Problem list $3-24$ October

1 Let

$$
\Sigma_{r}(n, m)=\left\{f \in \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right): \operatorname{dim}(k e r(f))=r\right\}
$$

Compute the dimension of $\Sigma_{r}(n, m)$.
Deduce that for any fixed $i \in \mathbb{N}$ and sufficiently large m the homotopy groups $\pi_{i}\left(\Sigma_{0}(n, m)\right)$ is trivial.
2 Find a CW-decomposition of \mathbb{P}^{n} with the standard action of $\left(S^{1}\right)^{n+1}$ (at least with $n=2$.)
3 Find a presentation of the cohomology ring $H^{*}(G(k, n))$ using the fibration $G r a s_{k}\left(\mathbb{C}^{n}\right) \rightarrow B\left(U_{k} \times\right.$ $\left.U_{n-k}\right) \rightarrow B U_{n}$.
Hint: use a corollary from Leray-Hirsh theorem, sayin that the fibration $F \rightarrow E \rightarrow B$ satisfying the appropriate assumptions $H^{*}(F ; \mathbb{Q})=\mathbb{Q} \otimes_{H^{*}(B ; \mathbb{Q})} H^{*}(E ; \mathbb{Q})$.

4 Suppose $H \triangleleft G$ is a normal subgroup, $K=G / H$. Construct a fibration $B H \rightarrow B G \rightarrow B K$.
(Take $E H:=E G$ and $E^{\prime} G=E G \times E K$, taking the fibration $E^{\prime} G / G \rightarrow E K / K$ we find that the fiber is $E G \times{ }^{G} G / H=B H$.)

5 Milnor construction of $E G$.
For topological spaces X and Y let $X * Y$ denote its join, i.e.

$$
C X \times Y \cup_{X \times Y} X \times C Y
$$

where $C X$ denotes the cone over X. Let G be a topological group, show that n-fold join $X * X * \cdots * X$ has homotopy groups π_{i} trivial for $i<n-1$ and G acts freely on that space. Taking the infinite join we obtain a model of $E G$.

6 Simplicial model of $E G$ using bar-construction.
Let $X_{i}=G^{i+1}$ and $d_{i, k} k: X_{i} \rightarrow X_{i-1}$ is the projection, forgetting about the k-th component $k=$ $0,1, \ldots i$. (This is a presimplicial topological space.) The geometric realization is defined as

$$
\begin{gathered}
\left|X_{\bullet}\right|=\left(\bigsqcup_{i \geqslant 0} X_{i} \times \Delta^{i}\right) / \sim \\
\left(d_{i, k}(a), b\right) \sim\left(a, \partial_{i-1, k}(b)\right) \quad \text { for } \quad a \in X_{i}, b \in \Delta^{i-1}
\end{gathered}
$$

where $\partial_{i-1, k}: \Delta_{i-1} \hookrightarrow \Delta_{i}$ is the inclusion of the k-th facet in the standard symplex. Show that $E=\left|X_{\bullet}\right|$ is contractible and the diagonal action of G is free.
Present E / G as a geometric realization of a (pre-) simplicial set Y_{\bullet}, such that $Y_{i}=G^{i}$.

