Problem list 14 - 23 January

1 Describe the moment polytopes of homogeneous spaces for SO(5) and Sp(3), in particular for the Lagrangian Grassmannian $LG(3) \subset Gr_3(\mathbb{C}^6)$ and for the generalized flag manifold $Sp(3)/B \simeq p^{-1}(LG(3))$, where $p : Fl_{1,2,3}(\mathbb{C}^6) \to Gr_3(\mathbb{C}^6)$. Here $Fl_{1,2,3}(\mathbb{C}^6)$ denotes the partial flags $V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^6$. Make some colourful pictures!

2 Let G be a Lie group acting on a symplectic manifold M with a moment map $\mu : M \to \mathfrak{g}^*$. Show that μ is G invariant, i.e. $\mu(gx) = Ad_a^*(\mu(x))$.

3 (Angular momentum) Consider the natural action of G = SO(3) on $\mathbb{R}^6 = T^*\mathbb{R}^3$ (with the standard symplectic structure). Find the moment map.

Here we can identify \mathfrak{so}_3 with \mathbb{R}^3 with the vector product \times , moreover we identify \mathfrak{so}_3 with \mathfrak{so}_3^* via the scalar product $trace(X^TY)$ (for $X, Y \in \mathfrak{so}_3$) which becomes 2 times the standard scalar product in \mathbb{R}^3 .

(Read more about the moment map see: Dusa McDuff, Dietmar Salamon - Introduction to symplectic topology-Oxford University Press, 1999, Section 5.2)

4 Let U(k) act on $\operatorname{Hom}(\mathbb{C}^k, \mathbb{C}^n)$ (assuming k < n). Show that $\mu(A) = iA^A$ is a moment map.

5 Suppose $\mathbb{T} = (\mathbb{C}^*)^2$ acting of \mathbb{C}^2 in the standard way. We extend this action to \mathbb{P}^2 . Let X be the blow-up at 0. Pick an equivariant embedding of X into a projective space, and find the resulting moment polytope for a choice of \mathbb{T} action on $L = \mathcal{O}(1)_{|X}$.