Some problems at the beginning

1 [Done] Let S^1 act on a smooth manifold M, and let $p \in M$ be an isolated fixed point. Let v be the fundamental vector field, e.g.

$$v(x) = \frac{d}{dt} t x_{|t=0} \,.$$

Compute the index of v at p.

(You can assume that $M = \mathbb{R}^n$ and the action is linear.)

2 [Done] Let p be a prime number. Let M be a compact smooth manifold with $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ smooth action. Show that $\chi(M) \equiv_p \chi(M^{\mathbb{Z}_p})$ not using triangulations. Generalize the result for p-groups and S^1 .

3 [Done] Show that if \mathbb{Z}_p acts without fixed points on a contractible spaces X, then X cannot be a compact manifold nor simplicial complex.

(*) Also, X cannot be a finite dimensional CW-complex (not not necessarily compact).

4 Let X be an algebraic variety over \mathbb{C} , Y a subvariety. Show that $\chi(X) = \chi(Y) + \chi(X \setminus Y)$. (Assume that X and Y are smooth, eventually generalize. See Sullivan, D. Combinatorial invariants of analytic spaces, Lecture Notes in Math., Vol. 192 Springer-Verlag, Berlin-New York, 1971, pp. 165–168.)

5 Describe Białynicki-Birula decomposition of the quadrics: a) $Q = \{z_0z_5 + z_1z_4 + z_2z_3 = 0\} \subset \mathbb{P}^5$ with the action of \mathbb{C}^* (i)

$$t[z_0:z_1:z_2:z_3:z_4:z_5] = [z_0:tz_1:t^2z_2:t^3z_3:t^4z_4:t^5z_5]$$

(ii)

$$[z_0:z_1:z_2:z_3:z_4:z_5] = [z_0:tz_1:tz_2:tz_3:tz_4:t^2z_5]$$

b) $Q = \{z_0 z_4 + z_1 z_3 + z_2^2 = 0\} \subset \mathbb{P}^4$ with the action of \mathbb{C}^*

t

$$t \cdot [z_0 : z_1 : z_2 : z_3 : z_4] = [z_0 : tz_1 : t^2 z_2 : t^3 z_3 : t^4 z_4]$$

6 Fix integers w_0, w_1, \ldots, w_n . Let \mathbb{C}^* act on the projective space \mathbb{P}^n by the formula

$$t \cdot [z_0 : z_1 : \dots, z_n] = [t^{w_0} z_0 : t^{w_1} z_1 : \dots, t^{w_n} z_n].$$

What are the fixed points? Describe Białynicki-Birula cells. What are their dimensions.

7 Let $(\mathbb{C}^*)^{n+1}$ act on the projective space \mathbb{P}^n by the formula

$$(t_0, t_1, \dots, t_n) \cdot [z_0 : z_1 : \dots, z_n] = [t_0 z_0 : t_1 z_1 : \dots, t_n z_n].$$

Consider the compact torus $T_0 = (S^1)^{n+1}$ defined by $|t_i| = 1$. Show that the map

$$\mu : \mathbb{P}^n \to \mathbb{R}^{n+1}$$
$$\mu([z_0 : z_1 : \dots, z_n]) = \frac{1}{\sum_{k=0}^n |z_k|^2} (|z_0|^2, |z_1|^2, \dots, |z_n|^2)$$

is well defined and the fibers are exactly the orbits of T_0 .