Lie Groups and Algebras 2024

25.4.2024
http://www.mimuw.edu.pl/\~aweber/

6 Lecture 04.04. Examples, complexification

6.1 (Summary) Every compact Lie group G contains a maximal torus $T \simeq\left(S^{1}\right)^{r}$.

- All maxima tori are conjugate
- $\mathfrak{t}=\mathfrak{g}^{T}$
- If G is connected, $g \in G$, then there exist $h \in G$, such that $g \in h T h^{-1}$. In other words

$$
\bigcup_{h \in G} h T h^{-1}=G .
$$

- The Weyl group $N(T) / T$ is finite and acts on T.
- If $g, h \in T$ are conjugate in G, then they lie in the same W-orbit.
6.2 Example: $U(n) \subset \mathrm{GL}_{n}(\mathbb{C})$. The maximal torus consists of diagonal matrices.
- Lie algebra: since $U(n)=\left\{A \in \mathrm{GL}_{n}(\mathbb{C}): \bar{A}^{T} A=I\right\}$,

$$
\mathfrak{u}(n)=\left\{A \in \mathfrak{g l}_{n}(\mathbb{C}): \bar{A}^{T}+A=0\right\}
$$

The maximal torus is of rank r, a distinguished example of a maximal torus of consists of diagonal matrices. The action of the matrix $t=\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in T$ on $\mathfrak{g l}_{n}(\mathbb{C})$:

$$
\begin{aligned}
& t\left\{a_{i j}\right\} t^{-1}=\left\{t_{i} t_{j}^{-1} a_{i j}\right\} . \\
& \mathfrak{g l}_{n}(\mathbb{C})=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{i \neq j} V_{i j} .
\end{aligned}
$$

Here $\mathfrak{t}_{\mathbb{C}}$ consists of diagonal matrices with entries $a_{i i} \in \mathbb{C}$, while the Lie algebra of T consists of the matrices with purely imaginary entries. The space $V_{i j}$ consists of matrices having everywhere 0 except the $a_{i j}$. This is a decomposition of complex T-representations. The associated weights re equal to $t_{i}-t_{j}$.

- The Lie algebra $\mathfrak{u}(n)$ decomposes as

$$
\mathfrak{t}=\mathfrak{u}(n)^{T} \oplus \bigoplus_{i<j} V_{i j}^{\prime}
$$

where $V_{i j}^{\prime}=\left(V_{i j} \oplus V_{j i}\right) \cap \mathfrak{u}(n)$
6.3 Examples: $S O(n) \subset \mathrm{GL}_{n}(\mathbb{R})$. Let $r=\left\lfloor\frac{n}{2}\right\rfloor$. An example of a maximal torus consists of 2×2-block diagonal matrices with rotations in each block. There are r blocks, and if $2 r<n$, then the S-E corner entry is equal to 1 . For example for $n=3$

$$
\left(\begin{array}{ccc}
\cos (t) & -\sin (t) & 0 \\
\sin (t) & \cos (t) & 1 \\
0 & 0 & 1
\end{array}\right)
$$

- Exercise: use elementary linear algebra to show that it indeed is a maximal torus.

$$
\mathfrak{s o}(n)=\left\{A \in \mathfrak{g l}_{n}(\mathbb{R}): A^{T}+A=0\right\}
$$

To see decomposition of $\mathfrak{s o}(n)$ as T representation it is convenient to pass to the complexofication. Let $S O_{n}(\mathbb{C})$ be the group preserving the complex 2-linear form defined by the matrix I. Let us focus on the case $n=2 r$. It is convenient to change coordinates, so that the 2 -linear form is given by the matrix $Q=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$. The associated quadratic form is equal to

$$
\sum_{i=1}^{r} x_{i} x_{i+r}
$$

In new coordinates the complexification of the torus consists of the diagonal matrices

$$
\operatorname{diag}\left(t_{1}, t_{2}, \ldots, t_{r}, t_{1}^{-1}, t_{2}^{-1}, \ldots, t_{r}^{-1}\right)
$$

Thus

$$
\mathfrak{s o}_{n}(\mathbb{C})=\left\{A \in \mathfrak{g l}_{n}(\mathbb{C}): A^{T} Q+Q A=0\right\}
$$

If $A=\left(\begin{array}{cc}X & Y \\ Z & W\end{array}\right)$, then

$$
Z^{T}+Z=0, \quad Y^{T}+Y=0, \quad W=X^{T} .
$$

- The decomposition of the $\mathfrak{s o}(n) \otimes \mathbb{C}=\mathfrak{s o}_{n}(\mathbb{C})$ has the form

$$
\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus \mathfrak{g}_{\alpha}
$$

where \mathfrak{g}_{α} is the one dimensional representation of the torus with $\alpha=t_{i}-t_{j}$ (with $i \neq j$) or $\pm\left(t_{i}+t_{j}\right)$.

- Note that $\mathfrak{s o}_{n}(\mathbb{C}) \simeq \wedge^{2} \mathbb{C}^{n}$ as T representations:

$$
\wedge^{2}\left(\mathbb{C}^{2 n}\right)=\wedge^{2}\left(\mathbb{C}_{+}^{n} \oplus \mathbb{C}_{-}^{n}\right)=\underbrace{\wedge^{2} \mathbb{C}_{+}^{n}}_{\text {weights } t_{i}+t_{j}} \oplus \underbrace{\left(\mathbb{C}_{+}^{n} \otimes \mathbb{C}_{-}^{n}\right)}_{\text {weights } t_{i}-t_{j}} \oplus \underbrace{\wedge^{2} \mathbb{C}_{-}^{n}}_{\text {weights }-\left(t_{i}+t_{j}\right)}
$$

- Corollary: $\mathfrak{s o}_{n}(\mathbb{C}) \simeq \wedge^{2} \mathbb{C}^{n}$ as $S O(n)$ representations.
6.4 Exercise: Analyse the Lie algebra $\mathfrak{s p}(n)$ and show that $\mathfrak{s p}(\mathfrak{n}) \otimes \mathbb{C} \simeq S y m^{2} \mathbb{C}^{n}$ as T-representation.
6.5 General strategy in Lie theory:

1) complexify the Lie algebra and (if possible) find the corresponding complex Lie group.
2) study representations of the complexified Lie algebra
3) derive conclusions of the group itself.

