Problem list 7-21 November

1 Show that the localization functor

$$
\Lambda-\text { modules } \longrightarrow K-\text { modules }
$$

is exact.
2 See what goes wrong with the proof of localization theorem for \mathbb{T} replaced by a nonabelian groups. In the torus case for any proper subgroup $K \subset \mathbb{T}$ the orbit $H_{\mathbb{T}}^{*}(\mathbb{T} / K)$ turned out to be a torsion $H_{\mathbb{T}}^{*}(p t)$-module. What happens for noncommutative groups?

3 Let $X=\mathbb{P}^{n}$ with the standard action of $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{n+1}$. Show that the image

$$
H_{\mathbb{T}}^{*}\left(\mathbb{P}^{n}\right) \hookrightarrow \bigoplus_{k=0}^{n} \Lambda=\Lambda^{n+1}
$$

consists of such sequences $\left(f_{0}, f_{1}, \ldots, f_{n}\right) \in \mathbb{Q}\left[t_{0}, t_{1}, \ldots, t_{n}\right]^{n+1}$, such that $t_{i}-t_{j}$ divides $f_{i}-f_{j}$. (Of course not using the general theorem, but by a direct computation.)

4 The torus $\mathbb{T}=\left(\mathbb{C}^{*}\right)^{n+1}$ acts in the standard way on \mathbb{P}^{n}. Let $h=c_{1}(\mathcal{O}(1)) \in H_{\mathbb{T}}^{2}\left(\mathbb{P}^{n}\right)$. Using AB-BV localization fromula compute

$$
p_{*}\left(h^{n+m}\right) \in H_{\mathbb{T}}^{*}(p t)=\mathbb{Z}\left[t_{0}, t_{1}, \ldots t_{n}\right]
$$

(The restriction of h at the standard fixed point $p_{k} \in \mathbb{P}^{n}$ is equal $h_{\mid p_{k}}=-t_{k}$.)
5 Let $L=\mathcal{O}(m), m \geqslant 0$. Using Riemann-Roch theorem and the localization theorem compute $\chi\left(\mathbb{P}^{n} ; L\right)$. Check if it agrees with the formula well known for algebraic geometers:

$$
\chi\left(\mathbb{P}^{n} ; L\right)=\operatorname{dim} H^{0}\left(\mathbb{P}^{n} ; \mathcal{O}(m)\right)=\mathbb{C}\left[t_{0}, t_{1}, \ldots, t_{n}\right]_{\operatorname{deg}=m}
$$

(The restriction of L at the standard fixed point $p_{k} \in \mathbb{P}^{n}$ is equal to $\mathbb{C}_{-m t_{k}}$, i.e. \mathbb{C} with \mathbb{T} acting with the weight $-m t_{k}$.)

