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6 Lecture 04.04. Examples, complexification

6.1 (Summary) Every compact Lie group G contains a maximal torus T ' (S1)r.

• All maxima tori are conjugate

• t = gT

• If G is connected, g ∈ G, then there exist h ∈ G, such that g ∈ hTh−1. In other words⋃
h∈G

hTh−1 = G .

• The Weyl group N(T )/T is finite and acts on T .

• If g, h ∈ T are conjugate in G, then they lie in the same W -orbit.

6.2 Example: U(n) ⊂ GLn(C). The maximal torus consists of diagonal matrices.

• Lie algebra: since U(n) = {A ∈ GLn(C) : ĀTA = I},

u(n) = {A ∈ gln(C) : ĀT +A = 0}

The maximal torus is of rank r, a distinguished example of a maximal torus of consists of diagonal

matrices. The action of the matrix t = diag(t1, t2, . . . , tn) ∈ T on gln(C):

t{aij}t−1 = {tit−1
j aij} .

gln(C) = tC ⊕
⊕
i 6=j

Vij .

Here tC consists of diagonal matrices with entries aii ∈ C, while the Lie algebra of T consists of the

matrices with purely imaginary entries. The space Vij consists of matrices having everywhere 0 except

the aij . This is a decomposition of complex T -representations. The associated weights re equal to

ti − tj .
• The Lie algebra u(n) decomposes as

t = u(n)T ⊕
⊕
i<j

V ′ij

where V ′ij = (Vij ⊕ Vji) ∩ u(n)

6.3 Examples: SO(n) ⊂ GLn(R). Let r = bn2 c. An example of a maximal torus consists of 2×2-block

diagonal matrices with rotations in each block. There are r blocks, and if 2r < n, then the S-E corner

entry is equal to 1. For example for n = 3cos(t) − sin(t) 0
sin(t) cos(t) 1

0 0 1


• Exercise: use elementary linear algebra to show that it indeed is a maximal torus.
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•
so(n) = {A ∈ gln(R) : AT +A = 0}

To see decomposition of so(n) as T representation it is convenient to pass to the complexofication. Let

SOn(C) be the group preserving the complex 2-linear form defined by the matrix I. Let us focus on

the case n = 2r. It is convenient to change coordinates, so that the 2-linear form is given by the matrix

Q =

(
0 I
I 0

)
. The associated quadratic form is equal to

r∑
i=1

xixi+r

In new coordinates the complexification of the torus consists of the diagonal matrices

diag(t1, t2, . . . , tr, t
−1
1 , t−1

2 , . . . , t−1
r )

Thus

son(C) = {A ∈ gln(C) : ATQ+QA = 0}

If A =

(
X Y
Z W

)
, then

ZT + Z = 0 , Y T + Y = 0 , W = XT .

• The decomposition of the so(n)⊗ C = son(C) has the form

tC ⊕
⊕

gα

where gα is the one dimensional representation of the torus with α = ti − tj (with i 6= j) or ±(ti + tj).

• Note that son(C) ' ∧2Cn as T representations:

∧2(C2n) = ∧2(Cn+ ⊕ Cn−) = ∧2Cn+︸ ︷︷ ︸
weights ti+tj

⊕ (Cn+ ⊗ Cn−)︸ ︷︷ ︸
weights ti−tj

⊕ ∧2Cn−︸ ︷︷ ︸
weights −(ti+tj)

.

• Corollary: son(C) ' ∧2Cn as SO(n) representations.

6.4 Exercise: Analyse the Lie algebra sp(n) and show that sp(n)⊗C ' Sym2Cn as T -representation.

6.5 General strategy in Lie theory:

1) complexify the Lie algebra and (if possible) find the corresponding complex Lie group.

2) study representations of the complexified Lie algebra

3) derive conclusions of the group itself.

• Complexification of Lie groups: For a given real Lie group there always exist a complex Lie group

with the Lie algebra gC = g ⊗ C. The point is to realize this group as a matrix group defined by

polynomial identities.

6.6 Definition: Complex linear group is a subgroup of GLn(C) defined by polynomial identities.

6.7 Definition: A complex linear group is said to be reductive if the category of its representations is

semisimple. This means, that every representation admits a decomposition into a direct sum of simple

representations.
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6.8 The groups GLn(C), SLn(C), SOn(C), Spn(C) are reductive.