- Complexification of Lie groups: For a given real Lie group there always exist a complex Lie group with the Lie algebra $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes \mathbb{C}$. The point is to realize this group as a matrix group defined by polynomial identities.
6.6 Definition: Complex linear group is a subgroup of $\mathrm{GL}_{n}(\mathbb{C})$ defined by polynomial identities.
6.7 Definition: A complex linear group is said to be reductive if the category of its representations is semisimple. This means, that every representation admits a decomposition into a direct sum of simple representations.
6.8 The groups $\mathrm{GL}_{n}(\mathbb{C}), S L_{n}(\mathbb{C}), S O_{n}(\mathbb{C}), S p_{n}(\mathbb{C})$ are reductive.
6.9 Fact: any reductive group has an embedding into $\mathrm{GL}_{n}(\mathbb{C})$, such that the image is invariant with respect to the Cartan involution: $\Theta: A \mapsto\left(\bar{A}^{T}\right)^{-1}$.
6.10 Another characterization: the largest connected solvable normal subgroup (the radical) is an algebraic torus $\simeq\left(\mathbb{C}^{*}\right)^{r}$.
6.11 Remark: there are no compact connected linear groups of positive dimension (any algebraic subset of $\mathbb{C}^{n^{2}}$ is finite or noncompact).
6.12 There are equivalences of categories
$\{$ Complex representations of (real) comapact connected, simplyconnected group G \}

$$
\begin{gathered}
\mathfrak{\downarrow} \\
\{\text { Complex representations of } \mathfrak{g}\} \\
\downarrow \\
\{\text { Complex representations of } \mathfrak{g} \mathbb{C}\} \\
\mathfrak{\imath} \\
\text { \{Complex representations of the reductive group } \left.G_{\mathbb{C}}\right\}
\end{gathered}
$$

The last equivalence requires explanation: it is not clear that $G_{\mathbb{C}}$ is an algebraic group. It will follow from classification.
6.13 For any compact group $G \subset U(n)$ it is clear how to define $G_{\mathbb{C}}$. Namely since

$$
\begin{gathered}
\mathfrak{g l}_{n}(\mathbb{C})=\mathfrak{u}(n) \oplus i \mathfrak{u}(n)=\mathfrak{u}(n) \mathbb{C} \\
A=\frac{A-\bar{A}^{T}}{2}+\frac{A+\bar{A}^{T}}{2},
\end{gathered}
$$

hence $\mathfrak{g}_{\mathbb{C}}$ is naturally isomorphic to $\mathfrak{g}+i \mathfrak{g} \subset \mathfrak{g l}_{n}(\mathbb{C})$ and $G_{\mathbb{C}}$ is the corresponding subgroup. It is missing to show that $G_{\mathbb{C}}$ is closed and algebraic.

- Example of $S O_{n}(\mathbb{C})$: suppose $A^{T} A=I$. Let $B=\Theta(A)=\left(\bar{A}^{T}\right)^{-1}$. The equation $B^{T} B=I$ reads as

$$
\left(\left(\bar{A}^{T}\right)^{-1}\right)^{T} \cdot\left(\bar{A}^{T}\right)^{-1}=I
$$

i.e.

$$
\bar{A}^{-1} \cdot\left(\bar{A}^{T}\right)^{-1}=I .
$$

Hence

$$
A^{-1} \cdot\left(A^{T}\right)^{-1}=I .
$$

and $A^{T} A=I$.
6.14 The opposite direction of reasoning: Having a reductive group $G_{\mathbb{C}}$, together with embedding into $\mathrm{GL}_{n}(\mathbb{C})$, invariant with respect to the Cartan involution, construct the compact group $K:=G_{\mathbb{C}} \cap U(n)$.
6.15 Properties of the Cartan involution $\Theta: G_{\mathbb{C}} \rightarrow G_{\mathbb{C}}$ and $\theta: \mathfrak{g} \rightarrow \mathfrak{g}, \theta(A)=-\bar{A}^{T}$, see [Knapp §1]

- the fixed points is a compact subgroup $K:=G_{\mathbb{C}}^{\Theta}=G_{\mathbb{C}} \cap U(n)$
- θ is a homomorphism of Lie algebras
- the Lie algebra \mathfrak{g} decomposes into eigenspaces of $\theta: \mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{-1}$
$\circ \mathfrak{k}:=\mathfrak{g}_{1}$ is the Lie algebra of K (here \mathfrak{k} is the $\mathfrak{g o t h i c} \mathrm{k}$).
$\circ \mathfrak{p}:=\mathfrak{g}_{-1}$ satisfies $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$,
$\circ \mathfrak{p}=i \mathfrak{k}$ hence $\mathfrak{g} \simeq \mathfrak{k} \otimes \mathbb{C}$ as complex Lie algebras.
6.16 For $G_{\mathbb{C}}=\mathrm{GL}_{n}(\mathbb{C})$ the space \mathfrak{p} consists of the hermitian (or self-adjoint) matrices matrices $A=\bar{A}^{T}$.
6.17 Corollary: let $\phi, \psi: G \rightarrow H$ homomorphism of complex Lie groups, G reductive, connected. If $\phi_{\mid K}=\psi_{\mid K}$ then $\phi=\psi$.
6.18 The map $K \times \mathfrak{p} \rightarrow G_{\mathbb{C}}$ given by $(g, X) \mapsto g \cdot \exp (X)$ is a diffeomorphism.
6.19 Proof of 6.18 for $G_{\mathbb{C}}=\mathrm{GL}_{n}(\mathbb{C})$: by polar decomposition every invertible matrix A can be written uniquely as $A=Q P$, where $Q \in U(n)$ and $P=\theta(P)$ is positive definite. Any positive definite matrix P has logarithm.
- Reminder from linear algebra course: for $P=\left(A^{*} A\right)^{\frac{1}{2}}, Q=A P^{-1}$ we check $Q Q^{*}=\left(A P^{-1}\right)\left(P^{-1} A^{*}\right)=$ $\left.A\left(A^{*} A\right)^{-1} A^{*}=I\right)$.

