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1 Examples first

1.1 Topological groups [Bredon: Introduction to compact transformation groups, chapter 0]

1.2 Let G be a topolpgical T1 space with continuous map

m : G×G → G , ν : G → G

satisfying the axiom of a group

– the multiplication µ,

– taking the inverse ν.

• In other words G is a ,,group object” in the category of topological spaces.

1.3 Examples

- discrete groups

- K+, K∗ for K = R,C or H (quaternions)

- compact torus (S1)r

- complex torus (C∗)r

- S3 as a subgroup of H∗

- U(n), SU(n) subgroups of GLn(C), SLn(C)

- O(n), SO(n) subgroups of GLn(R), SLn(R)

- Sp(n) the subgroup of GLn(H) preserving the norm |v|2 =
∑n

i=1 |vi|2

- matrix groups preserving a given quadratic form (or other structure, e.g. the octonionic multiplication)

- O(m,n), the subgroup of GLm+n(R) preserving a nondegenerate symmetric form of the type (m,n).

- groups of isometries of a compact Riemannian manifold (can be realized as a matrix group)

- Heisenberg group N/Z where

N =

1 ∗ ∗
0 1 ∗
0 0 1

 , Z =

1 0 Z
0 1 0
0 0 1


cannot be realized as a matrix group

1.4 Exercise: U(n), SU(n), SO(n), Sp(n) are connected, O(n) has two components

1.5 Exercise: π1(U(n)) = Z, π1(SU(n)) = 1, π1(SO(n)) = Z2 for n ≥ 3 (long exact sequence of

homotopy groups needed)

1.6 Exercise: Elements of Sp(n) preserve the form Hn × Hn → H given by (v, w) =
∑n

i=1 viwi.

1.7 Two approaches to Lie groups

- study of compact Lie groups

- study of complex algebraic reductive groups (definition later)
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1.8 Noncompact or nonreductive groups are more difficult; theory of nilpotent or solvable groups is

a separate subject.

1.9 But any connected Lie group G contains a maximal compact subgroup K (which is unique up to

a conjugation) and as a topological space G ≃ K × Rn. (Cartan-Iwasawa-Malcev Theorem)

1.10 For every connected complex linear semisimple (to be defined later) group we have a decompo-

sition (as a topological space)

G = K ×A×N

where K is maximal compact, A ≃ Rk, N is a nilpotent group, ≃ Rℓ as a topological space. This is

Iwasawa decomposition. The special case is the Gram-Schmidt orthogonalization process

GLn(R) = O(n)× (R>0)
n ×N

where N consist of the upper-triangular matrices with 1’s at the diagonal.

1.11 Every compact Lie group can be embedded into U(n) as a closed subgroup.

1.12 Classification of compact connected groups [Cartan]: every such G is of the form G̃/A, where

A is a finite abelian group and G̃ =
∏k

i=1Hi and Hi is a torus (S1)r or a simple1 simply-connected

compact group, which is of the form

• SU(n) (Type An−1)

— X ∈ Mn×n(C), det(X) = 1, X
T
X = I

• S̃O(n) = Spin(n) (Type Bm for n = 2m + 1 or Type Dn for n = 2m). Here S̃O(n) means the

two-fold cover.

— X ∈ Mn×n(R), det(X) = 1, XTX = I

• Sp(n) (Type Cn)

— X ∈ Mn×n(H), X
T
X = I

• Exceptional group of the type E6, E7, E8, G2 or F4

1.13 Definitions of the compact simple Lie groups have common pattern, while the field varies

• C – Type An (preserving hermitian product)

• R – Type Bn and Dn (preserving scalar product)

• H – Type Cn (preserving scalar product in the quaternionic space)

• octonions O are related to exceptional groups, e.g. G2 = Aut(O) preserving scalar product

1.14 For each compact Lie group G there exists a complex Lie group GC, the complexification of G,

in which G is the maximal compact subgroup. The group GC is defined by a polynomial formula in

GLN (C) for some N

1Simple Lie group means that the every proper normal subgroups is finite.
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• SL(n,C) (Type An−1)

• ˜SOn(C) = Spinn(C) (Type Bm for n = 2m + 1 or Type Dn for n − 2m), where SOn(C) is a

subgroup of SLn(C) preserving a fixed nondegenerate symmetric form.

