## Some problems at the beginning

1 [Done] Let $S^{1}$ act on a smooth manifold $M$, and let $p \in M$ be an isolated fixed point. Let $v$ be the fundamental vector field, e.g.

$$
v(x)=\frac{d}{d t} t x_{\mid t=0}
$$

Compute the index of $v$ at $p$.
(You can assume that $M=\mathbb{R}^{n}$ and the action is linear.)
2 [Done] Let $p$ be a prime number. Let $M$ be a compact smooth manifold with $\mathbb{Z}_{p}=\mathbb{Z} / p \mathbb{Z}$ smooth action. Show that $\chi(M) \equiv_{p} \chi\left(M^{\mathbb{Z}_{p}}\right)$ not using triangulations. Generalize the result for $p$-groups and $S^{1}$.

3 [Done] Show that if $\mathbb{Z}_{p}$ acts without fixed points on a contractible spaces $X$, then $X$ cannot be a compact manifold nor simplicial complex.
$\left(^{*}\right)$ Also, $X$ cannot be a finite dimensional CW-complex (not not necessarily compact).
4 Let $X$ be an algebraic variety over $\mathbb{C}, Y$ a subvariety. Show that $\chi(X)=\chi(Y)+\chi(X \backslash Y)$. (Assume that $X$ and $Y$ are smooth, eventually generalize. See Sullivan, D. Combinatorial invariants of analytic spaces, Lecture Notes in Math., Vol. 192 Springer-Verlag, Berlin-New York, 1971, pp. 165-168. )

5 Describe Białynicki-Birula decomposition of the quadrics:
a) $Q=\left\{z_{0} z_{5}+z_{1} z_{4}+z_{2} z_{3}=0\right\} \subset \mathbb{P}^{5}$ with the action of $\mathbb{C}^{*}$
(i)

$$
t\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}: z_{5}\right]=\left[z_{0}: t z_{1}: t^{2} z_{2}: t^{3} z_{3}: t^{4} z_{4}: t^{5} z_{5}\right]
$$

(ii)

$$
t\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}: z_{5}\right]=\left[z_{0}: t z_{1}: t z_{2}: t z_{3}: t z_{4}: t^{2} z_{5}\right]
$$

b) $Q=\left\{z_{0} z_{4}+z_{1} z_{3}+z_{2}^{2}=0\right\} \subset \mathbb{P}^{4}$ with the action of $\mathbb{C}^{*}$

$$
t \cdot\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right]=\left[z_{0}: t z_{1}: t^{2} z_{2}: t^{3} z_{3}: t^{4} z_{4}\right]
$$

6 Fix integers $w_{0}, w_{1}, \ldots, w_{n}$. Let $\mathbb{C}^{*}$ act on the projective space $\mathbb{P}^{n}$ by the formula

$$
t \cdot\left[z_{0}: z_{1}: \ldots, z_{n}\right]=\left[t^{w_{0}} z_{0}: t^{w_{1}} z_{1}: \ldots, t^{w_{n}} z_{n}\right]
$$

What are the fixed points? Describe Białynicki-Birula cells. What are their dimensions.
7 Let $\left(\mathbb{C}^{*}\right)^{n+1}$ act on the projective space $\mathbb{P}^{n}$ by the formula

$$
\left(t_{0}, t_{1}, \ldots, t_{n}\right) \cdot\left[z_{0}: z_{1}: \ldots, z_{n}\right]=\left[t_{0} z_{0}: t_{1} z_{1}: \ldots, t_{n} z_{n}\right]
$$

Consider the compact torus $T_{0}=\left(S^{1}\right)^{n+1}$ defined by $\left|t_{i}\right|=1$. Show that the map

$$
\begin{gathered}
\mu: \mathbb{P}^{n} \rightarrow \mathbb{R}^{n+1} \\
\mu\left(\left[z_{0}: z_{1}: \ldots, z_{n}\right]\right)=\frac{1}{\sum_{k=0}^{n}\left|z_{k}\right|^{2}}\left(\left|z_{0}\right|^{2},\left|z_{1}\right|^{2}, \ldots,\left|z_{n}\right|^{2}\right)
\end{gathered}
$$

is well defined and the fibers are exactly the orbits of $T_{0}$.