7 Lecture 11.04. $S L_{2}(\mathbb{C})$

7.1 Lie group G comes with the adjoint representation: the action by conjugation of G on G fixes e, hence we get $\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g})$.

- If G is connected, then $\operatorname{ker}(A d)=Z(G)$.
7.2 The differential of $A d$, i.e. ad $: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ is given by the commutator $a d_{X}(Y)=[X, Y]$.
- We assume that $G \subset \mathrm{GL}_{n}(\mathbb{C})$ and check the equality for matrices.
- First note that $A d_{A}(Y)=A Y A^{-1}$. Then set $A=e^{t X}$ and differentiate:

$$
\frac{d}{d t}\left(e^{t X} Y e^{-t X}\right)_{\mid t=0}=\left(X e^{t X} Y e^{-t X}+e^{t X} Y(-X) e^{-t X}\right)_{\mid t=0}=X Y-Y X .
$$

7.3 A representations of the Lie algebra \mathfrak{g} is a homomorphism of Lie algebras $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$, where V is a vector space, or equivalently for any $X, Y \in \mathfrak{g}$ and any $v \in V$

$$
\rho(X) \rho(Y) v-\rho(Y) \rho(X) v=\rho([X, Y]) v
$$

7.4 The kernel of the adjoint representation

$$
\operatorname{ker}(a d)=\{X \in \mathfrak{g} \mid \forall Y \in \mathfrak{g}[X, Y]=0\} .
$$

This is called the center of the Lie algebra and denoted by $Z(\mathfrak{g})$. If $Z(\mathfrak{g})=0$, then Ado theorem about embedding of $\mathfrak{g} \hookrightarrow \mathfrak{g l}{ }_{n}$ is for free; \mathfrak{g} embeds in $\operatorname{End}(\mathfrak{g})$.

Representations of $\mathfrak{s l}_{2}(\mathbb{C}), \mathfrak{s u}(2)$
7.5 Groups $S U(2), S L_{2}(\mathbb{C}), S L_{2}(\mathbb{R})$ and relations between their representations.

$$
\mathfrak{s l}_{2}(\mathbb{C})=\mathfrak{s u}(2)_{\mathbb{C}}=\mathfrak{s u}(2) \oplus i \mathfrak{s u}(2)=\mathfrak{s l}_{2}(\mathbb{R})_{\mathbb{C}}
$$

7.6 Action of T allows to decompos $\mathfrak{g}_{\mathbb{C}}=\mathfrak{g} \otimes \mathbb{C}$ into weight spaces

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{t}_{\mathbb{C}} \oplus \bigoplus_{\alpha \in \mathfrak{t}^{*} \backslash 0} \mathfrak{g}_{\alpha}
$$

(α 's are called roots.)

- In the case of $S L_{2}(\mathbb{C})$

$$
\mathfrak{s l}_{2}(\mathbb{C})=\mathfrak{t} \oplus \mathfrak{g}_{2} \oplus \mathfrak{g}_{-2}
$$

$7.7 \mathfrak{s l}_{2}(\mathbb{C})$ is spanned by $H=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), X=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and $Y=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.

- $[X, Y]=H$.
- $[H, X]=2 X$, i.e. $X \in \mathfrak{g}_{2}$
- $[H, Y]=-2 Y$, i.e. $Y \in \mathfrak{g}_{-2}$
7.8 Maximal torus $\mathbb{C}^{*} \hookrightarrow S L_{2}(\mathbb{C})$

$$
t \mapsto\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)
$$

decomposes any representation V into weight spaces $V=\bigoplus_{k \in \mathbb{Z}} V_{k}$. For $v \in V_{k}$:

- $H v=k v$
- $X v \in V_{k+2}$
- $Y v \in V_{k-2}$
- In general:
\circ if $\alpha, \beta \in \mathfrak{t}^{*}$ and
- $X \in \mathfrak{g}_{\alpha}$ (i.e. $\left.\forall H \in \mathfrak{t}[H, X]=\alpha(H) X\right)$,
- and $v \in V_{\beta}$ (i.e. $\left.\forall H \in \mathfrak{t} H v=\beta(H) v\right)$
then $X v \in V_{\alpha+\beta}$.
7.9 Examples of representations of $\mathfrak{s l}_{2}(\mathbb{C})$:
- Natural representation ("defining representation") $V \simeq \mathbb{C}^{2}$
- symmetric powers of the natural representations $\operatorname{Sym}^{k}(V)$
7.10 General construction of the symmetric power:

$$
T^{k}(V)=V \otimes V \otimes \cdots \otimes V \quad k \text { times }
$$

is a representation of the permutation group Σ_{k}. Let

$$
\operatorname{sym}_{k}=\frac{1}{k!} \sum_{\sigma \in \Sigma_{k}} \sigma \in \mathbb{C}\left[\Sigma_{k}\right] .
$$

be the symmetrizing operator: $s y m_{k} \circ s y m \pi_{k}=s y m_{k}$. It acts on $T^{k}(V)$.

$$
\operatorname{Sym}^{k}(V)=T^{k}(V)^{\Sigma_{k}}=\operatorname{im}\left(\operatorname{sym}_{k}\right)=\operatorname{coker}\left(\operatorname{sym}_{k}\right) .
$$

