Problem list 3 - 24 October

1 Let

$$\Sigma_r(n,m) = \left\{ f \in \operatorname{Hom}(\mathbb{C}^n, \mathbb{C}^m) : \dim(ker(f)) = r \right\}.$$

Compute the dimension of $\Sigma_r(n,m)$.

Deduce that for any fixed $i \in \mathbb{N}$ and sufficiently large m the homotopy groups $\pi_i(\Sigma_0(n,m))$ is trivial.

2 Find a CW-decomposition of \mathbb{P}^n with the standard action of $(S^1)^{n+1}$ (at least with n = 2.)

3 Find a presentation of the cohomology ring $H^*(G(k,n))$ using the fibration $Gras_k(\mathbb{C}^n) \to B(U_k \times U_{n-k}) \to BU_n$.

Hint: use a corollary from Leray-Hirsh theorem, say in that the fibration $F \to E \to B$ satisfying the appropriate assumptions $H^*(F; \mathbb{Q}) = \mathbb{Q} \otimes_{H^*(B; \mathbb{Q})} H^*(E; \mathbb{Q}).$

4 Suppose $H \triangleleft G$ is a normal subgroup, K = G/H. Construct a fibration $BH \rightarrow BG \rightarrow BK$.

(Take EH := EG and $E'G = EG \times EK$, taking the fibration $E'G/G \to EK/K$ we find that the fiber is $EG \times^G G/H = BH$.)

5 Milnor construction of EG.

For topological spaces X and Y let X * Y denote its join, i.e.

$$CX \times Y \cup_{X \times Y} X \times CY$$
,

where CX denotes the cone over X. Let G be a topological group, show that n-fold join $X * X * \cdots * X$ has homotopy groups π_i trivial for i < n - 1 and G acts freely on that space. Taking the infinite join we obtain a model of EG.

6 Simplicial model of EG using bar-construction.

Let $X_i = G^{i+1}$ and $d_{i,k}k : X_i \to X_{i-1}$ is the projection, forgetting about the k-th component $k = 0, 1, \ldots i$. (This is a presimplicial topological space.) The geometric realization is defined as

$$|X_{\bullet}| = \left(\bigsqcup_{i \ge 0} X_i \times \Delta^i\right) \Big/_{\sim}$$

$$(d_{i,k}(a), b) \sim (a, \partial_{i-1,k}(b))$$
 for $a \in X_i, b \in \Delta^{i-1}$

where $\partial_{i-1,k} : \Delta_{i-1} \hookrightarrow \Delta_i$ is the inclusion of the k-th facet in the standard symplex. Show that $E = |X_{\bullet}|$ is contractible and the diagonal action of G is free.

Present E/G as a geometric realization of a (pre-)simplicial set Y_{\bullet} , such that $Y_i = G^i$.