Problem list 13 - 16 January

1 Let G = SU(2), $\mathfrak{g} = \mathfrak{su}_2 = lin\{i, j, k\}$ with the well known commutation relations [i, j] = 2k, etc. Write down explicitly the Chevalley complex computing $H^*(SU(2))$. Compare it with $H^*(BSU(2))$, check that indeed $H^*(BG) \simeq (Sym \mathfrak{g}^*)^G \simeq (Sym \mathfrak{t}^*)^W$.

2 Define the equivariant intersection form

$$H^*_{\mathbb{T}}(M) \times H^*_{\mathbb{T}}(M) \to H^*_{\mathbb{T}}(pt)$$
$$(a,b) \mapsto \int_M ab \in \mathbb{H}^*_T(pt) \,.$$

Compute the intersection form in the basis $[\mathbb{P}^0], [\mathbb{P}^1], [\mathbb{P}^2]$, where $\mathbb{P}^i = \mathbb{P}(lin\{\varepsilon_0, \ldots, \varepsilon_i\})$. [Use Wolfram Mathematica or your favourite formal algebra software for higher dimension \mathbb{P}^n 's.]

3 Describe the moment polytopes of homogeneous spaces for SO(5) and Sp(3), in particular for the Lagrangian Grassmannian $LG(3) \subset Gr_3(\mathbb{C}^6)$ and for the generalized flag manifold $Sp(3)/B \simeq p^{-1}(LG(3))$, where $p : Fl_{1,2,3}(\mathbb{C}^6) \to Gr_3(\mathbb{C}^6)$. Here $Fl_{1,2,3}(\mathbb{C}^6)$ denotes the partial flags $V_1 \subset V_2 \subset V_3 \subset \mathbb{C}^6$. Make some colourful pictures!

4 Let G be a Lie group acting on a symplectic manifold M with a moment map $\mu : M \to \mathfrak{g}^*$. Show that μ is G invariant, i.e. $\mu(gx) = Ad_a^*(\mu(x))$.

5 Let (M, ω) be a symplectic manifold with a Hamiltonian S^1 action. Let $H : M \to \mathfrak{t}^* \simeq \mathbb{R}$ be the moment map. Prove the Duistermaat-Heckman formula

$$\int_M e^{\hbar f} \frac{\omega^n}{n!} = \sum_{p \in S^1} \frac{e^{\hbar f(p)}}{e(T_p M)} \,.$$