• Spn(C) (Type Cn), where Spn(C) is a subgroup of GL2n(C) preserving a fixed nondegenerate

antisymmetric form.

• Complex exceptional group of the type E6, E7, E8, G2 or F4, eg. (G2)C ⊂ GL7(C) is the group

preserving certain exterior 3-form.

1.15 Exercise: The real symplectic group Spn(R) ⊂ GL2n(R) (appears in real symplectic geometry

or in classical mechanics) is noncompact and its maximal compact subgroup is equal to U(n).

Topological properties

1.16 Exercise: show that the continuity of multiplication and the inverse is equivalent to:

• equivalently ϕ : G2 → G2, ϕ(g, h) = (g, gh) is a homeomorphism

1.17 Exercise: Suppose H ≤ G is a subgroup. Then the action G×G/G → G/H is continuous.

1.18 Theorem. Suppose H ≤ G is a subgroup. Then

• the quotient π : G → G/H map is open:

◦ To show that π(U) is open in G/H one has to check, that π−1π(U) is open in G. That is so since

π−1π(U) =
⋃

h∈H Uh.

1.19 If H is closed, then the space G/H is regular [every closed subset F of G/H and a point p not

contained in gH admit non-overlapping open neighborhoods; hence G/H is Hausdorff].

◦ We can assume g = 1. The coset 1H is closed in G/H. To find desired nieghbourhoods it is enough

to find open sets U, V ⊂ G, 1 ∈ U ∩ V , such that

(∗) V ∩
( ⋃
k∈π−1(F )

Ug
)
= ∅ .

(since by 1.18 the image π(V ) is open). Consider the map α : G2 → G, α(g, h) = g−1h. The set

α−1(G \ π−1(F )) is open in G2 and contains (1, 1). Thus (by the definition of the product topology)

there exist open sets U , V such that (1, 1) ∈ U × V and U × V ⊂ α−1(G \ π−1(F )). This means: for

g ∈ U , h ∈ V : g−1h ̸∈ π−1(F ). Hence (*) holds as desired.

1.20 Corollary: Any topological group is a regular topological space.

1.21 Theorem: LetG0 be the connected component of 1 ∈ G. (It is the biggest set, which is connected

and contains 1.) Then

• G0 is a closed normal subgroup.

• If G0 is open, then G/G0 is a discrete group.

◦ Proof that G0 is closed. Suppose H = G0, g ∈ H \ G0. Then G0 ∪ {g} is not connected (since it is

bigger than G0), thus there exist U ∋ g, U ∩G0 = ∅. This contradicts that g lies in the closure.
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1.22 If G is a connected topological group, then any open neighbourhood of the identity generates

the group.

◦ Let U be a neighbourhood of 1. We can assume U is connected. The group H = ⟨U⟩ generated by

U is connected and open. Suppose g ̸∈ H. Then gU ∩H = ∅. (Otherwise k ∈ gU ∩K, so g = kh−1,

h ∈ U .) It follows, that the set V =
⋃

g ̸∈K gU is a disjoint from K. Thus G = K ⊔V which contradicts

connectedness.

1.23 Exercise: A normal discrete subrgroup of a connected group lies in its center.

Lie groups

From now on we assume that G is a C∞-manifold, µ, ν are smooth. Homomorphism of Lie groups are

assumed to be smooth maps. (It is enough to assume that µ is C1, smoothness follows. Smoothness of

ν follows from continuity.)

1.24 Any subgroup of a Lie group, which is a submanifold, is closed. The converse is also true (closed

⇒ submanifold), but it is harder. By a closed Lie subrgroup we understand a subgroup, which is a

submanifold.

1.25 Note that there are subsets, which are subgroups, and admit a structure of a Lie group. E.g.

ϕ : R → S1 × S1 ,

ϕ(t) = (e2πt, e2πiλt)

for λ ̸∈ Q. Here the map ϕ is not a homeomorphism on the image. The group ϕ(R) is not a Lie subgroup

according to our convention.
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