Hence we have two descriptions of $S_{y m}^{k}(V)$

- as Σ_{k}-invariant tensors
- as $T^{k}(V)$ modulo the relation $v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k} \sim v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(k)}$
- The above construction is natural, hence for any G and a representation V of G we have well defined representation $S y m^{k}(V)$.
7.11 The algebra $\mathfrak{s l}_{2}(\mathbb{C})$ is isomorphic to the subalgebra of differential operators in 2 variables generated by $X=x \frac{\partial}{\partial y}$ and $Y=y \frac{\partial}{\partial x}, H=[X, Y]=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$. The natural representation: linear forms, $\operatorname{Sym}^{k}\left(\mathbb{C}^{2}\right) \simeq\{k-$ polynomial forms $\}$.
- $x \frac{\partial}{\partial y}\left(x^{k} y^{\ell}\right)=\ell x^{k+1} y^{\ell-1}$
- $y \frac{\partial}{\partial x}\left(x^{k} y^{\ell}\right)=k x^{k-1} y^{\ell+1}$
7.12 Highest weight vectors in the irreducible representations of $\mathfrak{s l}_{2}(\mathbb{C})$ is a vector $v \in V$ such that $X v=0$.
7.13 [Fulton-Harris, §11] Theorem: irreducible representations of $\mathfrak{s l}_{2}(\mathbb{C})$ (or $\mathfrak{s l}_{2}(\mathbb{R})$ or $\mathfrak{s l}_{2}(\mathbb{Z})$) are isomorphic to $S y m^{k}(V)$. They are characterized by the weight of the vector $v \in \operatorname{ker}(X)$ (highest weight vector), which is a natural number.
7.14 Key Lemma: Suppose $v \in V_{m}$ is a highest weight vector (i.e $\left.X v=0\right)$ then $X Y^{n+1} v=(n+$ 1) $\left(m-n Y^{n} v\right.$.
- $(n=0)$ then $X Y v=[X, Y] v+Y X v=H v=m v$
$\circ(n=1)$ then $X Y^{2} v=[X, Y] Y v+Y X Y v=H Y v+Y(m v)=(m-2+m) Y v$
$\circ(n=2)$ then $X Y^{3} v=[X, Y] Y^{2} v+Y X Y^{2} v=H Y^{2} v+Y((m-2+m) v)=(m-4+m-2+m) Y v$
- ...
7.15 Corollary: if $\operatorname{dim} V<\infty$ then $m \in \mathbb{N}$ and $Y^{m+1} v=0$.
7.16 The representations $S y m^{k} V, k \in \mathbb{N}$ are irreducible, it has the highest vector of the weight k. This is the full list of irreducible representations of $S L_{2}(\mathbb{C})$ (and $S U(2)$ as well).
7.17 Every complex representation of $\mathfrak{s l} l_{2}(\mathbb{C})$ extends to a representation of $S L_{2}(\mathbb{C})$:
- By polar decomposition $S L_{2}(\mathbb{C})=S U(2) \times \mathbb{R}^{3}=S^{3} \times \mathbb{R}^{3}$ as topological spaces, hence $\pi_{1}\left(S L_{2}(\mathbb{C})\right)=$ $\pi_{1}\left(S^{3}\right)=1$. So every representation of $\mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathfrak{g l}(V)$ lifts to $S L_{2}(\mathbb{C}) \rightarrow \mathrm{GL}(V)$.
7.18 Corollary: Every complex/real representation of $\mathfrak{s l} l_{2}(\mathbb{R})$ extends to a representation of $S L_{2}(\mathbb{R})$.
- Proof: complexify.
7.19 If $W=\bigoplus_{n \in \mathbb{N}} S y m^{n}(V)^{\oplus a_{n}}$ as a $\mathfrak{s l} l_{2}(\mathbb{C})$-representation, then $a_{n}=\operatorname{dim} W_{n}-\operatorname{dim} W_{n+2}$.
7.20 Examples of computations $S y m^{k}(V) \otimes V=S y m^{k+1}(V) \oplus \operatorname{Sym}^{k-1}(V)$.
7.21 The character of the representation $S y m^{k}(V)$ restricted to the maximal torus is equal to

$$
t^{-k}+t^{-k+2}+\cdots+t^{k}=\sum_{i+j=k}\left(t^{-1}\right)^{i} t^{j}=\frac{t^{k+1}-t^{-k-1}}{t-t^{-1}}
$$

Z ćwiczeń:

7.22 Trace form defined for $\mathfrak{g l}_{n}(\mathbb{C})$:

$$
B_{0}(X, Y)=\operatorname{Tr}(X Y)
$$

7.23 Suppose $\mathfrak{g} \subset \mathfrak{u}(n)$. Then B_{0} is nondegenerate on $\mathfrak{g}_{\mathbb{C}}$ since $B_{0}(X, \theta(X))=B_{0}(X, \theta(X))$ is real and <0 for $X \neq 0$
7.24 Killing form: $B(X, Y)=\operatorname{Tr}\left(a d_{X} \circ a d_{Y}\right)$. This form is symmetric and G-invariant.
7.25 Killing form is nondegenerate on $\mathfrak{g} / Z(\mathfrak{g})$.

- Beacause this is the form from (7.22) for $G:=\operatorname{Ad}(G)$.
7.26 If G is compact, then B is nonpositive definite:
- Because one can choose a G-invariant metric in \mathfrak{g}, such that $\operatorname{Ad}(G) \subset O(\mathfrak{g})$.

