Problem list 8-28 November

1 Let $L=\mathcal{O}(m), m \geqslant 0$. Using Riemann-Roch theorem and the localization theorem compute $\chi\left(\mathbb{P}^{n} ; L\right)$. Check if it agrees with the formula well known for algebraic geometers:

$$
\chi\left(\mathbb{P}^{n} ; L\right)=\operatorname{dim} H^{0}\left(\mathbb{P}^{n} ; \mathcal{O}(m)\right)=\mathbb{C}\left[t_{0}, t_{1}, \ldots, t_{n}\right]_{\operatorname{deg}=m}
$$

(The restriction of L at the standard fixed point $p_{k} \in \mathbb{P}^{n}$ is equal to $\mathbb{C}_{-m t_{k}}$, i.e. \mathbb{C} with \mathbb{T} acting with the weight $-m t_{k}$.)

2 Suppose $F \rightarrow X \rightarrow B$ is a fibration, and F is a sphere. Write how the $E_{r}^{p, q}$ table looks like for $r+1 \leqslant \operatorname{dim} F$ and deduce the Gysin long exactsequence.

3 Suppose $F \rightarrow X \rightarrow B$ is a fibration, and B is a sphere. Write how the $E_{r}^{p, q}$ table looks like for $r \leqslant \operatorname{dim} B$ and deduce the resulting long exact sequence (called Wang sequence).

4 Write all the entries of the spectral sequence $E_{2}^{p, q}=H^{p}\left(B \mathbb{T}, H^{q}(X)\right) \Rightarrow H_{\mathbb{T}}^{p+q}(X)$ for $\mathbb{T}=S^{1}$ acting on $S^{3} \subset \mathbb{C}^{2}$ as the scalar multiplication.

5 Write all the entries of the Serre spectral sequence of the fibration $E \mathbb{T} \times X \rightarrow E \mathbb{T} \times \mathbb{T} X$ for $X=\mathbb{P}^{1}$ or S^{3} (with the usual torus actions).

6 Show that if a a topological \mathbb{T}-space has no odd cohomology (i.e. $H^{\text {odd }}(X)=0$), then X is equivariantly formal.