6.9 Fact: any reductive group has an embedding into GLn(C), such that the image is invariant with

respect to the Cartan involution: Θ : A 7→ (A
T

)−1.

6.10 Another characterization: the largest connected solvable normal subgroup (the radical) is an

algebraic torus ' (C∗)r.

6.11 Remark: there are no compact connected linear groups of positive dimension (any algebraic

subset of Cn2
is finite or noncompact).

6.12 There are equivalences of categories

{Complex representations of (real) comapact connected, simplyconnected group G}
l

{Complex representations of g}
l

{Complex representations of gC}
l

{Complex representations of the reductive group GC}

The last equivalence requires explanation: it is not clear that GC is an algebraic group. It will follow

from classification.

6.13 For any compact group G ⊂ U(n) it is clear how to define GC. Namely since

gln(C) = u(n)⊕ i u(n) = u(n)C

A = A−AT
2 + A+AT

2 ,

hence gC is naturally isomorphic to g+i g ⊂ gln(C) and GC is the corresponding subgroup. It is missing

to show that GC is closed and algebraic.

◦ Example of SOn(C): suppose ATA = I. Let B = Θ(A) = (A
T

)−1. The equation BTB = I reads

as

((A
T

)−1)T · (AT )−1 = I

i.e.

A
−1 · (AT )−1 = I .

Hence

A−1 · (AT )−1 = I .

and ATA = I.

6.14 The opposite direction of reasoning: Having a reductive group GC, together with embedding into

GLn(C), invariant with respect to the Cartan involution, construct the compact group K := GC∩U(n).

6.15 Properties of the Cartan involution Θ : GC → GC and θ : g→ g, θ(A) = −AT , see [Knapp §1]

• the fixed points is a compact subgroup K := GΘ
C = GC ∩ U(n)

• θ is a homomorphism of Lie algebras
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• the Lie algebra g decomposes into eigenspaces of θ: g = g1 ⊕ g−1

◦ k := g1 is the Lie algebra of K (here k is the gothic k).

◦ p := g−1 satisfies [p, p] ⊂ k, [k, p] ⊂ p,

◦ p = ik hence g ' k⊗ C as complex Lie algebras.

6.16 For GC = GLn(C) the space p consists of the hermitian (or self-adjoint) matrices matrices

A = A
T

.

6.17 Corollary: let φ, ψ : G→ H homomorphism of complex Lie groups, G reductive, connected. If

φ|K = ψ|K then φ = ψ.

6.18 The map K × p→ GC given by (g,X) 7→ g · exp(X) is a diffeomorphism.

6.19 Proof of 6.18 for GC = GLn(C): by polar decomposition every invertible matrix A can be

written uniquely as A = QP , where Q ∈ U(n) and P = θ(P ) is positive definite. Any positive definite

matrix P has logarithm.

• Reminder from linear algebra course: for P = (A∗A)
1
2 , Q = AP−1 we checkQQ∗ = (AP−1)(P−1A∗) =

A(A∗A)−1A∗ = I).

7 Lecture 11.04. SL2(C)

7.1 Lie group G comes with the adjoint representation: the action by conjugation of G on G fixes e,

hence we get Ad : G→ Aut(g).

◦ If G is connected, then ker(Ad) = Z(G).

7.2 The differential of Ad, i.e. ad : g→ End(g) is given by the commutator adX(Y ) = [X,Y ].

• We assume that G ⊂ GLn(C) and check the equality for matrices.

◦ First note that AdA(Y ) = AY A−1. Then set A = etX and differentiate:

d
dt(e

tXY e−tX)|t=0 = (XetXY e−tX + etXY (−X)e−tX)|t=0 = XY − Y X .

7.3 A representations of the Lie algebra g is a homomorphism of Lie algebras ρ : g → gl(V ),

where V is a vector space, or equivalently for any X,Y ∈ g and any v ∈ V

ρ(X)ρ(Y )v − ρ(Y )ρ(X)v = ρ([X,Y ])v

7.4 The kernel of the adjoint representation

ker(ad) = {X ∈ g | ∀Y ∈ g [X,Y ] = 0} .

This is called the center of the Lie algebra and denoted by Z(g). If Z(g) = 0, then Ado theorem about

embedding of g ↪→ gln is for free; g embeds in End(g).

Representations of sl2(C), su(2)

7.5 Groups SU(2), SL2(C), SL2(R) and relations between their representations.

sl2(C) = su(2)C = su(2)⊕ isu(2) = sl2(R)C

4



7.6 Action of T allows to decompos gC = g⊗ C into weight spaces

gC = tC ⊕
⊕
α∈t∗\0

gα.

