[\omega_n]$ generates $H^2(\mathbb{P}^n)$ and $(\omega_{n+1})_{|\mathbb{P}^n} = \omega_n$ to get a map to $\underline{\lim}$.)

• Define $M_{\mathbb{T},n} = S^{2n+1} \times^{\mathbb{T}} M$, an approximation of the Borel construction. The polynomial ring $\mathbb{R}[h]$ acts on $\Omega^*(M_{\mathbb{T},n})$, h acts as the pull back of ω_n .

10.13 We will construct a map of $\mathbb{R}[h]$ modules

$$\mathbb{R}[h] \otimes \Omega^*(M)^{\mathbb{T}} \to \Omega^*(M_{\mathbb{T},n}) = \Omega^*(S^{2n+1} \times M)_{bas}$$

First approximation: For $\alpha \in \Omega^*(M)^{\mathbb{T}}$

 $1 \otimes \alpha \mapsto p^* \alpha$,

where $p: S^{2n+1} \times M \to M$ is the projection.

- We check if the image is a basic form:
- $p^* \alpha$ is T-invariant (YES)

$$-\iota(p^*\alpha) = 0?$$
(NO)

Some correction needs to be done.

10.14 The principal bundle and its connection: Suppose $P \to P/\mathbb{T} = B$ is a principal bundle. The tangent space of the fiber at each point is canonically isomorphic to \mathfrak{t} . With fixed $\lambda \in \mathfrak{t}$, the vector v_{λ} spans that fiber.

• The connection is a T-invariant 1-form θ , such that $\theta(v_{\lambda}) = 1$. Such form can be constructed having a T-invariant metric.

$$\theta(w) = \frac{(v_{\lambda}, w)}{(v_{\lambda}, v_{\lambda})}.$$

This is just the orthogonal projection from TP to the tangent space of the fiber, i.e. to $ker(TP \rightarrow TB)$

• In general a connection is a 1-form with values in \mathfrak{g} , which is G invariant, with G acting on \mathfrak{g} via the adjoint representation..

10.15 Let $\theta \in \Omega^1(S^{2n+1})^{\mathbb{T}}$, be the connection. This is equivalent to $\iota \theta = 1$. It is elementary to check that

$$\theta = -\frac{i}{2\pi} \partial \log ||z||^2$$

is a good choice. When restricted to the points of the form $(z_0, 0, \ldots, 0)$ it is equal to

$$-\frac{i}{2\pi}\frac{\bar{z}_0\,dz_0}{|z_0|^2} = -\frac{i}{2\pi}\frac{dz_0}{z_0}$$

For the parametrization of the orbit $\gamma_z(t) = e^{2\pi i t} z$ we compute

$$\theta(\dot{\gamma}(0)) = \left\langle -\frac{i}{2\pi} \gamma_z^*(\frac{dz}{z}), \frac{d}{dt} \right\rangle = \left\langle -\frac{i}{2\pi} \frac{2\pi i e^{2\pi i t} z \, dt}{e^{2\pi i t} z}, \frac{d}{dt} \right\rangle = 1$$

The differential $d\theta$ is a basic form and it is the Kähler form ω_n on \mathbb{P}^n .

• It follows that in general $d\theta$ is a basic form: $[d\theta] \in H^2(P/\mathbb{T})$ is the first Chern class of the line bundle associated to P (up to a scalar).

10.16 Correction: We identify θ_n with its pull-back to $S^{2n+1} \times M$.

• Let

$$\alpha' = p^* \alpha - \theta_n \wedge p^* \iota \alpha \,.$$

We have

$$\iota \alpha' = \iota p^* \alpha - \iota (\theta_n \wedge p^* \iota \alpha) = \iota p^* \alpha - 1 \wedge p^* \iota \alpha + \theta_n \wedge \iota p^* \iota \alpha = 0.$$

• We check that the map $\phi : f(h) \otimes \alpha \mapsto f(\omega_n) \wedge (p^*\alpha - \theta \wedge p^*(\iota\alpha))$ is a chain map. It is enough to check for f(h) = 1

$$d\phi(1 \otimes \alpha) = d(p^*\alpha - \theta_n \wedge p^*(\iota\alpha))$$

= $dp^*\alpha - d\theta_n \wedge p^*(\iota\alpha) + \theta_n \wedge dp^*(\iota\alpha),$
 $\phi(d_h(1 \otimes \alpha)) = \phi(1 \otimes d\alpha - h \otimes \iota\alpha) = \phi(1 \otimes d\alpha) - \phi(h \otimes \iota\alpha)$
= $p^*d\alpha - \theta_n \wedge p^*(\iotad\alpha) - \omega_n \wedge p^*(\iota\alpha)$

Since α is \mathbb{T} invariant

$$dp^*(\iota\alpha) = p^*(d\iota\alpha) = p^*(-\iota d\alpha)$$

we obtain that $d\phi(1 \otimes \alpha) = \phi(d_h(1 \otimes \alpha))$.

10.17 Theorem: the map $\phi : \mathbb{R}[h] \otimes \Omega^{\bullet}(M)^{\mathbb{T}} \to \varprojlim \Omega^{\bullet}(S^{2n+1} \times M)_{bas}$ is a quasiisomorphism, i.e. an isomorphism of cohomologies.

- Proof:
- The complex $\mathbb{R}[h] \otimes \Omega^{\bullet}(M)$ is filtered (a decreasing filtration) by the powers the ideal (h).
- The complex $\underline{\lim} \Omega^{\bullet}(S^{2n+1} \times M)_{bas}$ is filtered by

$$ker(\underline{\lim} \Omega^{\bullet}(S^{2n+1} \times M)_{bas} \to \Omega^{\bullet}(S^{2n+1} \times M)_{bas}).$$

The map ϕ is a quasiisomorphism on the associated graded complexes. Hence it is a quasiisomorphism. (This is an exercise in homological algebra.)

11 Models for higher dimensional Lie groups. Moment map $M \to \mathfrak{t}^*$

11.1 Reference to general theory of G^* modules: Guillemin-Sternberg §2. We make the assumption $G = \mathbb{T}$ simplifying radically the formulas.

11.2 Let $p: P \to B$ be a S^1 -principal bundle (i.e. S^1 acts freely on P and $B = P/S^1$). We identify S^1 with the image

$$\mathbb{R} \to \mathbb{C} \,, \qquad t \mapsto e^{2\pi i t}$$

hence we have determined the choice of $\lambda \in \mathfrak{t} \simeq \mathbb{R}$.

• Let $\theta \in \Omega^1(P; \mathfrak{t})^{\mathbb{T}} \simeq \Omega^1(P)^{\mathbb{T}}$ be a connection, i.e. $\iota \theta = 1$.

 \bullet The form $d\theta$ is closed. We check that $d\theta$ is a basic form

$$\iota d\theta = \mathcal{L}\theta - d\iota\theta = 0 - d1 = 0.$$

Hence $d\theta$ defines an element of $H^2(B)$.

• Exercise: $[d\theta] = c_1(L)$, where L is the associated line bundle $L = P \times^{S^1} \mathbb{C}$. In particular the cohomology class does not depend on the choice of the connection. Hint for $B = \mathbb{P}^n$ we have $d\theta = -\omega_{FS}$.

