Problem list 10-12 December

The space $\mathbb{C}^{2 n}$ is equipped with the canonical non-degenerate antisymmetric 2-form

$$
\omega=\sum_{i=1}^{n} d x_{i} \wedge d x_{n-i+1}
$$

(i.e. the symplectic form). Let $L G_{n} \subset G r_{n}\left(\mathbb{C}^{2 n}\right)$ be the Lagrangian Grassmannian, i.e. the set of isotropic n-subspaces. The torus

$$
\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}, t_{n}^{-1}, \ldots, t_{2}^{-1}, t_{1}^{-1}\right)
$$

acts on $\mathbb{C}^{2 n}$ preserving ω, hence it acts on $L G_{n}$. Let $e_{1}, e_{2}, \ldots, e_{n}, f_{n}, \ldots, f_{2}, f_{1}$ be the Darboux basis. We have found that the fixed points correspond to the choices of subsets $I \subset\{1,2, \ldots, n\}$

$$
p_{I}=\operatorname{lin}\left\{e_{i}, f_{j}: i \in I, j \notin I\right\}
$$

1 Compute the GKM-graph of $L G(n)$.
2 Let $\mathbb{C}^{*} \simeq \mathbb{T}_{0} \subset \mathbb{T}=\left(\mathbb{C}^{*}\right)^{2 n}$ be the 1-dimensional subtorus

$$
\mathbb{T}_{0}=\left\{\left(t^{n}, t^{n-1}, \ldots, t, t^{-1}, \ldots, t^{1-n}, t^{-n}\right) \mid t \in \mathbb{C}^{*}\right\}
$$

Compute the dimension of the Białynicki-Birula cell attached to $p_{I} \in L G(n)$.
3 Finish the proof, that the only 1-dimensional orbits in $G r_{k}\left(\mathbb{C}^{n}\right)$ correspond to exchanging one element in the subset $I \subset\{1,2, \ldots, n\},|I|=k$.

4 Using AB-BV formula compute the equivariant $\int_{L G(2)} c_{1}\left(\gamma^{*}\right)^{k}$ for $k=3,4$, where γ is the tautological bundle on $L G(2)$.

5 Let γ be the tautological bundle over the Grassmannian $G r_{2}\left(\mathbb{C}^{4}\right)$. Compute the equivariant pushforward to the point

$$
\int_{G r_{2}\left(\mathbb{C}^{4}\right)} c_{2}\left(\gamma^{*}\right)^{n}
$$

Show that the result is equal to the Schur function for $\lambda=(n-2, n-2,0,0)$ if $n \geqslant 2$. If possible generalize this calculus.

Hint $c_{2}\left(L_{1} \oplus L_{2}\right)^{n}=S_{\lambda}\left(c_{1}\left(L_{1}\right), c_{1}\left(L_{2}\right)\right)$ for $\lambda=(n, n)$. Use Laplace block-expansion.
6 Let $X_{1} \subset G r_{2}\left(\mathbb{C}^{n}\right)$ be (the Schubert variety) defined by

$$
X_{1}=\left\{W \in G r_{2}\left(\mathbb{C}^{4}\right) \mid W \cap \operatorname{lin}\left\{\varepsilon_{1}, \varepsilon_{2}\right\} \neq 0\right\}
$$

Compute an equation of X_{1} in neighbourhoods of the fixed points $\operatorname{lin}\left\{\varepsilon_{i}, \varepsilon_{j}\right\}$. Compute the restriction of the fundamental class $\left[X_{1}\right]$ to the fixed points.

Hint: to compute the restriction of $\left[X_{1}\right]$ at $\operatorname{lin}\left\{\varepsilon_{i}, \varepsilon_{j}\right\}$ one can use the divisibility relations or the fact that $\int_{G r_{2}}\left(\mathbb{C}^{4}\right)\left[X_{1}\right]=0$.