8 Lecture 18.04 - Systems of roots

8.1 Rank of the Lie group $r(G):=\operatorname{dim}(T)$, where T is a maximal torus.
8.2 For compact groups:
$\circ \mathfrak{t}$ is the Lie algebra of the compact maximal torus
$-\mathfrak{t}_{\mathbb{C}}$ the complexification

- $\mathfrak{t}_{\mathbb{Z}}=\operatorname{ker}(\exp : \mathfrak{t} \rightarrow T)$
$\circ \mathfrak{t}_{\mathbb{Z}}^{*}=\operatorname{Hom}\left(\mathfrak{t}_{Z}, \mathbb{Z}\right) \subset \mathfrak{t}^{*}$, here belong the roots of the Lie algebra
8.3 Having chosen $T \subset G$ we decompose

$$
\mathfrak{g}_{\mathbb{C}}=\mathfrak{t} \oplus \bigoplus_{\alpha \in \mathbb{t}_{\mathbb{Z}}^{*} \backslash\{0\}} \mathfrak{g}_{\alpha} .
$$

into eigenspaces

- $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$
-

$$
\mathcal{R}=\left\{\alpha \in \mathfrak{t}^{*} \backslash\{0\}: \mathfrak{g}_{\alpha} \neq 0\right\}
$$

is called the root system. We will show:
8.4 More general: for any representation of G

$$
V=\bigoplus_{\alpha \in t^{*}} V_{\alpha} .
$$

$$
\circ \mathfrak{g}_{\alpha} V_{\beta} \subset V_{\alpha+\beta}
$$

8.5 For an invariant 2-linear form on \mathfrak{g} : if $\alpha+\beta \neq 0$ then $\mathfrak{g}_{\alpha} \perp_{\phi} \mathfrak{g}_{\beta}$.

Proof: for $H \in \mathfrak{t}$

$$
0=\phi\left(H v_{\alpha}, v_{\beta}\right)+\phi\left(v_{\alpha}, H v_{\beta}\right)=\alpha(H) \phi\left(v_{\alpha}, v_{\beta}\right)+\beta(H) \phi\left(v_{\alpha}, v_{\beta}\right)=(\alpha-\beta)(H) \phi\left(v_{\alpha}, v_{\beta}\right)
$$

8.6 Suppose \mathfrak{g} is a Lie algebra of a compactgroup. If $\mathfrak{g}_{\alpha} \neq 0$ then $\mathfrak{g}_{-\alpha} \neq 0$. The invariant scalar product identifies $\mathfrak{t} \simeq \mathfrak{t}^{*}$. Define $H_{\alpha} \in \mathfrak{t}$ such that $\left(H_{\alpha}, v\right)=\alpha(v)$ for $v \in \mathfrak{t}$. Let $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{-\alpha}$ then

$$
[x, y]=(x, y) H_{\alpha}
$$

- Proof:

$$
\begin{gathered}
([x, y], h)+(y,[x, h])=0 \\
([x, y], h)=(y,[h, x])=\alpha(h)(x, y)=\left(H_{\alpha}, h\right)(x, y)
\end{gathered}
$$

8.7 Suppose $(x, y)=\frac{2}{(\alpha, \alpha)}$, then $x, y, h_{\alpha}=2 H_{\alpha} /(\alpha, \alpha)$ is a basis of $\operatorname{lin}\left(x, y, H_{\alpha}\right)$ satisfying the standard relations of $\mathfrak{s l}_{2}$.

$$
\begin{gathered}
{\left[h_{\alpha}, x\right]=\alpha\left(h_{\alpha}\right) x=\left(H_{\alpha}, h_{\alpha}\right) x=\frac{2}{(\alpha, \alpha)}\left(H_{\alpha}, H_{\alpha}\right)} \\
{[x, y]=(x, y) H_{\alpha}=h_{\alpha}}
\end{gathered}
$$

- Corollary: for every root α we have constructed a copy of $\mathfrak{s l}_{2} \in \mathfrak{g}_{\mathbb{C}}$, hance also a copy of $S L_{2}(\mathbb{C})$ in G (or $S U(2)$ in the compact group.) We denote such a coppy by $\mathfrak{s l}_{2}(\mathbb{C})_{\alpha}$
8.8 Let E be a real vector space with a scalar product. An abstract system of roots is a finite set $\mathcal{R} \subset E$ such that

1. The roots $\mathcal{R} \operatorname{span} \mathfrak{t}_{\mathbb{Z}}^{*} \backslash\{0\}$
2. If $\alpha \in \mathcal{R}$ then $-\alpha \in \mathcal{R}$
3. If $\beta \in \operatorname{lin}\{\alpha\}$, then $\beta= \pm \alpha$
4. The reflections in $\alpha \in \mathcal{R}$ preserve \mathcal{R}
5. for $\alpha, \beta \in \mathcal{R}$ the quotient $n_{\alpha, \beta}=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$ is an integer.
(see Kirillov Def 7.1)
8.9 We fix a G-invariant scalar product in \mathfrak{g}, hence we have a W-invariant scalar product in \mathfrak{t} and \mathfrak{t}^{*}. If $Z(G)$ is finite, then the preferred choice is the (minus) Killing form.
8.10 Theorem. Let $\mathcal{R} \subset \mathfrak{t}^{*}$ be the set of roots of a compact Lie group with $Z(G)$ finite. Then it satisfies the axioms of an abstract system of roots. Moreover

- $\operatorname{dim} \mathfrak{g}_{\alpha}=1$ for $\alpha \in \mathcal{R}$
- For $\alpha, \beta \in \mathcal{R}$ the $\mathfrak{s l}_{2}(\mathbb{C})$ representation $\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\beta+k \alpha}$ is irreducible
- For $\alpha, \beta \in \mathcal{R}$ we have $\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right]=\mathfrak{g}_{\alpha+\beta}($ not only,,$\subset ")$
[see Kirillov Theorem 6.44]
8.11 Examples of root systems of rank 2 (from ćwiczenia) $S O(4), S p(2), S O(5)$, see [FuHa §21]
8.12 Lie group $S U(3)$ (and its complexification $S L_{3}(\mathbb{C})$)
$\circ \mathfrak{t}_{\mathbb{C}}=$ diagonal matrices with trace $=0$,
- the Lie algebra of the compact torus: $\operatorname{diag}\left(t_{1}, t_{2}, t_{3}\right)$ s.t. $\operatorname{Re}\left(t_{i}\right)=0, t_{1}+t_{2}+t_{3}=0$

○ weights $L_{i}: \mathfrak{t}_{\mathbb{C}} \rightarrow \mathbb{C}$, i.e. $L_{i} \in \mathfrak{t}_{\mathbb{C}}^{*}, i=1,2,3$

$$
\operatorname{diag}\left(t_{1}, t_{2}, t_{3}\right) \mapsto t_{i}
$$

There is a relation $L_{1}+L_{2}+L_{3}$.