11.3 The case of a higher dimensional torus $\mathbb{T} = (S^1)^n$ acting on a smooth manifold M:

• Set $A = \Omega^{\bullet}(M)$. Let

$$\tilde{A} = \text{Polynomial functions}(\mathfrak{t}, A)^{\mathbb{T}} \simeq Sym \mathfrak{t}^* \otimes A^{\mathbb{T}}$$

Here

$$Sym \mathfrak{t}^* = \bigoplus_{k=0}^{\infty} Sym^k \mathfrak{t}^* =$$
Polynomial functions on \mathfrak{t}

• The constructions below are purely algebraic. Thus we consider a G^* module A i.e a graded vector space equipped with operations d, ι_{λ} , \mathcal{L}_{λ} for $\lambda \in \mathfrak{t}$ satisfying the relations 10.3.

 \bullet We set

$$A_{hor} = \{ \alpha \in A \mid \forall \lambda \in \mathfrak{t} \, \iota_{\lambda} \alpha = 0 \} \qquad \text{horizontal submodule}$$

and

$$A_{bas} = A_{hor}^{\mathbb{T}} = \left\{ \alpha \in A \mid \forall \lambda \in \mathfrak{t} \ \iota_{\lambda} \alpha = 0, \ \iota_{\lambda} d\alpha = 0 \right\}.$$

• The differential in \tilde{A} is $Sym \mathfrak{t}^*$ -linear and for $\alpha \in A^k$

$$\tilde{d}(1\otimes\alpha)(\lambda) = d\alpha - \iota_{\lambda}\alpha$$

viewed as a function on t, which is linear with respect to λ , i.e. it belongs to

$$\mathbb{R}\otimes A^{k+1}\oplus\mathfrak{t}^*\otimes A^{k-1}$$

In a basis $\lambda_1, \ldots, \lambda_n$ of \mathfrak{t}

$$\tilde{d}(1\otimes \alpha) = 1\otimes d\alpha - \sum_{i=1}^n \lambda_i^* \otimes \iota_{\lambda_i} \alpha.$$

• We will use physicists notation. The vectors will have superscripts, and functionals subscripts. Also the running index will be a instead if i, which can easily confused with ι . We write

$$\tilde{d}(1\otimes \alpha) = 1\otimes d\alpha - \sum_{a=1}^n \lambda_a \otimes \iota_{\lambda^a} \alpha$$

or according to the Einstein notation

$$\widetilde{d}(1\otimes lpha) = 1\otimes dlpha - \lambda_a \otimes \iota_{\lambda^a} lpha$$
 .

11.4 [Guillemin-Sternberg §3.2] If $A = \Omega^{\bullet}(\mathbb{T})$, then $A^{\mathbb{T}} = \wedge \mathfrak{t}^*$. The resulting \tilde{A} is the Weil algebra of \mathfrak{t}

$$W(\mathfrak{t}) = Sym(\mathfrak{t}^*) \otimes \wedge \mathfrak{t}^*$$
 .

• Theorem: $H^0(W(\mathfrak{t})) = \mathbb{R}$ and $H^k(W(\mathfrak{t})) = 0$ for k > 0.

Proof: Since $W(\mathfrak{t}_1 \oplus \mathfrak{t}_2) = W(\mathfrak{t}_1) \otimes W(\mathfrak{t}_2)$ as dg-algebra, it is enough to compute cohomology for \mathfrak{t} of dimension 1. This was an easy check.

• Since $\Omega^{\bullet}(\mathbb{T})^{\mathbb{T}} = \wedge \mathfrak{t}^*$, if dim $\mathbb{T} = 1$ an explicit map from $W(\mathfrak{t}) = \mathbb{R}[h] \otimes (\mathbb{R} + \mathfrak{t}^*)$ to

$$(\Omega^{\bullet}(S^{2m+1} \setminus 0) \times \wedge \mathfrak{t}^*)_{bas}$$

was already given in the previous section:

$$f \otimes \xi \mapsto f(\omega_{FS})(\xi - \theta \wedge \iota \xi)$$
.

For higher dimensional tori we take the product of these maps and obtain a quasiisomorphism

$$W(\mathfrak{t}) \to \Omega^{\bullet}(E\mathbb{T} \times^{\mathbb{T}} \mathbb{T}) \stackrel{qus}{\simeq} \Omega^{\bullet}(E\mathbb{T}).$$

The right hand side is understood as the inverse limit of forms on finite dimensional representations. Note that $W(\mathfrak{t})$ is a very economic model of forms on $E\mathbb{T}$.

Mathai-Quillen twist See [Mathai-Quillen: Superconnections, Thom classes, and equivariant differential forms. Topology25(1986), no.1, 85-110], [Guillemin-Sternberg §7.2] We construct an explicit map of complexes

$$\tilde{A} \to (W(\mathfrak{t}) \otimes A)_{bas} \stackrel{qis}{\simeq} (\Omega^{\bullet}(EG) \otimes A)_{bas},$$

which for $A \simeq \Omega^{\bullet}(M)$ will provide a convenient model for the equivariant cohomology.

11.5 [Guillemin-Sternberg §2.3.4] Let A be a \mathbb{T}^* module. We say that A is locally free if there exists a connection, i.e. $\theta \in \mathfrak{t} \otimes (A^1)^{\mathbb{T}}$, in a basis of \mathfrak{t} it can be written as

$$\sum_{a=1}^n \lambda^a \otimes \theta_a$$

such that for

$$\theta_a(\lambda^b) = \delta^b_a \,.$$

• Differential forms $\Omega^{\bullet}(M)$ is a locally free \mathbb{T}^* module if the action of T is locally free, i.e. the stabilizers of points are finite.

11.6 Mathai-Quillen twist: consider \mathbb{T}^* -algebras W and A, with W locally free (e.g. $W = W(\mathfrak{t})$. Let

$$\gamma = \sum \theta_a \otimes \iota_{\lambda^a},$$

$$\phi = exp(\gamma) \in Aut(W \otimes A) = 1 + \gamma + \frac{1}{2}\gamma \circ \gamma + \dots$$

It is well defined since $\gamma^{n+1} = 0$ for $n = \dim(\mathbb{T})$.

- **11.7** The map γ , hence also ϕ , is *T*-invariant.
- **Theorem.** [Guillemin-Sternberg , chapter 4, Theorem 4.1.1] For any $\lambda \in \mathfrak{t}$

$$\phi \circ (\iota_{\lambda} \otimes 1 + 1 \otimes \iota_{\lambda}) \circ \phi^{-1} = \iota_{\lambda} \otimes 1$$
$$\phi \circ (d \otimes 1 + 1 \otimes d) \circ \phi^{-1} = (d \otimes 1 + 1 \otimes d) - \sum \nu_{a} \otimes \iota_{\lambda^{a}} + \sum \theta_{a} \otimes \mathcal{L}_{\lambda^{a}}$$

where $\nu_a = d\theta_a$

• This is a direct computation. See [W. Greub, S. Halperin, S, Vanstone: Curvature, Connections and Cohomology, vol. III Academic Press New York. (1976)] Prop. V, p.286,, or better compute it manually. This is an **Exercise**.

11.8 After the twist

$$\phi((W \otimes A)_{hor}) = W_{hor} \otimes A$$

For $W = W(\mathfrak{t})$

$$\phi((W\otimes A)_{bas})=S(\mathfrak{t})\otimes A$$

with the differential

$$\tilde{d} = 1 \otimes d - \sum \lambda^a \otimes \iota_{\lambda_a}$$

That is exactly the **Cartan model** of equivariant cohomology. [Guillemin-Sternberg §4.2]

11.9 The construction can be carried out for noncommutative connected groups. The action of G on \mathfrak{g} has to be taken into account. Then the cohomology of

$$(Sym \mathfrak{g}^* \otimes \Omega^{\bullet}(M))^G$$

with an appropriate differential serves, as a model for equivariant cohomology. Reference: Guillemin-Sternberg §3-4

Moment map

11.10 Assume $T = S^1$. Let $\alpha \in \Omega^2(M)^{\mathbb{T}}$. Suppose $d\alpha = 0$. An equivariant enhancement of α is a function $f \in \Omega^0(M)$, such that

$$d_h(1\otimes\alpha-h\otimes f)=0\,,$$

i.e.

$$1 \otimes d\alpha - h \otimes \iota \alpha + h \otimes df = 0.$$

This reduces to

 $\iota \alpha = df$.

