Problem list 9-5 December

1 Write all the entries of the Serre spectral sequence of the fibration $E \mathbb{T} \times X \rightarrow E \mathbb{T} \times \mathbb{T} X$ for $X=\mathbb{P}^{1}$ or S^{3} (with the usual torus actions).

2 Consider the spectral sequence from the previous problem for X arbitrary, and $\mathbb{T}=S^{1}$. Show that $d_{2}^{p, 1}: H_{\mathbb{T}}^{p}(X)=E_{2}^{p, 1} \rightarrow E_{2}^{p+2,0}=H_{\mathbb{T}}^{p+2}(X)$ can be identified with the multiplication by the generator of $H_{\mathbb{T}}^{2}(p t)$. What happens when X is equivariantly formal?

3 Write all the entries of the spectral sequence $E_{2}^{p, q}=H^{p}\left(B \mathbb{T}, H^{q}(X)\right) \Rightarrow H_{\mathbb{T}}^{p+q}(X)$ for $\mathbb{T}=S^{1}$ acting on $S^{3} \subset \mathbb{C}^{2}$ as the scalar multiplication.

4 Consider the spectral sequence from the previous problem for X arbitrary, and $\mathbb{T}=S^{1}$. Assuming that $\mathbb{T}=S^{1}$ recognize the differential

$$
H^{q}(X)=E_{2}^{0, q} \rightarrow E_{2}^{2, q-1}=H^{2}(B \mathbb{T}) \otimes H^{q-1}(X) \simeq H^{1}(\mathbb{T}) \otimes H^{q-1}(X)
$$

as a map induced by the multiplication $S^{1} \times X \rightarrow X$.
(Taking $X=\mathbb{T}$ the differential $H^{1}(\mathbb{T})=E_{2}^{0,1} \rightarrow E_{2}^{2,0}=H^{2}(B \mathbb{T})$ is an isomorphism.)
5 Let γ be the tautological bundle over the Grassmannian $G r_{2}\left(\mathbb{C}^{4}\right)$. Compute the push-forward to the point

$$
\int_{G r_{2}\left(\mathbb{C}^{4}\right)} c_{2}\left(\gamma^{*}\right)^{n}
$$

Show that the result is equal to the Schur function for $\lambda=(n-2, n-2,0,0)$ if $n \geqslant 2$. If possible generalize this calculus.

Hint $c_{2}\left(L_{1} \oplus L_{2}\right)^{n}=S_{\lambda}\left(c_{1}\left(L_{1}\right), c_{1}\left(L_{2}\right)\right)$ for $\lambda=(n, n)$. Use Laplace block-expansion.
6 The space $\mathbb{C}^{2 n}$ is equipped with the canonical non-degenerate antisymmetric 2 -form

$$
\omega=\sum_{i=1}^{n} d x_{i} \wedge d x_{n-i+1}
$$

(i.e. the symplectic form). Let $L G_{n} \subset G r_{n}\left(\mathbb{C}^{n}\right)$ be the Lagrangian Grassmannian, i.e. the set of isotropic n-subspaces. The torus

$$
\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots, t_{2}^{-1}, t_{1}^{-1}\right)
$$

acts on $\mathbb{C}^{2 n}$ preserving ω, hence it acts on $L G_{n}$. Find the fixed points and the GKM-graph.

