Problem list 11 - 9 January

1 Let \mathfrak{g} be a graded vector space with a binary operation $[-,-]$ which is graded-antisymmetric, i.e.

$$
[x, y]=-(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)}[y, x]
$$

We say that $[x,-]$ satisfies the graded Leibniz formula if

$$
[x,[y, z]]=[[x, y], z]+(-1)^{\operatorname{deg}(x) \operatorname{deg}(y)}[y,[x, z]]
$$

Show, that in the classical case (i.e. \mathfrak{g} lives only in even gradations) the above identity is equivalent to the Jacobi identity.

2 Let \mathfrak{g} be a Lie algebra (in the usual sense). Show that $\tilde{\mathfrak{g}}=\tilde{\mathfrak{g}}_{-1} \oplus \tilde{\mathfrak{g}}_{0} \oplus \tilde{\mathfrak{g}}_{1}$ with

$$
\iota_{\lambda} \in \tilde{\mathfrak{g}}_{-1}=\mathfrak{g}, \quad \mathcal{L}_{\lambda} \in \tilde{\mathfrak{g}}_{0}=\mathfrak{g} \quad d \in \tilde{\mathfrak{g}}_{1}=\mathbb{R}
$$

with the commutation relations

$$
\begin{array}{lc}
{\left[\iota_{\lambda}, \iota_{\mu}\right]=0, \quad\left[\mathcal{L}_{\lambda}, \iota_{\mu}\right]=\iota_{[\lambda, \mu]},} & {\left[d, \iota_{\lambda}\right]=\mathcal{L}_{\lambda}} \\
{\left[\mathcal{L}_{\lambda}, \mathcal{L}_{\mu}\right]=\mathcal{L}_{[\lambda, \mu]}, \quad\left[\mathcal{L}_{\lambda}, d\right]=0,} & {[d, d]=0}
\end{array}
$$

is a graded Lie algebra.
3 Mathai-Quillen twist: Assume that $P \rightarrow B$ is a \mathbb{T}-principal bundle with a connection

$$
\theta \in \operatorname{Hom}(T P, \mathfrak{t}) \simeq \mathfrak{t} \otimes \Omega^{1}(P)
$$

That is:

1. θ is \mathbb{T}-invariant
2. for $\lambda \in t, x \in P$ the value of θ at x in the fundamental vector field v_{λ} is equal to λ.

In a basis of $\left\{\lambda^{a}\right\} \subset \mathfrak{t}$ we write

$$
\theta=\sum_{a} \lambda^{a} \otimes \theta_{a}
$$

Let X be a \mathbb{T} manifold.

$$
\gamma=\sum \theta_{a} \otimes \iota_{\lambda^{a}} \in \operatorname{End}\left(\Omega^{\bullet}(P) \otimes \Omega^{\bullet}(X)\right)
$$

Show, that γ does not depend on the choice of a basis.
4 Assume that $\operatorname{dim} T=1$ or 2 . Consider \mathbb{T}^{*}-algebras W and A, with W locally free (e.g. $W=W(\mathfrak{t})$. Let

$$
\phi=\exp (\gamma) \in \operatorname{Aut}(W \otimes A)=1+\gamma+\frac{1}{2} \gamma \circ \gamma+\ldots
$$

Check that for any $\lambda \in \mathfrak{t}$

$$
\begin{gathered}
\phi \circ\left(\iota_{\lambda} \otimes 1+1 \otimes \iota_{\lambda}\right) \circ \phi^{-1}=\iota_{\lambda} \otimes 1 \\
\phi \circ(d \otimes 1+1 \otimes d) \circ \phi^{-1}=(d \otimes 1+1 \otimes d)-\sum \nu_{a} \otimes \iota_{\lambda^{a}}+\sum \theta_{a} \otimes \mathcal{L}_{\lambda^{a}}
\end{gathered}
$$

where $\nu_{a}=d \theta_{a}$
5 Let $G=S U(2), \mathfrak{g}=\mathfrak{s u}_{2}=\operatorname{lin}\{i, j, k\}$ with the well known commutation relations $[i, j]=2 k$, etc. Write down explicitly the Chevalley complex computing $H^{*}(S U(2))$. Compare it with $H^{*}(B S U(2))$, check that indeed $H^{*}(B G) \simeq\left(S y m \mathfrak{g}^{*}\right)^{G} \simeq\left(S y m \mathfrak{t}^{*}\right)^{W}$.

6 Define the equivariant intersection form

$$
\begin{gathered}
H_{\mathbb{T}}^{*}(M) \times H_{\mathbb{T}}^{*}(M) \rightarrow H_{\mathbb{T}}^{*}(p t) \\
(a, b) \mapsto \int_{M} a b \in \mathbb{H}_{T}^{*}(p t)
\end{gathered}
$$

Compute the intersection form in the basis $\left[\mathbb{P}^{0}\right],\left[\mathbb{P}^{1}\right],\left[\mathbb{P}^{2}\right]$, where $\mathbb{P}^{i}=\mathbb{P}\left(\operatorname{lin}\left\{\varepsilon_{0}, \ldots, \varepsilon_{i}\right\}\right)$.
[Use Wolfram Mathematica or your favourite formal algebra software for higher dimension \mathbb{P}^{n} 's.]