11.11 Basic example: Moment map $f : \mathbb{P}^1 \to \mathbb{R}$.

• Suppose $\mathbb{T} = S^1$ acts on \mathbb{P}^1 with the weights (λ_0, λ_1) . In the 0-th affine standard chart the action is linear and the weights are $\lambda_1 - \lambda_0$. The fundamental field at the point z is equal to

$$v = \frac{d}{dt} (e^{(\lambda_1 - \lambda_0)2\pi it} z)_{|t=0} = 2\pi i (\lambda_1 - \lambda_0) z = 2\pi (\lambda_1 - \lambda_0) (-y + ix)$$

i.e.

$$v = 2\pi(\lambda_1 - \lambda_0) \left(-y\frac{d}{dx} + x\frac{d}{dy}\right)$$
.

Let $\alpha = \omega_{FS}$. In the affine coordinate

$$\omega_{FS} = \frac{i}{2\pi} \partial \bar{\partial} \log(1+|z|^2) = \frac{i}{2\pi} \frac{dz \wedge d\bar{z}}{(1+|z|^2)^2} = \frac{1}{\pi} \frac{dx \wedge dy}{(1+x^2+y^2)^2}$$

We compute the contraction

$$\iota_v \omega_{FS} = 2\pi (\lambda_1 - \lambda_0) \left(-y \iota_x \omega_{FS} + x \iota_y \omega_{FS} \right) = -2\pi (\lambda_1 - \lambda_0) \frac{y dy + x dx}{(1 + x^2 + y^2)^2}.$$

Let

$$f = \frac{\lambda_0 + \lambda_1 |z|^2}{1 + |z|^2} = \frac{\lambda_0 + \lambda_1 (x^2 + y^2)}{1 + x^2 + y^2}$$
$$df = (\lambda_1 - \lambda_0) \frac{2xdx + 2ydy}{(1 + x^2 + y^2)^2}.$$

The form

$$1 \otimes \omega_{FS} - h \otimes \pi f$$

is a closed equivariant form.

• Globally f is defined by the formula

$$f([z_0, z_1]) = \frac{\lambda_0 |z_0|^2 + \lambda_1 |z_1|^2}{||z||^2}.$$

11.12 In general, if the action on \mathbb{P}^n has weights $(\lambda_0, \lambda_1, \ldots, \lambda_n)$ we set

$$f([z]) = \frac{\sum_{i=0}^{n} \lambda_i |z_i|^2}{||z||^2}$$

Then $1 \otimes \omega_n - h \otimes \pi f$ is an equivariant d_h -closed form.

• An element $f \in \mathfrak{t}^* \otimes \Omega^0(M) = \operatorname{Hom}(\mathfrak{t}, C^{\infty}(M))$ by adjunction is the same as a map $\mu: M \to \mathfrak{t}^*$

$$\langle \mu(x), \lambda \rangle = f(\lambda)(x) \,.$$

• For $\mathbb{T} = (S^1)^{n+1}$ acting on \mathbb{P}^n we obtain the map

$$\mu([z]) = \frac{1}{||z||^2} (|z_0|^2, |z_1|^2, \dots, |z_n|^2).$$

Symplectic geometry [Guillemin-Sternberg §9], but before beginning see [V. I. Arnold, Mathematical Methods Of Classical Mechanics. Graduate Texts in Mathematics 60. Springer 1989] chapter 8.

11.13 The most interesting case is when M is a symplectic manifold e.g. Kähler manifold and the symplectic ω has a lift to an equivariant form, then $\mu: M \to \mathfrak{t}^*$ is defined.

• Of course μ is constant on the components of $X^{\mathbb{T}}$.

11.14 Symplectic manifold (M, ω) such that ω is a nondegenerate 2-form, $d\omega = 0$

- basic examples:
- -M complex Kähler manifold,
- $M = T^*N$, where N is a real smooth manifold, $\omega = d$ (Liouville form
- ω induces an isomorphism $TM \simeq T^*M: v \mapsto \iota_v \omega$
- a function f defines a vector field X_f . It is the field, such that $\iota_{X_f}\omega = df$

- the symplectic structure defines a structure of a Lie algebra of functions (Poisson bracket)

$$\{f,g\} = \omega(X_f, X_g) = (\iota_{X_f}\omega)(X_g) = df(X_g) = X_g f.$$

• Definition: Action of S^1 is Hamiltonian iff the fundamental field v is equal to X_f for some f

$$\iota_v \omega = df$$
 i.e. $v = X_f$.

If that is so then $\omega + h f$ is a closed equivariant form.

12 Hamiltonian action and the moment map

[Dusa McDuff, Dietmar Salamon; Introduction to Symplectic Topology (Oxford Mathematical Monographs) §5]

[Anna Cannas da Silva Lectures on Symplectic Geometry.]

- **12.1** Physical motivation:
- Hamiltonian system q position, p = mv momentum, H(p,q) a C^{∞} function

$$\begin{cases} \dot{q} = \frac{\partial H}{\partial p} \\ \dot{p} = -\frac{\partial H}{\partial q} \end{cases}$$

• Motion of a particle in the constant gravitation field, H=energy, q = h height:

$$H(q,p) = \frac{mv^2}{2} + mgq = \frac{p^2}{2m} + mgq, \qquad \begin{cases} \dot{q} = \frac{p}{m} = v \\ \dot{p} = -mg \end{cases}$$

• Conservation energy law: H is constant along trajectories

12.2 Poisson bracket in local Darboux coordinates

$$\omega = \sum_{i=1}^{n} dp_i \wedge dq_i, \qquad \{f,g\} = \sum_{i=1}^{n} \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i}.$$

• The Hamiltonian equations take the form $\dot{q} = \{q, H\}, \, \dot{p} = \{p, H\}.$

12.3 Let ω be a symplectic form on M and $f: M \to \mathbb{R}$. Then ω is invariant with respect to the Hamiltonian flow generated by f

$$\mathcal{L}_{X_f}\omega = d\iota_{X_f}\omega + \iota_{X_f}d\omega = d\iota_{X_f}\omega = ddf = 0$$

We also note that $\iota_{X_f}\omega$ is closed.

12.4 The commutator of the Hamiltonian fields is related with the Poisson bracket

$$[X_f, X_g] = -X_{\{f,g\}}.$$

• We have to show that

 $\iota_{[X_f,X_q]}\omega = d\{g,f\} \quad \text{which is by definition } d(\omega(X_g,X_f))\,.$

• We compute the Lie derivative

$$\mathcal{L}_{X_f}(\iota_{X_g}\omega) = \iota_{\mathcal{L}_{X_f}X_g}\omega = \iota_{[X_f,X_g]}\omega$$

since $\mathcal{L}_{X_f}\omega = 0$. By the Cartan formula

$$\mathcal{L}_{X_f}(\iota_{X_g}\omega) = d\iota_{X_f}\iota_{X_g}\omega + \iota_{X_f}d\iota_{X_g}\omega = d(\omega(X_g, X_f))\,.$$

12.5 Let $C^{\infty}(M;TM)$ be the space of smooth vector fields. It is a Lie algebra with respect to the Poisson bracket. The map

$$-X: C^{\infty}(M) \to C^{\infty}(M; TM), \qquad f \mapsto -X_f$$

is a map of Lie algebras. (Applying alternative conventions we can get rid of ,,-".)