- Roots: $\alpha_{i, j}=L_{i}-L_{j}, i \neq j$
- Cartan numbers

$$
n_{\alpha_{1,2}, \alpha_{2,3}}=2 \frac{((1,-1,0),(0,1,-1))}{((1,-1,0),(1,-1,0))}=-1
$$

$\angle\left(\alpha_{1,2}, \alpha_{2,3}\right)=2 \pi / 3$

8.13 Examples of root systems of rank 2 (from ćwiczenia) $S O(4), S p(2), S O(5)$, see see [FuHa $\S 21]$

- $\mathfrak{s o}(4)=\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$
- $\mathfrak{s p}(2): \mathfrak{t}_{\mathbb{C}} \ni \operatorname{diag}\left(t_{1}, t_{2},-t_{1},-t_{2}\right) \stackrel{L_{i}}{\mapsto} t_{i}$
- Roots $\pm 2 L_{i}$ or $L_{i}-L_{j}$
- For $\alpha \neq \pm \beta$

$$
n_{\alpha, \beta} \in\left\{0, \pm 2 \frac{((1,-1),(2,0))}{((1,-1),(1,-1))}=2, \pm 2 \frac{((2,0),(1,-1))}{((2,0),(2,0))}=1\right\}
$$

- $\mathfrak{s o}(5): \mathfrak{t}_{\mathbb{C}} \ni \operatorname{diag}\left(t_{1}, t_{2},-t_{1},-t_{2}, 0\right) \stackrel{L_{i}}{\mapsto} t_{i}$
- Roots $\pm L_{i}$ or $L_{i}-L_{j}$
$\circ \mathfrak{s o}(5) \simeq \mathfrak{s p}(2)$
8.14 Exceptional G_{2} (it will be later)

8.15 In general there are strong restrictions for $n_{\alpha, \beta}$. The Cartan numbers $n_{\alpha \beta}=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$ satisfy
- $n_{\alpha \beta} n_{\beta \alpha}=4 \cos ^{2}(\angle(\alpha, \beta))$,
- $n_{\alpha \beta} n_{\beta \alpha} \in \mathbb{Z}$, therefore $n_{\alpha \beta} n_{\beta \alpha} \in\{0,1,2,3\}$ for $\alpha \neq \pm \beta$.
- $\angle(\alpha, \beta) \in\left\{30^{\circ}, 45^{\circ}, 90^{\circ}, 120^{\circ}, 135^{\circ}, 150^{\circ}\right\}$
8.16 The Lie algebra $\mathfrak{s l}_{3}(\mathbb{C})$ is spanned by \mathfrak{t} (the diagonal matrices of trace 0) and $E_{i, j} \in \mathfrak{g}_{L_{i}-L_{j}}$

$$
\left[H, E_{i, j}\right]=\left(L_{i}(H)-L_{j}(H)\right) E_{i, j}
$$

i.e. if $H=\operatorname{diag}\left(t_{1}, t_{2}, t_{3}\right)$, then

$$
\left[H, E_{i, j}\right]=\left(t_{i}-t_{j}\right) E_{i, j}
$$

8.17 With this notation we list the basic representations of $S L(3)$

- The defining representation $V=\mathbb{C}^{3}$

The weights L_{1}, L_{2}, L_{3}. The corresponding eigenvectors e_{1}, e_{2}, e_{3}

$$
E_{1,2} e_{1}=0, E_{1,3} e_{1}=0, E_{2,3} e_{1}=0
$$

The highest weight vector $e_{1} \in \bigcap_{i>j} \operatorname{ker}\left(E_{i, j}\right)$ generates whole representation.

- The second exterior power $\wedge^{2} V \simeq V^{*}$.

The weights: $L_{1}+L_{2}=-L_{3}, L_{1}+L_{3}=-L_{2}, L_{2}+L_{3}=-L_{1}$. The corresponding eigenvectors $e_{1} \wedge e_{2}, e_{2} \wedge e_{3}, e_{2} \wedge e_{3}$. The action of $E_{i, j}$ for $i<j$

$$
\begin{aligned}
& E_{12}: e_{1} \wedge e_{2} \mapsto 0 \wedge e_{2}+e_{1} \wedge e_{1}=0 \\
& E_{13}: e_{1} \wedge e_{2} \mapsto 0 \wedge e_{2}+e_{1} \wedge 0=0 \\
& E_{23}: e_{1} \wedge e_{2} \mapsto 0 \wedge e_{2}+e_{1} \wedge 0=0
\end{aligned}
$$

The highest weight vector $e_{1} \wedge e_{2} \in \bigcap_{i>j} \operatorname{ker}\left(E_{i, j}\right)$ generates whole representation.

