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1 Examples first
1.1 Topological groups [Bredon: Introduction to compact transformation groups, chapter 0]

1.2 Let G be a topolpgical T} space with continuous map
m:GxG— G, v:G—G

satisfying the axiom of a group
— the multiplication p,

— taking the inverse v.

e In other words G is a ,,group object” in the category of topological spaces.

1.3 Examples
- discrete groups
- K4, K* for K =R, C or H (quaternions)
- compact torus (S1)"
- complex torus (C*)"
- 83 as a subgroup of H*
- U(n), SU(n) subgroups of GL,(C), SL,(C)
- O(n), SO(n) subgroups of GL,(R), SL,(R)
- Sp(n) the subgroup of GL, (H) preserving the norm |v|> = 3% | |v;[?
- matrix groups preserving a given quadratic form (or other structure, e.g. the octonionic multiplication)
- O(m,n), the subgroup of GL,1,(R) preserving a nondegenerate symmetric form of the type (m,n).
- groups of isometries of a compact Riemannian manifold (can be realized as a matrix group)

- Heisenberg group N/Z where

1 % % 10 z
N=[o 1 x|, Zz=[0o1 0
001 00 1

cannot be realized as a matrix group
1.4 Exercise: U(n), SU(n), SO(n), Sp(n) are connected, O(n) has two components

1.5 Exercise: m1(U(n)) = Z, m(SU(n)) = 1, m1(SO(n)) = Z for n > 3 (long exact sequence of
homotopy groups needed)

1.6 Exercise: Elements of Sp(n) preserve the form H" x H" — H given by (v, w) = > | v;W;.

1.7 Two approaches to Lie groups
- study of compact Lie groups

- study of complex algebraic reductive groups (definition later)



1.8 Noncompact or nonreductive groups are more difficult; theory of nilpotent or solvable groups is

a separate subject.

1.9 But any connected Lie group G contains a maximal compact subgroup K (which is unique up to

a conjugation) and as a topological space G ~ K x R". (Cartan-Iwasawa-Malcev Theorem)

1.10 For every connected complex linear semisimple (to be defined later) group we have a decompo-

sition (as a topological space)
G=KxAxN

where K is maximal compact, A ~ RF, N is a nilpotent group, ~ R’ as a topological space. This is

Iwasawa decomposition. The special case is the Gram-Schmidt orthogonalization process
GL,(R) =0(n) X (Rso)" x N
where N consist of the upper-triangular matrices with 1’s at the diagonal.
1.11 Every compact Lie group can be embedded into U(n) as a closed subgroup.

1.12 Classification of compact connected groups [Cartan]: every such G is of the form G/A, where
A is a finite abelian group and G = Hle H; and H; is a torus (S')” or a simple! simply-connected
compact group, which is of the form

e SU(n) (Type Ap-1)
X € Muun(C), det(X) =1, X X =1

e SO(n) = Spin(n) (Type B, for n = 2m + 1 or Type D,, for n = 2m). Here SO(n) means the

two-fold cover.

— X € Myyn(R),det(X) =1, XTX =1

e Sp(n) (Type Cy)
— X € Myyn(H), X X =1

e Exceptional group of the type Fg, E7, Eg, Go or Fy

1.13 Definitions of the compact simple Lie groups have common pattern, while the field varies

e C — Type A,, (preserving hermitian product)
e R — Type B,, and D,, (preserving scalar product)
e H — Type C,, (preserving scalar product in the quaternionic space)

e octonions O are related to exceptional groups, e.g. G2 = Aut(Q) preserving scalar product

1.14 For each compact Lie group G there exists a complex Lie group G, the complexification of G,
in which G is the maximal compact subgroup. The group G is defined by a polynomial formula in

GLN(C) for some N

!Simple Lie group means that the every proper normal subgroups is finite.



e SL(n,C) (Type A1)

—_—

e SO, (C) = Spin,(C) (Type By, for n = 2m + 1 or Type D,, for n — 2m), where SO, (C) is a

subgroup of SL,(C) preserving a fixed nondegenerate symmetric form.

e Sp,(C) (Type C,), where Sp,(C) is a subgroup of GLs,(C) preserving a fixed nondegenerate

antisymmetric form.

e Complex exceptional group of the type Eg, E7, Eg, G or Fy, eg. (G2)c C GL7(C) is the group

preserving certain exterior 3-form.

1.15 Exercise: The real symplectic group Sp,(R) C GL2,(R) (appears in real symplectic geometry

or in classical mechanics) is noncompact and its maximal compact subgroup is equal to U(n).
Topological properties

1.16 Exercise: show that the continuity of multiplication and the inverse is equivalent to:

e cquivalently ¢ : G2 — G2, ¢(g,h) = (g, gh) is a homeomorphism
1.17 Exercise: Suppose H < G is a subgroup. Then the action G x G/G — G/H is continuous.

1.18 Theorem. Suppose H < (G is a subgroup. Then
e the quotient 7 : G — G/H map is open:

o To show that 7(U) is open in G/H one has to check, that 7= '7(U) is open in G. That is so since
7 (U) = Upen Uh-

1.19 If H is closed, then the space G/H is regular [every closed subset F of G/H and a point p not

contained in gH admit non-overlapping open neighborhoods; hence G/H is Hausdorff].

o We can assume g = 1. The coset 1H is closed in G/H. To find desired nieghbourhoods it is enough
to find open sets U,V C G, 1 € U NV, such that

x  vn( |J Ug) =0
ken—1(F)
(since by 1.18 the image 7(V) is open). Consider the map a : G> — G, a(g,h) = g~ 'h. The set
a Y(G\ 771(F)) is open in G? and contains (1,1). Thus (by the definition of the product topology)
there exist open sets U, V such that (1,1) € U x V and U x V C o }(G \ #~}(F)). This means: for
geU,heV: g-th & n~Y(F). Hence (*) holds as desired.

1.20 Corollary: Any topological group is a regular topological space.

1.21 Theorem: Let G be the connected component of 1 € G. (It is the biggest set, which is connected

and contains 1.) Then
e (59 is a closed normal subgroup.
e If Gy is open, then G/G) is a discrete group.

o Proof that Gy is closed. Suppose H = Gy, g € H \ Go. Then Gy U {g} is not connected (since it is
bigger than Gy), thus there exist U 5 g, U N Gy = (. This contradicts that g lies in the closure.



1.22 If G is a connected topological group, then any open neighbourhood of the identity generates
the group.
o Let U be a neighbourhood of 1. We can assume U is connected. The group H = (U) generated by
U is connected and open. Suppose g ¢ H. Then gU N H = ). (Otherwise k € gU N K, so g = kh™1,
h € U.) It follows, that the set V = (J, ¢, gU is a disjoint from K. Thus G = K UV which contradicts

connectedness.
1.23 Exercise: A normal discrete subrgroup of a connected group lies in its center.

Lie groups
From now on we assume that G is a C'"°°-manifold, u, v are smooth. Homomorphism of Lie groups are
assumed to be smooth maps. (It is enough to assume that p is C*, smoothness follows. Smoothness of

v follows from continuity.)

1.24 Any subgroup of a Lie group, which is a submanifold, is closed. The converse is also true (closed
= submanifold), but it is harder. By a closed Lie subrgroup we understand a subgroup, which is a

submanifold.
1.25 Note that there are subsets, which are subgroups, and admit a structure of a Lie group. E.g.
¢:R— St xS,

¢(t) — (627rt7 e27ri)\t)

for A € Q. Here the map ¢ is not a homeomorphism on the image. The group ¢(R) is not a Lie subgroup

according to our convention.