• For an arbitrary Lie group: The G-action defines a map of Lie algebras

$$v: \mathfrak{g} \to C^{\infty}(M; TM)$$
.

We say that the action is Hamiltonian if there exists a linear map of Lie algebras $\tilde{\mu} : \mathfrak{g} \to C^{\infty}(M)$ making the following diagram commutative up to a sign

$$\begin{array}{ccc} & & & & C^{\infty}(M) \\ & & \tilde{\mu} \nearrow & & \downarrow^{X} \\ & & \mathfrak{g} & \xrightarrow{v} & C^{\infty}(M;TM) \end{array}$$

Existence of the map $\tilde{\mu}$ is equivalent to having a map $\mu: M \to \mathfrak{t}^*$, called the moment map.

12.6 From now on we assume that $G = \mathbb{T} = (S^1)^n$. The moment map is given in coordinates $\mu = (\mu_1, \ldots, \mu_n) \in \mathfrak{t}^* = \mathbb{R}^n$. The Hamiltonian flows associated to μ_i commute, moreover we assume $\{\mu_i, \mu_j\} = 0$, so that $\tilde{\mu} : \mathfrak{t} \to C^{\infty}(M)$ is a map of Lie algebras.

12.7 The map μ restricted to the fixed points is locally constant. The moment map $\mu \in C^{\infty}(M, \mathfrak{t}^*)$ evaluated at $\lambda \in \mathfrak{t}$ is a function whose differential vanishes at zeros of the fundamental vector field:

$$d\mu(\lambda)(x) = 0$$
 iff $v_{\lambda}(x) = 0$.

12.8 The map μ is constant on the orbits:

$$d\mu_i(v_{\lambda_j}) = (\iota_{v_{\lambda_i}}\omega)(v_{\lambda_j}) = \omega(v_{\lambda_i}, v_{\lambda_j}) = \{\mu_i, \mu_j\} = 0.$$

12.9 Theorem [Atiyah, Guillemin-Sternberg]. If M is compact, then $\Delta_{M,\mathbb{T}} := \mu(M)$ is a convex polytope

$$\Delta_{M,\mathbb{T}} = Conv(\mu(M^T)).$$

See [McDuff-Salamon §5.5, Theorem 5.47]

• Note that the image of the moment map μ restricted to a 1-dimensional $\mathbb{T}_{\mathbb{C}} = \mathbb{T} \otimes \mathbb{C}$ orbit is an interval.

12.10 Assume $M \subset \mathbb{P}^m$ is a smooth projective variety, $\omega = (\omega_{FS})_{|M}$.

12.11 The most important example $M = \mathbb{P}^n$, $\mathbb{T} = (S^1)^{n+1}$, $\mu = const \frac{1}{||z||^2} (\dots, |z_i|^2, \dots) \in \mathbb{R}^{n+1}$. The constant depends on the convention.

12.12 If M is a smooth projective variety with an algebraic action of $\mathbb{T}_{\mathbb{C}} \simeq (\mathbb{C}^*)^n$ then it can be equivariantly embedded into $\mathbb{P}(V)$ for some representation V of a finite cover of \mathbb{T} . Hence it admits a moment map (possibly after a modification of ω).

• If M is a smooth projective toric variety (i.e. M has a dense and open orbit of $\mathbb{T}_{\mathbb{C}}$), then $M/\mathbb{T} = \Delta_{M,\mathbb{T}}$.

12.13 Suppose M is equivariantly embedded into $\mathbb{P}(V)$, $L = \mathcal{O}(1)_{|M}$ an equivariant vector bundle. The form $\omega = \omega_{FS|M}$ represents $c_1(L) \in H^2_{\mathbb{T}}(M)$. Let $x \in M^{\mathbb{T}}$ be a fixed point. Then $c_1(L)_{|x} \in H^2_{\mathbb{T}}(pt) \simeq \operatorname{Hom}(\mathbb{T}, S^1)$ is the character of the action of \mathbb{T} on L_x . We claim that

$$\mu(x) = c_1(L) \in \operatorname{Hom}(\mathbb{T}, S^1) \otimes \mathbb{R} = \mathfrak{t}^*$$

• That is true for $M = \mathbb{P}^n$ with the action of $(S^1)^{n+1}$, since

 $\mu([0:\cdots:0:1:0:\cdots:0]) = (0,\ldots,0,1,0,\ldots,0)$ with the preferred normalization.

In general chose coordinates of $V = \mathbb{C}^{m+1}$, such that \mathbb{T} action is diagonal. Consider the embedding $\mathbb{T} \hookrightarrow \mathbb{T}_{big} = (S^1)^{m+1}$ and the natural maps

$$\begin{array}{ccc} M & \stackrel{\mu}{\longrightarrow} & \mathfrak{t}^* \\ \downarrow & & \uparrow \\ \mathbb{P}^m & \stackrel{\mu_{big}}{\longrightarrow} & \mathfrak{t}^*_{big} \end{array}$$

The claim follows from the commutativity of the diagram.

12.14 (!!!) Note that the moment polytope does not depend on the C^{∞} consideration with the symplectic form. It only depends on the action of \mathbb{T} on L. It can be defined purely in the realm of algebraic geometry as

$$\Delta_{M,\mathbb{T}} = Conv\{\chi(L_x) \mid x \in M^{\mathbb{T}}\}.$$

12.15 Example. Let $M = \mathcal{F}\ell(n)$ be the flag manifold. We have an equivariant embedding

$$\mathcal{F}\ell(n) \hookrightarrow \prod_{k=1}^{n-k} Gr_k(\mathbb{C}^n) \hookrightarrow \prod_{k=1}^{n-k} \mathbb{P}(\wedge^k \mathbb{C}^n).$$

Let $p_i : \mathcal{F}\ell(n) \to \mathbb{P}(\wedge^k \mathbb{C}^n)$ be the projection and let ω_k be the Fubini-Study form on $\mathbb{P}(\wedge^k \mathbb{C}^n)$. For a sequence of positive numbers $a_i \in \mathbb{R}^n$ let

$$\omega_{\underline{a}} = \sum_{k=1}^{n-1} a_k p_k^*(\omega_k) \,.$$

This is a symplectic form and the \mathbb{T} action admits a moment map

$$\mu_{\underline{a}} = \sum_{k=1}^{n-1} a_k \, \mu_k \circ p_k \,,$$

where μ_k is the moment map for $\mathbb{P}(\wedge^k \mathbb{C}^n)$.

12.16 Suppose

$$(V_1 \subset \cdots \subset V_{n-1}) \in \mathcal{F}\ell(n)^{\mathbb{T}}$$

Such a point corresponds to a permutation $\sigma \in \Sigma_n$

$$V_1 = lin\{\epsilon_{\sigma(1)}\}, \quad V_2 = lin\{\epsilon_{\sigma(1)}, \epsilon_{\sigma(2)}\}, \quad \dots, \quad V_{n-1} = lin\{\epsilon_{\sigma(1)}, \epsilon_{\sigma(2)}, \dots, \epsilon_{\sigma(n-1)}\}.$$

Denote it by V_{σ}

12.17 The value of the map $Gr_k(\mathbb{C}^n) \to \mathbb{P}(\wedge^k \mathbb{C}^n) \xrightarrow{\mu_k} \mathbb{R}^n$ restricted at the point

$$lin\{\epsilon_{\sigma(i)} \mid i \le k\}$$

is equal to

$$-\sum_{i=1}^k \epsilon_{\sigma(i)} \, .$$

• For n = 4 the moment polytopes for $Gr_1(\mathbb{C}^4)$ and $Gr_3(\mathbb{C}^4)$ are tetrahedra, and $Gr_2(\mathbb{C}^4)$ is the octahedron.