- $\operatorname{Sym}^{2}(V)=\operatorname{lin}\left\{e_{1}^{2}, e_{2}^{2}, e_{3}^{2}, e_{1} e_{2}, e_{1} e_{3}, e_{2} e_{3}\right\}$. The highest weight vector $e_{1}^{2} \in \bigcap_{i>j} \operatorname{ker}\left(E_{i, j}\right)$ generates whole representation. Equivalently the highest weight vector $e_{3}^{*} \in \bigcap_{i>j} \operatorname{ker}\left(E_{i, j}\right)$ generates V^{*}.
- Some examples of representations of $\mathfrak{s l}_{3}(\mathbb{C})$. In paricular $\operatorname{Sym}^{2}(V) \otimes(V)^{*}$, see Fulton-Harris §12-13. Claim: every irreducible representation of $\mathfrak{s l}_{3}(\mathbb{C})$ is isomorphic to a subrepresentation of $\operatorname{Sym}^{\bullet}(V) \otimes$ $S y m \bullet\left(\wedge^{2} V\right)$. For a representation with the highest weight vector of the weight $(a+b) L_{1}+b L_{2}$ take the
representation generated by $v=\left(e_{1}\right)^{a} \otimes\left(e_{1} \wedge e_{2}\right)^{b}$. The remaining vectors are obtained by application of the operators E_{21}, E_{31}, E_{32} given by the action of elementary matrices.

Proofs of properties of the root system 8.8

8.18 Theorem: Any compact connected Lie group of rank 1 is isomorphic to $S U(2)$ or $S O(3)$ or S^{1}. Proof: Let $n=\operatorname{dim}(G) . G$ acts on $S^{n-1} \subset \mathfrak{g}$ via $A d$. The action $A d$ fixes $=\mathfrak{t}$. Therefore $G / T \rightarrow S^{n-1}$ is a covering, so it has to be a homeomorphism. We get a fibration $S^{1}=T \rightarrow G \rightarrow G / T=S^{n-1}$. If $n>3$ the $\pi_{1}(T) \rightarrow \pi_{1}(G)$ is a monomorphism. The group G contains a subgroup H isomorphic to $S U(2)$ or $S O$ (3) with the Lie algebra $\mathfrak{t} \oplus \mathfrak{g}_{\alpha_{0}} \oplus \mathfrak{g}_{-\alpha_{0}}$, where α_{0} the longest root. There is an element $g \in N(T) \subset H$ such that $A d(g)_{\mid \mathfrak{t}}=-I d: \mathfrak{t} \rightarrow \mathfrak{t}$, so $g t g^{-1}=t^{-1}$. But in G the conjugation by g is homotopic to $I d$. Contradiction. Hence $n \leq 3$.
8.19 Proof of 8.8.1. More general we have $\bigcap_{\alpha \in R} \operatorname{ker}(\alpha)=T(Z(G))$.
8.20 Proof of 8.8.2. \mathfrak{g} is a real representation of T. The summands of the decomposition of $\mathfrak{g}_{\mathbb{C}}$ come in pairs.
8.21 Proof of 8.8.3. For any root α let

$$
\mathfrak{k}_{\alpha}=\mathfrak{t} \oplus \bigoplus_{\beta \text { proportional to } \alpha} \mathfrak{g}_{\beta}
$$

Let K generated by $\exp \left(\mathfrak{k}_{\alpha}\right)$; the roots of the closure have the same kernel as α, hence K closed. By $8.18 \operatorname{dim} K=3$.
8.22 Proof of 8.8.4. The action of $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \in S U(2)_{\alpha}$ is the reflection in $\operatorname{ker}\left(h_{\alpha}\right)$ (denoted by s_{α}). It preserves the root system.
8.23 Proof of 8.8.5. The vector space $W=\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{\beta+k \alpha}$ is a representation of $\mathfrak{s l}_{2}(\mathbb{C})_{\alpha}$. The number $n_{\alpha, \beta}$ is the weight of $v \in \mathfrak{g}_{\beta}$. So it is an integer

$$
\left[h_{\alpha}, v\right]=\frac{2}{(\alpha, \alpha)}\left[H_{\alpha}, v\right]=\frac{2}{(\alpha, \alpha)} \beta\left(H_{\alpha}\right) v=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} v
$$

9 Lecture 25.04. Positive and simple roots, Weyl group

9.1 We have defined the Weyl group as $N T / T$. It acts on \mathfrak{t}^{*} preserving roots. For a root α we have a copy of $S U(2)$ or $S U(2) /\langle \pm I\rangle$ in G, dnoted by K_{α}.

- $N\left(T_{K_{\alpha}}\right) \subset N(T)$ and the nontrivial element of $W_{K_{\alpha}}$ acts as a reflection in α.
- We will identify the Weyl group $N(T) / T$ as the group of isometries of \mathfrak{t}^{*} generated by s_{α}. For the moment we consider abstract root systems and abstract Weyl group generated by the reflections. If we deal with a Lie algebra of a compact group, then the elements s_{α} are realized as the effect of the action of elements from $N(T)$.
9.2 For the root systems of rank 2 (ie. $\operatorname{dim} E=2$) we have - $A_{1} \cup A_{1}$ realized as the root system of $S U(2) \times S U(2)$
- A_{2} realized by $S U(3)$
- B_{2}, also called C_{2} realized by $S O(5)$ or $S p(2)$
- G_{2} given by 8.14

Positive and simple roots [Kirillov 7.4]

