List $2-17$ October

1 [Done ???] For a representation V of \mathbb{T} consider an action of $\tilde{\mathbb{T}}=\mathbb{T} \times S^{1}$ on $\tilde{V}=V$, where S^{1} acts by the scalar multiplication. Denote by \hbar the weight corresponding to the character $\tilde{T} \rightarrow S^{1}$, which is the projection. Show that

$$
c(V)=e(\tilde{V})_{\mid \hbar=1} .
$$

2 Let $\mathbb{T}_{m}=\operatorname{Spec}\left(\mathbb{F}\left[t, t^{-1}\right]\right)$ (simply meaning \mathbb{F}^{*} as an algebraic group). Show that for any field $\mathbb{F}=\overline{\mathbb{F}}$ any linear action of $\mathbb{T}_{\mathbb{F}}=\left(\mathbb{G}_{m}\right)^{r}$ on the vector space \mathbb{F}^{n} can be diagonalized.

3 Let A be an algebra over a field \mathbb{F} and $X=\operatorname{Spec}(A)$. Defining an action of \mathbb{G}_{m} on X is equivalent to defining a \mathbb{Z}-gradation of A. Prove this correspondence and generalize it to an action of the algebraic torus \mathbb{G}_{m}^{r}.

4 Let G be a group, H a subgroup, $E \rightarrow G / H$ be a vector bundle with G-action, such that for any $g \in G, x \in G / H$ the map $g: E_{x} \rightarrow E_{g x}$ is linear. Show that $E \simeq G \times{ }^{H} E_{[e]}$. Here [e] denotes the coset $e H$ (i.e. any equivariant bundle over a homogeneous space G / H is induced from a H-representation).

5 Let G be a topological group, H a subgroup. Conastruct a honeomorphism

$$
G \times{ }^{H} G / H \simeq G / H \times G / H .
$$

Is it G-equivariant with respect to a suitable G-actions?

[^0]
[^0]: ${ }^{1}$ The multiplicative group