12.18 Take $\underline{a} = (1, 1, \dots, 1)$ then

$$\mu_{\underline{a}}(V_{\sigma}) = -\sum_{k=1}^{n-1} \sum_{i=1}^{k} \epsilon_{\sigma(i)} = -\sum_{k=1}^{n-1} (n-k) \epsilon_{\sigma(k)} \,,$$

which is equal up to the shift by $n \sum_{k=1}^{n} \epsilon_k$ to $\sum_{k=1}^{n} k \epsilon_{\sigma(k)}$.

• This way we obtain the permutohedron in \mathbb{R}^n which can also be defined as the convex hull of Σ_n orbit of (1, 2, ..., n).

12.19 Taking various values of a_i we obtain deformations of the permutohedron

 $Conv(\Sigma_n(a_1, a_1 + a_2, \dots, a_1 + a_2 + \dots + a_n))$ up to a shift.

The extreme values with some a_i 's equal to 0, the images are moment polytopes for partial flag varieties.

13 Moment map and quotients

13.1 Suppose a compact group G acts on a symplectic manifold (M, ω) with a moment map $\mu : M \to \mathfrak{g}^*$. Recall that ω is G invariant $\mathcal{L}_{\lambda}\omega = 0$ and μ is G invariant with respect to the coadjoint action on \mathfrak{g}^* .

13.2 Symplectic reduction [Guillemin-Sternberg §9.6], [McDuff,Salamon §5.4]

• Assume that $a \in \mathfrak{g}^*$ is an invariant element with respect to the coadjoint action. Then $\mu^{-1}(a)$ is G-invariant manifold.

• Furthermore assume that G action on $\mu^{-1}(a)$ is free. Then the quotient $X = \mu^{-1}(a)/G$ is denoted by $M//_{\mu,a}G$. Often a is assumed to be 0 and we write $M//_{\mu}G$. This is called the symplectic quotient. We will assume that a = 0.

13.3 Let $x \in \mu^{-1}(0)$. The tangent space $T_x G x$ is coisotropic and $(T_x G x)^{\perp_{\omega}} = T_x \mu^{-1}(0)$.

• For $\lambda \in \mathfrak{g}$, $v \in T_x \mu^{-1}(0)$ compute $\omega(X_\lambda, v) = d\mu_\lambda(v)$, where $\mu_\lambda(x) = \mu(x)(\lambda)$. But since $\mu^{-1}(0)$ is mapped by μ to 0, the tangent vectors are mapped to 0 as well. Hence $(T_x G x)^{\perp \omega} \subset T_x \mu^{-1}(0)$. Since dim $((T_x G x)^{\perp \omega}) = \dim G$ and $T_x \mu^{-1}(0) = \dim M - \dim G$ and ω is nondegenerate, the opposite inclusion holds.

13.4 The manifold X has a canonical symplectic structure induced from M: For $v, w \in T_y X$ find the lifts $\tilde{v}, \tilde{w} \in T_x M$ (with x mapping to y) and apply ω . It is well defined because ω is G-invariant and the orbits lie in the kernel of ω . Moreover the induced form is nondegenerate (it is an exercise in the linear algebra).

13.5 Example 1. $M = \mathbb{C}^n$ with the standard form, $G = S^1$ acting by scalar multiplication, $\mu(z) = |z|^2$, $a \in \mathbb{1}$. Then

$$\mathbb{C}^n //_{\mu,a} S^1 = \mathbb{P}^{n-1}$$

with the Fubini-Study form.

13.6 Example 2 (slightly more general): $M = \text{Hom}(\mathbb{C}^k, \mathbb{C}^n)$, k < n with the action of U(k). Let $A^* = \overline{A}^T$. Note that $\mathfrak{u}(k) = \{X \in \mathfrak{gl}_k \mid X^* = -X\}$. The moment map is defined by

$$\mu(A) = iA^*A \in \mathfrak{u}(k) \simeq \mathfrak{u}(k)^*.$$

a = iI. Then $\mu^{-1}(a)$ is equal to unitary k-tuples of vectors in \mathbb{C}^n , and $X//\mu_a U(k)$ is equal to the Grassmannian $Gr_k(\mathbb{C}^n)$.

• Exercise: Compute that this is a moment map.

13.7 Kirwan [Cohomology of Quotients in Symplectic and Algebraic Geometry] compared symplectic quotients with GIT quotients in algebraic geometry. They basically coincide: the symplectic quotient by a compact group G is equal to the GIT quotient by the complexification $G_{\mathbb{C}}$ (as C^{∞} manifolds). The symplectic quotients depends on the choice of the moment map (and $a \in \mathfrak{g}$) and GIT quotient depends on the linearization and stability condition. These notions can be translated one to another.

13.8 Example 3 (still more general): We want to obtain $\mathcal{F}\ell_n = \mathrm{GL}_n/B_n$ as a symplectic quotient. The Borel group is not a complexification of a compact group. Thus we take a presentation of the flag manifold in terms of a quiver:

$$1 \to 2 \to \dots \to n-1 \to \boxed{n}$$

• Let $M = \prod_{k=1}^{n-1} \operatorname{Hom}(\mathbb{C}^k, \mathbb{C}^{k+1}), G = \prod_{k=1}^{n-1} U(k)$. The moment map is given by

$$(A_1, A_2, \dots, A_{n-1}) \mapsto (A_1^* A_1, A_2^* A_2, \dots, A_{n-1}^* A_{n-1})$$

and a is the sequence of i times the identity matrices.

• $\mu^{-1}(a)$ is a sequence of isometric embeddings $\mathbb{C}^k \hookrightarrow \mathbb{C}^{k+1}$, the quotient is the flag variety. Taking the quotient we forget about the particular coordinates on $V_k \subset \mathbb{C}^n$.

13.9 [Kirwan] If M is a compact symplectic manifold with a G action admitting a moment map μ , $X = M//_{\mu,a}$, then the map

$$\kappa: H^*_G(M) \to H^*_G(\mu^{-1}(a)) \simeq H^*(X)$$

is surjective.

[D. Mumford, J. Fogarty, and F. Kirwan. Geometric Invariant Theory, volume 34 of Results in Mathematics and Related Areas (2). Springer-Verlag, third edition, 1994. §8], compare [Megumi Harada, Gregory D. Landweber, Surjectivity for Hamiltonian G-spaces in K-theory, Trans. Amer. Math. Soc. 359 (2007), 6001-6025]

• The assumptions of the theorem can be relaxed. Just assume that μ is proper.

• A double-equivariant version: Assume that a group \mathbb{T} acts on M, and \mathbb{T} action commutes with G-action, then

$$\kappa : H^*_{\mathbb{T}\times G}(M) \to H^*_{\mathbb{T}\times G}(\mu^{-1}(a)) \simeq H^*_{\mathbb{T}}(X)$$

is surjective.