(α’s are called roots.)

◦ In the case of SL2(C)

sl2(C) = t⊕ g2 ⊕ g−2 .

7.7 sl2(C) is spanned by H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
and Y =

(
0 0
1 0

)
.

◦ [X,Y ] = H.

◦ [H,X] = 2X, i.e. X ∈ g2

◦ [H,Y ] = −2Y , i.e. Y ∈ g−2

7.8 Maximal torus C∗ ↪→ SL2(C)

t 7→
(
t 0
0 t−1

)
decomposes any representation V into weight spaces V =

⊕
k∈Z Vk. For v ∈ Vk:

◦ Hv = kv

◦ Xv ∈ Vk+2

◦ Y v ∈ Vk−2

• In general:

◦ if α, β ∈ t∗ and

◦ X ∈ gα (i.e. ∀H ∈ t [H,X] = α(H)X) ,

◦ and v ∈ Vβ (i.e. ∀H ∈ t Hv = β(H)v)

then Xv ∈ Vα+β.

7.9 Examples of representations of sl2(C):

◦ Natural representation (”defining representation”) V ' C2

◦ symmetric powers of the natural representations Symk(V )

7.10 General construction of the symmetric power:

T k(V ) = V ⊗ V ⊗ · · · ⊗ V k times

is a representation of the permutation group Σk. Let

symk = 1
k!

∑
σ∈Σk

σ ∈ C[Σk] .

be the symmetrizing operator: symk ◦ symπk = symk. It acts on T k(V ).

Symk(V ) = T k(V )Σk = im(symk) = coker(symk) .

Hence we have two descriptions of Symk(V )

◦ as Σk-invariant tensors

◦ as T k(V ) modulo the relation v1 ⊗ v2 ⊗ · · · ⊗ vk ∼ vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k)
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◦
Symk(V ∗) = Polynomial functions on V of degree k

• The above construction is natural, hence for any G and a representation V of G we have well

defined representation Symk(V ).

7.11 The algebra sl2(C) is isomorphic to the subalgebra of differential operators in 2 variables gen-

erated by X = x ∂
∂y and Y = y ∂

∂x , H = [X,Y ] = x ∂
∂x − y

∂
∂y . The natural representation: linear forms,

Symk(C2) ' {k − polynomial forms}.
◦ x ∂

∂y (xky`) = `xk+1y`−1

◦ y ∂
∂x(xky`) = kxk−1y`+1

7.12 Highest weight vectors in the irreducible representations of sl2(C) is a vectorv ∈ V such that

Xv = 0.

7.13 [Fulton-Harris, §11] Theorem: irreducible representations of sl2(C) (or sl2(R) or sl2(Z)) are

isomorphic to Symk(V ). They are characterized by the weight of the vector v ∈ ker(X) (highest

weight vector), which is a natural number.

7.14 Key Lemma: Suppose v ∈ Vm is a highest weight vector (i.eXv = 0) then XY n+1v = (n +

1)(m− nY nv.

◦ (n = 0) then XY v = [X,Y ]v + Y Xv = Hv = mv

◦ (n = 1) then XY 2v = [X,Y ]Y v + Y XY v = HY v + Y (mv) = (m− 2 +m)Y v

◦ (n = 2) then XY 3v = [X,Y ]Y 2v+Y XY 2v = HY 2v+Y ((m− 2 +m)v) = (m− 4 +m− 2 +m)Y v

◦ . . .

7.15 Corollary: if dimV <∞ then m ∈ N and Y m+1v = 0.

7.16 The representations SymkV , k ∈ N are irreducible, it has the highest vector of the weight k.

This is the full list of irreducible representations of SL2(C) (and SU(2) as well).

7.17 Every complex representation of sl2(C) extends to a representation of SL2(C):

◦ By polar decomposition SL2(C) = SU(2)×R3 = S3×R3 as topological spaces, hence π1(SL2(C)) =

π1(S3) = 1. So every representation of sl2(C)→ gl(V ) lifts to SL2(C)→ GL(V ).

7.18 Corollary: Every complex/real representation of sl2(R) extends to a representation of SL2(R).

◦ Proof: complexify.

7.19 If W =
⊕

n∈N Sym
n(V )⊕an as a sl2(C)-representation, then an = dimWn − dimWn+2.