9.3 Dividing E into two half-spaces we decompose $\mathcal{R}=\mathcal{R}_{+} \sqcup \mathcal{R}_{-}$.

- The division is given by the $\operatorname{sign}(\alpha, \rho)$, where ρ is a generic vector of \mathfrak{t}^{*}.
9.4 A positive root is simple if cannot be written as a sum of two positive roots. Every positive roots can be written as a sum of simple roots.
9.5 For two simple roots $(\alpha, \beta) \leq 0$. [Kirillov, Lem. 7.11 and 7.14]
- The proof follows from the analysis of root systems of rank 2.
9.6 The set of all simple roots form a basis.
- Obviously it spans
- If $v=\sum a_{i} \alpha_{i}=\sum b_{j} \beta_{j}$ with $a_{i}, b_{j} \geq 0$, then $\|v\|=0$
-

$$
\|v\|^{2}=\sum_{i, j} a_{i} b_{j}\left(\alpha_{i}, \beta_{j}\right) \leq 0
$$

- On the other hand $(v, \rho)>0$. Contradiction.
9.7 Dynkin diagram:
- vertices $=$ simple roots denoted in Kirillov by Π
- edges:

$$
\begin{aligned}
& \text { no edge if } n_{\alpha, \beta}=0 \\
& \alpha-\beta \text { if } n_{\alpha \beta} n_{\beta \alpha}=-1 \\
& \alpha \nLeftarrow \text { if } n_{\alpha \beta} n_{\beta \alpha}=-2,|\alpha|<|\beta| \\
& \alpha \rightleftarrows \beta \text { if } n_{\alpha \beta} n_{\beta \alpha}=-3,|\alpha|<|\beta|
\end{aligned}
$$

9.8 All possible irreducible (i.e. connected) Dynkin diagrams. The longer roots are in colour:

$S U(n+1)$	$S L_{n}(\mathbb{C})$	A_{n}	O-O-0-----0-0
$S O(2 n+1)$	$S O_{2 n+1}(\mathbb{C})$	B_{n}	O-0----- O-O*0
$S p(n)$	$S p_{n}(\mathbb{C})$	C_{n}	O-O-----0-0<0
$S O(2 n)$	$S O_{2 n}(\mathbb{C})$	D_{n}	
		E_{6}	$0-0-0-0$
		E_{7}	$0-0-0-0-0$
		E_{8}	
		F_{4}	$0-\mathrm{O}$
$\operatorname{Aut}(\mathbb{O})$		G_{2}	\bigcirc

9.9 Having chosen division into positive and negative roots one redefine the functional defining the split:

$$
\rho=\frac{1}{2} \sum_{\alpha \in \mathcal{R}_{+}} \alpha
$$

- Theorem: $\rho \in P$.
9.10 Weyl Chambers $=$ connected components of $E \backslash \bigcup_{\alpha \in \mathcal{R}} \mathcal{H}_{\alpha}$, where

$$
\mathcal{H}_{\alpha}=\{\lambda \in E:(\alpha, \lambda)=0\}
$$

- The positive chamber:

$$
C_{+}=\left\{\lambda \in E: \forall_{\alpha \in \mathcal{R}_{+}} \quad(\alpha, \lambda)>0\right\}
$$

- The chamber C_{+}has exactly $n=\operatorname{dim} E$ walls corresponding to simple roots.
- Aplying reflections in walls one can transform C_{+}to any other chamber.

9.11 Weyl group $=$ the group generated by the reflections s_{α}

$$
W=\left\langle s_{\alpha} \mid \alpha \in \mathcal{R}\right\rangle
$$

9.12 Theorem:

- 1) W acts transitively on the set of chambers
- 2) W is generated by the reflections in simple roots
- 3) W acts freely on the set of chambers
- 1) and 2) is easy by a geometric argument
9.13 Suppose $C=w\left(C_{+}\right)$let. Define the length $\ell(w)$

$$
\ell(w)=\left|\left\{\alpha \in \mathcal{R}_{+} \mid w(\alpha) \in \mathcal{R}_{-}\right\}\right|
$$

(Number of walls separating C from C_{0}.)
9.14 Theorem: If $w=s_{\alpha_{1}} s_{\alpha_{2}} \ldots s_{\alpha_{k}}$ is a shortest presentation of $w \in W$, then $k=\ell(w)$.

- From above follows 9.12 .3 . That is the stabilizer of C_{+}consists of elements of w of length 0 , i.e. it consists only of the identity. (Exercise 7.3 in Kirillov.)
9.15 Topological proof of 9.12 .3 with the root system of a compact Lie group: if $g \in N T$ preserves the chamber C_{+}, one may assume $g(X)=X$ for some $X \in C_{+}$. The group topologically generated by $\exp (t X)$ and g is abelian, $\simeq t o r u s \times \mathbb{Z}_{n}$ can be topologically generated by one element, so it is contained in a maximal torus. This torus has to be $T\left(^{*}\right)$. Hence $[g]=1 \in N(T) / T$.
$\circ\left({ }^{*}\right)$ The centralizer of the torus $\exp (t X)$ has the Lie algebra equal to

$$
\mathfrak{t} \oplus \bigoplus_{\alpha: \alpha(X)=0} \mathfrak{g}_{\alpha} .
$$

9.16 Corollary: Since $W_{\text {top }}:=N(T) / T$ acts freely and $W_{\text {alg }}:=\left\langle s_{\alpha}: \alpha \in \mathcal{R}\right\rangle$ acts transitively, thus $W_{t o p}=W_{a l g}$, i.e. two notions of the Weyl group coincide. The Weyl group acts freely and transitively on the set of Weyl chambers.
9.17 The vertices Π of the Dynkin diagram may be treated as generators of W, the number of the edges between α and β, i.e. $n_{\alpha \beta} n_{\beta \alpha}$ encodes the angle $\angle(\alpha, \beta)$. Hence the order the corresponding rotation $s_{\alpha} s_{\beta}$.

- First of all $s_{\alpha}^{2}=1$
- no edge: s_{α}, s_{β} commute $\Longleftrightarrow\left(s_{\alpha} s_{\beta}\right)^{2}=1$
- one edge $\left(s_{\alpha} s_{\beta}\right)^{3}=1$ (equivalently the braid relation $s_{\alpha} s_{\beta} s_{\alpha}=s_{\beta} s_{\alpha} s_{\beta}$)
- double edge $\left(s_{\alpha} s_{\beta}\right)^{4}=1$
- triple edge $\left(s_{\alpha} s_{\beta}\right)^{6}=1$
9.18 Theorem [not so obvious]: These are the relations defining W.
- This is an example of a Coxeter group.