13.10 Back to Example 1:

$$\kappa : H^*_{\mathbb{C}^*}(\mathbb{C}^n) \simeq \mathbb{Q}[h] \twoheadrightarrow H^*(\mathbb{P}^{n-1}) \simeq \mathbb{Q}[h]/(h^n)$$
$$\kappa : H^*_{\mathbb{T}\times\mathbb{C}^*}(\mathbb{C}^n) \simeq \mathbb{Q}[t_1, t_2, \dots, t_n, h] \twoheadrightarrow H^*_{\mathbb{T}}(\mathbb{P}^{n-1}) \simeq \mathbb{Q}[t_1, t_2, \dots, t_n, h]/(\prod (h+t_i)))$$

13.11 Back to Example 2:

$$\kappa : H^*_{U(k)}(\operatorname{Hom}(\mathbb{C}^k, \mathbb{C}^n)) \simeq \mathbb{Q}[c_1, c_2, \dots, c_k] \twoheadrightarrow H^*(Gr_k(\mathbb{C}^n))$$
$$\kappa : H^*_{\mathbb{T} \times U(k)}(\operatorname{Hom}(\mathbb{C}^k, \mathbb{C}^n)) \simeq \mathbb{Q}[t_1, t_2, \dots, t_n, c_1, c_2, \dots, c_k] \twoheadrightarrow H^*_{\mathbb{T}}(Gr_k(\mathbb{C}^n))$$

13.12 Projective toric varieties (without fans, but via polytopes), compare [Anderson-Fulton, Ch 8].
Let X be a smooth compact algebraic manifold with a torus action. Assume that dim X = dim T_C and T_C has an open orbit and dense. We can assume that T_C action is free on the open orbit. Then X is determined by a certain combinatorial data involving characters.

• Assume that the action of \mathbb{T} admits a moment map to $\mathfrak{t}^* \simeq \mathbb{R}^n$. If the moment map is the restriction of the standard moment map $X \hookrightarrow \mathbb{P}^N \to \mathfrak{t}^*_N \to \mathfrak{t}^*$, then the moment polytope Δ_X has integral vertices.

• Since we assume that X is smooth, thus locally, around any fixed point X looks like \mathbb{C}^n with the standard action of $(\mathbb{C}^*)^n$, so the moment polytope locally is linearly isomorphic to a neighbourhood of $0 \in \mathbb{C}^n/(S^1)^n \simeq \mathbb{R}^n_{>0}$.

• Each facet F_i (a codimension 1 face) of $\Delta_X \subset \mathfrak{t}^*$ we set $v_i \in (\mathfrak{t}^*)^* = \mathfrak{t}$, the normal vector (integral, minimal length). Let \mathbb{T}_i be the 1-dimensional subtorus corresponding to v_i

13.13 For $p \in F_{i_1} \cap F_{i_2} \cap \cdots \cap F_{i_\ell}$ let $\mathbb{T}_p = \mathbb{T}_{i_1} \mathbb{T}_{i_2} \dots \mathbb{T}_{i_\ell} \simeq (S^1)^{\ell}$. Topologically $X = \Delta_X \times (S^1)^n / \sim$. The pairs (p, t) and (p, t') are identified if and only if $t't^{-1} \in \mathbb{T}_p$.

13.14 The inverse images $\mu^{-1}(x_i)$ are divisors (=codimension 1 subvarieties) in X.

13.15 Theorem [Danilov, Jurkiewicz, Davis-Januszkiewicz] The cohomology ring is generated by the classes of $[D_i] \in H^2(X)$. Assume that Δ_X has d facets:

$$H^*(X) = \mathbb{Z}[x_1, \dots, x_d]/(I+J),$$

$$I = (x_{i_1}x_{i_2}\dots x_{i_\ell} \mid F_{i_1} \cap F_{i_2} \cap \dots \cap F_{i_\ell} \text{ is not a codimension } \ell \text{ face of } \Delta_X).$$

$$J = (\sum \langle u, v_i \rangle x_i \mid u \in \mathfrak{t}_{\mathbb{Z}}^*).$$

Here the left hand side is written in the additive notation, but it concerns the monomials.

• The quotient $\mathbb{Z}[x_1, \ldots, x_d]/I$ is called the Stanley Reisner ring. [Anderson-Fulton, §8.3] • Similarly the equivariant cohomology. Let $\Lambda = Sym(\mathfrak{t}^*_{\mathbb{Z}}) = H^*_{\mathbb{T}}(pt)$

$$H^*_{\mathbb{T}}(X) = \Lambda[x_1, \dots, x_d] / (I' + J'),$$
$$I' = \Lambda \otimes I.$$
$$J' = (u - \sum \langle u, v_i \rangle x_i \mid u \in \mathfrak{t}^*_{\mathbb{Z}}).$$

• Note that

$$\mathbb{Z}[x_1,\ldots,x_d]/I \simeq \Lambda[x_1,\ldots,x_d]/(I'+J')$$

and

$$\mathbb{Z}[x_1,\ldots,x_d]/(I+J) \simeq \Lambda[x_1,\ldots,x_d]/(I'+J') \otimes_{\Lambda} \mathbb{Z}.$$

13.16 Connection with the Kirwan map: any toric variety can be obtained by the Cox construction

$$X = U/\mathbb{T}',$$

Where $U \subset \mathbb{C}^d$,

$$U = \mathbb{C}^d \setminus \bigcup_I V_I$$

where sum runs over the sequences i_1, i_2, \ldots, i_ℓ such that $\bigcap_{j=1}^{\ell} F_{i_j}$ is not a face and

$$V_I = \{x_{i_1} = x_{i_2} = \dots = x_{i_\ell} = 0\},\$$

 \mathbb{T}' =some subtorus of $(\mathbb{C}^*)^d$. Decomposing $(\mathbb{C}^*)^d = \mathbb{T}' \times \mathbb{T}$ we obtain an action of \mathbb{T} on U/\mathbb{T}' .

13.17 Example $\mathbb{P}^n = \mathbb{C}^{n+1} \setminus \{0\}/(\text{diagonal torus})$. Let $\mathbb{T} = \{t \in (\mathbb{C}^*)^{n+1} \mid t_0 = 1\}.$

$$H^*_{\mathbb{T}}(\mathbb{P}^n) = \mathbb{Z}[x_0, x_1, \dots, x_n] / (x_0 x_1 \dots x_n,)$$

The Λ -module structure is given by the relations in J': the vectors v_i consists of the standard basis vectors ϵ_i , $v_0 = -\sum \epsilon_i$. For the generator $t_i \in \Lambda$, i > 0

$$\langle t_i, v_j \rangle = \begin{cases} -\delta_{i,j} & \text{for } j > 0\\ 1 & \text{for } j = 0 \end{cases}$$

hence

$$t_i \mapsto x_i - x_0 \qquad \text{for } i > 0.$$

13.18 The ranks of $H^*_{\mathbb{T}}(X)$ can be easily computed inductively from the exact sequence of a pair: for a smooth closed invariant submanifold $N \subset M$ we have

$$\to H^{*-2\mathrm{codim}N}_{\mathbb{T}}(N) \to H^*_{\mathbb{T}}(M) \to H^*_{\mathbb{T}}(M \setminus N) \to H^{*-2\mathrm{codim}N+1}_{\mathbb{T}}(N) \to .$$

Note that if X is a sum of \mathbb{T} orbits, then each $H^{odd}_{\mathbb{T}}(orbit) = 0$ and the sequence splits.

$$H^*_{\mathbb{T}}(X) \simeq \bigoplus_{\mathcal{O} \text{ orbit}} H^{*-2\text{codim}\mathcal{O}}_{\mathbb{T}}(B\mathbb{T}_{\mathcal{O}}), \qquad \mathbb{T}_{\mathcal{O}} \simeq (\mathbb{C}^*)^{\text{codim}\mathcal{O}}$$