7.20 Examples of computations Symk(V )⊗ V = Symk+1(V )⊕ Symk−1(V ).

7.21 The character of the representation Symk(V ) restricted to the maximal torus is equal to

t−k + t−k+2 + · · ·+ tk =
∑
i+j=k

(t−1)itj =
tk+1 − t−k−1

t− t−1

Z ćwiczeń:
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7.22 Trace form defined for gln(C):

B0(X,Y ) = Tr(XY ).

7.23 Suppose g ⊂ u(n). Then B0 is nondegenerate on gC since B0(X, θ(X)) = B0(X, θ(X)) is real

and < 0 for X 6= 0

7.24 Killing form: B(X,Y ) = Tr(adX ◦ adY ). This form is symmetric and G-invariant.

7.25 Killing form is nondegenerate on g/Z(g).

◦ Beacause this is the form from (7.22) for G := Ad(G).

7.26 If G is compact, then B is nonpositive definite:

◦ Because one can choose a G-invariant metric in g, such that Ad(G) ⊂ O(g).

8 Lecture 18.04 – Systems of roots

8.1 Rank of the Lie group r(G) := dim(T ), where T is a maximal torus.

8.2 For compact groups:

◦ t is the Lie algebra of the compact maximal torus

◦ tC the complexification

◦ tZ = ker(exp : t→ T )

◦ t∗Z = Hom(tZ ,Z) ⊂ t∗, here belong the roots of the Lie algebra

8.3 Having chosen T ⊂ G we decompose

gC = t⊕
⊕

α∈t∗Z\{0}

gα .

into eigenspaces

◦ [gα, gβ] ⊂ gα+β

◦
R = {α ∈ t∗ \ {0} : gα 6= 0}

is called the root system. We will show:

8.4 More general: for any representation of G

V =
⊕
α∈t∗

Vα .

◦ gαVβ ⊂ Vα+β

8.5 For an invariant 2-linear form on g: if α+ β 6= 0 then gα ⊥φ gβ.

Proof: for H ∈ t

0 = φ(Hvα, vβ) + φ(vα, Hvβ) = α(H)φ(vα, vβ) + β(H)φ(vα, vβ) = (α− β)(H)φ(vα, vβ)
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8.6 Suppose g is a Lie algebra of a compactgroup. If gα 6= 0 then g−α 6= 0. The invariant scalar

product identifies t ' t∗. Define Hα ∈ t such that (Hα, v) = α(v) for v ∈ t. Let x ∈ gα, y ∈ g−α then

[x, y] = (x, y)Hα

◦ Proof:

([x, y], h) + (y, [x, h]) = 0

([x, y], h) = (y, [h, x]) = α(h)(x, y) = (Hα, h)(x, y)

8.7 Suppose (x, y) = 2
(α,α) , then x, y, hα = 2Hα/(α, α) is a basis of lin(x, y,Hα) satisfying the

standard relations of sl2.

[hα, x] = α(hα)x = (Hα, hα)x =
2

(α, α)
(Hα, Hα)

[x, y] = (x, y)Hα = hα

◦ Corollary: for every root α we have constructed a copy of sl2 ∈ gC, hance also a copy of SL2(C)

in G (or SU(2) in the compact group.) We denote such a coppy by sl2(C)α

8.8 Let E be a real vector space with a scalar product. An abstract system of roots is a finite set

R ⊂ E such that

1. The roots R span t∗Z \ {0}

2. If α ∈ R then −α ∈ R

3. If β ∈ lin{α}, then β = ±α

4. The reflections in α ∈ R preserve R

5. for α, β ∈ R the quotient nα,β = 2 (α,β)
(α,α) is an integer.

(see Kirillov Def 7.1)

8.9 We fix a G-invariant scalar product in g, hence we have a W -invariant scalar product in t and

t∗. If Z(G) is finite, then the preferred choice is the (minus) Killing form.

8.10 Theorem. Let R ⊂ t∗ be the set of roots of a compact Lie group with Z(G) finite. Then it

satisfies the axioms of an abstract system of roots. Moreover

◦ dim gα = 1 for α ∈ R
◦ For α, β ∈ R the sl2(C) representation

⊕
k∈Z gβ+kα is irreducible

◦ For α, β ∈ R we have [gα, gβ] = gα+β (not only ,,⊂”)

[see Kirillov Theorem 6.44]

8.11 Examples of root systems of rank 2 (from ćwiczenia) SO(4), Sp(2), SO(5), see [FuHa §21]
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8.12 Lie group SU(3) (and its complexification SL3(C))

◦ tC =diagonal matrices with trace =0,

◦ the Lie algebra of the compact torus: diag(t1, t2, t3) s.t. Re(ti) = 0, t1 + t2 + t3 = 0

◦ weights Li : tC → C, i.e. Li ∈ t∗C, i = 1, 2, 3

diag(t1, t2, t3) 7→ ti .

