Problem list 9— 5 December

1 Write all the entries of the Serre spectral sequence of the fibration $E\mathbb{T} \times X \to E\mathbb{T} \times^{\mathbb{T}} X$ for $X = \mathbb{P}^1$ or S^3 (with the usual torus actions).

2 Consider the spectral sequence from the previous problem for X arbitrary, and $\mathbb{T} = S^1$. Show that $d_2^{p,1} : H^p_{\mathbb{T}}(X) = E_2^{p,1} \to E_2^{p+2,0} = H^{p+2}_{\mathbb{T}}(X)$ can be identified with the multiplication by the generator of $H^2_{\mathbb{T}}(pt)$. What happens when X is equivariantly formal?

3 Write all the entries of the spectral sequence $E_2^{p,q} = H^p(B\mathbb{T}, H^q(X)) \Rightarrow H^{p+q}_{\mathbb{T}}(X)$ for $\mathbb{T} = S^1$ acting on $S^3 \subset \mathbb{C}^2$ as the scalar multiplication.

4 Consider the spectral sequence from the previous problem for X arbitrary, and $\mathbb{T} = S^1$. Assuming that $\mathbb{T} = S^1$ recognize the differential

$$H^{q}(X) = E_{2}^{0,q} \to E_{2}^{2,q-1} = H^{2}(B\mathbb{T}) \otimes H^{q-1}(X) \simeq H^{1}(\mathbb{T}) \otimes H^{q-1}(X)$$

as a map induced by the multiplication $S^1 \times X \to X$. (Taking $X = \mathbb{T}$ the differential $H^1(\mathbb{T}) = E_2^{0,1} \to E_2^{2,0} = H^2(B\mathbb{T})$ is an isomorphism.)

5 Let γ be the tautological bundle over the Grassmannian $Gr_2(\mathbb{C}^4)$. Compute the push-forward to the point

$$\int_{Gr_2(\mathbb{C}^4)} c_2(\gamma^*)^n$$

Show that the result is equal to the Schur function for $\lambda = (n - 2, n - 2, 0, 0)$ if $n \ge 2$. If possible – generalize this calculus.

Hint $c_2(L_1 \oplus L_2)^n = S_{\lambda}(c_1(L_1), c_1(L_2))$ for $\lambda = (n, n)$. Use Laplace block-expansion.

6 The space \mathbb{C}^{2n} is equipped with the canonical non-degenerate antisymmetric 2-form

$$\omega = \sum_{i=1}^{n} dx_i \wedge dx_{n-i+1}$$

(i.e. the symplectic form). Let $LG_n \subset Gr_n(\mathbb{C}^n)$ be the Lagrangian Grassmannian, i.e. the set of isotropic *n*-subspaces. The torus

$$diag(t_1, t_2, \dots, t_n, t_n^{-1}, \dots, t_2^{-1}, t_1^{-1})$$

acts on \mathbb{C}^{2n} preserving ω , hence it acts on LG_n . Find the fixed points and the GKM-graph.