 \bullet Let us compute the equivariant Poincaré polynomial: set $q=t^2$

$$P_{\mathbb{T}}(X) = \sum_{\mathcal{O}} q^{\operatorname{codim}O} (1-q)^{-\operatorname{codim}O}$$

• The nonequivariant Poincaré polynomial can be computed due to equivariant formality:

$$P_{\mathbb{T}}(X) = P(X)P(B\mathbb{T}),$$

hence

$$P(X) = P_{\mathbb{T}}(X)P(B\mathbb{T})^{-1} = \left(\sum_{\mathcal{O}} q^{\operatorname{codim}O}(1-q)^{-\operatorname{codim}O}\right)(1-q)^n = \sum_{\mathcal{O}} q^{\operatorname{codim}O}(1-q)^{\dim O}$$

13.19 Example: $X = \mathbb{P}^2$

$$3q^{2} + 3q(1-q) + (1-q)^{2} = 3q^{2} + 3q - 3q^{2} + 1 - 2q + q^{2} = q^{2} + q + 1$$

14 Equivariant Schubert Calculus on Grassmannians

This section contains mainly the example of the calculus on Grassmannian $Gr_2(\mathbb{C}^4)$. See [Anderson-Fulton, Chapter 9] for the explanation.

14.1 The Grassmannian $Gr_d(\mathbb{C}^n) = \operatorname{GL}_n/B_n$ is the union of Schubert cells Ω_{λ}° , $\lambda = (\lambda_1 \ge \lambda_2 \ge \lambda_d \ge 0$ with $i_1 \le n-d$. For convenience we set $\lambda_{d+1} = 0$. Set e = n-d. We fix the standard flag E_{\bullet} preserved by the Borel group and define

$$\Omega^{\circ}_{\lambda}(E_{\bullet}) = \{ V \subset \mathbb{C}^n \mid \dim(E_q \cap V) = k \text{ for } q \in [e+k-\lambda_k, e+k-\lambda_{k+1}] \},\$$

i.e. the sets Ω_{λ}° are defined by the strict Schubert conditions. • For n = 4, d = 2,

$$\Omega_{00}^{\circ}(E_{\bullet}) = \left\{ V \subset \mathbb{C}^4 : \dim(E_q \cap V) = 1 \quad \text{for } q \in [3 - 0, 3 - 0] \\ \dim(E_q \cap V) = 2 \quad \text{for } q \in [4 - 0, 4 - 0] \right\} .$$

(The dimensions of the intersections are generic.)

$$\Omega_{22}^{\circ}(E_{\bullet}) = \left\{ V \subset \mathbb{C}^4 : \dim(E_q \cap V) = 1 \quad \text{for } q \in [3-2, 3-2] \\ \dim(E_q \cap V) = 2 \quad \text{for } q \in [4-2, 4-2] \right\}.$$

(The dimensions are the maximal possible, i.e. $\Omega_{22}^{\circ} = \{E_2\}$.)

$$\Omega_{10}^{\circ}(E_{\bullet}) = \left\{ V \subset \mathbb{C}^4 : \dim(E_q \cap V) = 1 \quad \text{for } q \in [3-1, 3-0] \\ \dim(E_q \cap V) = 2 \quad \text{for } q \in [4-0, 4-0] \right\}.$$

(The only nontrivial condition is $\dim(E_2 \cap V) = 1$ but $E_1 \not\subset V, V \not\subset E_3$)

$$\Omega_{11}^{\circ}(E_{\bullet}) = \left\{ V \subset \mathbb{C}^4 : \dim(E_q \cap V) = 1 \quad \text{for } q \in [3-1,3-1] \\ \dim(E_q \cap V) = 2 \quad \text{for } q \in [4-1,4-0] \right\} .$$

(This means, that $V \subset E_3$.)

$$\Omega_{20}^{\circ}(E_{\bullet}) = \left\{ V \subset \mathbb{C}^4 : \dim(E_q \cap V) = 1 \quad \text{for } q \in [3-2, 3-0] \\ \dim(E_q \cap V) = 2 \quad \text{for } q \in [4-0, 4-0] \right\} .$$

(This means $E_1 \subset V, V \neq E_2$.)

$$\Omega_{21}^{\circ}(E_{\bullet}) = \left\{ V \subset \mathbb{C}^4 : \dim(E_q \cap V) = 1 \quad \text{for } q \in [3-2,3-1] \\ \dim(E_q \cap V) = 2 \quad \text{for } q \in [4-1,4-0] \right\}.$$

 $(E_1 \subset V \text{ and } V \subset E_3.)$

14.2 For the standard flag the Schubert cells are the B_n orbits of the torus-fixed points. Let $x_{i,j} = lin\{\epsilon_i, \epsilon_j\}$

$$\begin{aligned} \Omega_{00}^{\circ}(E_{st}) &= B_4 x_{34} , & \text{open cell} \\ \Omega_{22}^{\circ}(E_{st}) &= B_4 x_{12} , & \text{a point} \\ \Omega_{10}^{\circ}(E_{st}) &= B_4 x_{24} , & \text{divisor} \\ \Omega_{11}^{\circ}(E_{st}) &= B_4 x_{23} , & \text{dim=2, closure} \simeq \mathbb{P}^2 \\ \Omega_{20}^{\circ}(E_{st}) &= B_4 x_{14} , & \text{dim=2, closure} \simeq \mathbb{P}^2 \end{aligned}$$

14.3 If we reverse the reference flag, then the Schubert cells are the orbits of the opposite Borel group B_n^- , consisting of the lower triangular matrices.

open cell
a point
divisor
dim=2, closure $\simeq \mathbb{P}^2$
dim=2, closure $\simeq \mathbb{P}^2$
dim=1, closure $\simeq \mathbb{P}^1$

(we replace $x_{i,j}$ by $x_{5-j,5-i}$).

• Let us work with the opposite flag. We set $\sigma_{\lambda} = [\overline{\Omega^{\circ}_{\lambda}(E_{op})}]$.

14.4 The main statements of nonequivariant Schubert calculus are the following:

• The Giambelli formula says, that the classes of Schubert varieties can be expressed by the Chern classes of the (dual) tautological bundle V^*

$$[\Omega_{\lambda}] = S_{\lambda}(V^*)$$

• The rules how to multiply $\sigma_{\lambda}[\Omega_{\lambda}]$'s: Pieri rule and more general Littlewood-Richardson rule.

14.5 For example for d = 1, $Gr_1(\mathbb{C}^n) = \mathbb{P}^{n-1}$, $V^* = \mathcal{O}(1)$ and $[\Omega_i] = [\mathbb{P}^{n-1-i}] = c_1(\mathcal{O}(1))^i$.

14.6 Nonequivariant multiplication for $Gr_2(\mathbb{C}^4)$

	σ_{00}	σ_{10}	σ_{11}	σ_{20}	σ_{21}	σ_{22}
σ_{00}	σ_{00}	σ_{10}	σ_{11}	σ_{20}	σ_{21}	σ_{22}
σ_{10}	σ_{10}	$\sigma_{11} + \sigma_{20}$	σ_{21}	σ_{21}	σ_{22}	0
σ_{11}	σ_{11}	σ_{21}	σ_{22}	0	0	0
σ_{20}	σ_{20}	σ_{21}	0	σ_{22}	0	0
σ_{21}	σ_{21}	σ_{22}	0	0	0	0
σ_{22}	σ_{22}	0	0	0	0	0

14.7 The product $\sigma_{\lambda} \cdot \sigma_{\mu}$ can be written as $\sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$. The coefficients are called the Littlewood-Richardson coefficients. They are nonnegative integers:

$$c_{\lambda\mu}^{\nu} = \left| g_1 \Omega_{\lambda}(F_{st}) \cap g_2 \Omega_{\mu}(F_{st}) \cap g_3 \Omega_{\nu^{\vee}}(F_{st}) \right|,$$

where ν^{\vee} is the opposite partition $\nu^{\vee} = Reverse((n-k)^k - \nu)$, g_i are general elements of GL_n . In the equivariant calculus the coefficients $c^{\nu}_{\lambda\mu}$ are polynomials in t_1, t_2, \ldots, t_n .

14.8 In the nonequivariant case the reference flag is irrelevant for computing cohomology classes. Instead of B_n orbits one can take the orbits of the opposite Borel group B_n^- .

14.9 Equivariant cohomology contains more information. There are at least three important bases of $H^*_{\mathbb{T}}(Gr_d(\mathbb{C}^n))$:

- The basis on $[\sigma_{\lambda}]$ the natural choice;
- The bases of Schur classes of V^* convenient for functorial reasoning;

• The basis of the fixed point classes (this is a basis after the localization in $S = \langle t_i - t_j \mid i \neq j \rangle$) here the multiplication is easy. 14.10 The analogues of the Giambelli formulas are the Kempf-Laksov formulas. In [Anderson-Fulton, 9.2] given for B_n^- orbit closures.

14.11 Table of the restrictions of Schubert classes at the fixed points

	x_{34}	x_{24}	x_{23}	x_{14}	x_{13}	x_{12}
σ_0	1	1	1	1	1	1
σ_{10}	$t_1 + t_2 - t_3 - t_4$	$t_1 - t_4$	$t_2 - t_4$	$t_1 - t_3$	$t_2 - t_3$	0
σ_{11}	$(t_1 - t_3) (t_1 - t_4)$	$\left(t_1-t_2\right)\left(t_1-t_4\right)$	0	$(t_1 - t_2)(t_1 - t_3)$	0	0
σ_{20}	$(t_1 - t_4) (t_2 - t_4)$	$(t_1 - t_4) (t_3 - t_4)$	$(t_2 - t_4)(t_3 - t_4)$	0	0	0
σ_{21}	$(t_1 - t_3) (t_1 - t_4) (t_2 - t_4)$	$(t_1 - t_2) (t_1 - t_4) (t_3 - t_4)$	0	0	0	0
σ_{22}	$(t_1 - t_3) (t_2 - t_3) (t_1 - t_4) (t_2 - t_4)$	0	0	0	0	0

14.12 The formula for σ_{10} : in nonequivariant cohomology $\sigma_1 = c_1(V^*) = c_1(\mathcal{O}(1))$ (the bundle $\mathcal{O}(1)$ comes from the Plücker embedding).

• The equivariant formula is of the form

 $\sigma_{10} = c_1(V^*) + \text{linear form}(t_1, t_2, t_3, t_4).$

The form is chosen in such way that $(\sigma_{10})_{|x_{1,2}} = 0$, i.e. it is equal $t_1 + t_2$. This reasoning works in general.

- 14.13 Equivariant multiplication table.
- Multiplication by σ_{10}

$$\begin{aligned}
\sigma_{10}\sigma_{22} &= (t_1 + t_2 - t_3 - t_4) \,\sigma_{22} \\
\sigma_{10}\sigma_{21} &= (t_1 - t_4) \,\sigma_{21} + \sigma_{22} \\
\sigma_{10}\sigma_{20} &= (t_2 - t_4) \,\sigma_{20} + \sigma_{21} \\
\sigma_{10}\sigma_{11} &= (t_1 - t_3) \,\sigma_{11} + \sigma_{21} \\
\sigma_{10}^2 &= (t_2 - t_3) \,\sigma_{10} + \sigma_{11} + \sigma_{20}
\end{aligned}$$

According to the equivariant Monk formula

$$\sigma_{10}\sigma_{\lambda} = \sum_{\lambda^+} \sigma_{\lambda^+} + (\sigma_{10})_{|x_{\lambda}} \sigma_{\lambda} \,,$$

where x_{λ} is the fixed point in $\Omega^{\circ}_{\lambda}(E_{op})$.

• The remaining multiplications

$$\begin{array}{rcl} \sigma_{22}^2 &=& (t_1-t_3) \left(t_2-t_3\right) \left(t_1-t_4\right) \left(t_2-t_4\right) \sigma_{22} \\ \sigma_{21}\sigma_{22} &=& (t_1-t_3) \left(t_1-t_4\right) \left(t_2-t_4\right) \sigma_{22} \\ \sigma_{20}\sigma_{22} &=& (t_1-t_4) \left(t_2-t_4\right) \sigma_{22} \\ \sigma_{11}\sigma_{22} &=& (t_1-t_3) \left(t_1-t_4\right) \sigma_{22} \\ \sigma_{21}^2 &=& (t_1-t_4)^2 \sigma_{22} + \left(t_1-t_2\right) \left(t_1-t_4\right) \left(t_3-t_4\right) \sigma_{21} \\ \sigma_{20}\sigma_{21} &=& (t_1-t_2) \left(t_1-t_4\right) \sigma_{21} + \left(t_1-t_4\right) \sigma_{22} \\ \sigma_{20}^2 &=& (t_2-t_4) \left(t_3-t_4\right) \sigma_{20} + \left(t_3-t_4\right) \sigma_{21} + \sigma_{22} \\ \sigma_{20}^2 &=& (t_1-t_4) \sigma_{21} \\ \sigma_{11}\sigma_{20} &=& (t_1-t_2) \left(t_1-t_3\right) \sigma_{11} + \left(t_1-t_2\right) \sigma_{21} + \sigma_{22} \end{array}$$

14.14 Knutson-Tao puzzles: we draw a triangle with all edges of length n and fill them with pieces of the following shapes

• Three nonequivariant puzzles and one equivariant:

The last one is not rotatable.

• We change the coding of Schubert varieties. Instead of partitions we use 0-1 sequences of length n. We walk along the edges of Young diagram $NE \to SW$: the sequence has 1 if we go S, 0 if we go W.

00	\rightarrow	0011
10	\rightarrow	0101
11	\rightarrow	0110
20	\rightarrow	0110
21	\rightarrow	1010
22	\rightarrow	1100

We label the edges of the triangle with the codes

14.15 Multiplication in $\mathbb{P}^1 = Gr_1(\mathbb{C}^2)$

 $\sigma_0 \sigma_1 = \sigma_1 \qquad \sigma_1 \sigma_1 = (t_1 - t_2) \sigma_1 \qquad \sigma_0 \sigma_0 = \sigma_0$

14.16 Multiplication in $Gr_2(\mathbb{C}^4)$

Three coefficients of the expansion of $\sigma_{10}\sigma_{10}$ in $H^*_{\mathbb{T}}(Gr_2(\mathbb{C}^4))$

 $c_{10,10}^{10} = t_2 - t_3$, $c_{10,10}^{11} = 1$, $c_{10,10}^{20} = 1$.

14.17 [Anderson-Fulton, §9, Theorem 8.4] The equivariant Littlewood-Richardson coefficient is equal to

$$c_{\lambda\mu}^{\nu} = \sum_{\text{puzzle fillings special pieces}} \prod \left(t_{\text{left leg}} - t_{\text{right leg}} \right).$$

• In [Anderson-Fulton, §9] the signs of the variables are reversed, due to a different convention.