There is a relation L1 + L2 + L3.

◦ Roots: αi,j = Li − Lj , i 6= j

◦ Cartan numbers

nα1,2,α2,3 = 2
((1,−1, 0), (0, 1,−1))

((1,−1, 0), (1,−1, 0))
= −1

∠(α1,2, α2,3) = 2π/3

L1−L1

L2 − L3

L3 − L2

L1 − L3

L1 − L2

L2 − L1

L3 − L1

−L3

−L2

L2

L3

8.13 Examples of root systems of rank 2 (from ćwiczenia) SO(4), Sp(2), SO(5), see see [FuHa §21]

• so(4) = su(2)⊕ su(2)

• sp(2): tC 3 diag(t1, t2,−t1,−t2)
Li7→ ti

◦ Roots ±2Li or Li − Lj
◦ For α 6= ±β

nα,β ∈
{

0 , ±2
((1,−1), (2, 0))

((1,−1), (1,−1))
= 2 , ±2

((2, 0), (1,−1))

((2, 0), (2, 0))
= 1

}
• so(5): tC 3 diag(t1, t2,−t1,−t2, 0)

Li7→ ti

◦ Roots ±Li or Li − Lj
◦ so(5) ' sp(2)

8.14 Exceptional G2 (it will be later)
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L1−L1

L2 − L3

L3 − L2

L1 − L3

L1 − L2

L2 − L1

L3 − L1

−L3

−L2

L2

L3

8.15 In general there are strong restrictions for nα,β. The Cartan numbers nαβ = 2 (α,β)
(α,α) satisfy

• nαβnβα = 4 cos2(∠(α, β)),

• nαβnβα ∈ Z, therefore nαβnβα ∈ {0, 1, 2, 3} for α 6= ±β.

◦ ∠(α, β) ∈ {30o, 45o, 90o, 120o, 135o, 150o}

8.16 The Lie algebra sl3(C) is spanned by t (the diagonal matrices of trace 0) and Ei,j ∈ gLi−Lj

[H,Ei,j ] = (Li(H)− Lj(H))Ei,j

i.e. if H = diag(t1, t2, t3), then

[H,Ei,j ] = (ti − tj)Ei,j

8.17 With this notation we list the basic representations of SL(3)

• The defining representation V = C3

The weights L1, L2, L3. The corresponding eigenvectors e1, e2, e3

E1,2e1 = 0, E1,3e1 = 0, E2,3e1 = 0

The highest weight vector e1 ∈
⋂
i>j ker(Ei,j) generates whole representation.

• The second exterior power ∧2V ' V ∗.
The weights: L1 + L2 = −L3, L1 + L3 = −L2, L2 + L3 = −L1. The corresponding eigenvectors

e1 ∧ e2, e2 ∧ e3, e2 ∧ e3. The action of Ei,j for i < j

E12 : e1 ∧ e2 7→ 0 ∧ e2 + e1 ∧ e1 = 0

E13 : e1 ∧ e2 7→ 0 ∧ e2 + e1 ∧ 0 = 0

E23 : e1 ∧ e2 7→ 0 ∧ e2 + e1 ∧ 0 = 0

The highest weight vector e1 ∧ e2 ∈
⋂
i>j ker(Ei,j) generates whole representation.

• Sym2(V ) = lin{e2
1, e

2
2, e

2
3, e1e2, e1e3, e2e3}. The highest weight vector e2

1 ∈
⋂
i>j ker(Ei,j) generates

whole representation. Equivalently the highest weight vector e∗3 ∈
⋂
i>j ker(Ei,j) generates V ∗.

• Some examples of representations of sl3(C). In paricular Sym2(V )⊗(V )∗, see Fulton-Harris §12-13.

Claim: every irreducible representation of sl3(C) is isomorphic to a subrepresentation of Sym•(V ) ⊗
Sym•(∧2V ). For a representation with the highest weight vector of the weight (a+ b)L1 + bL2 take the
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representation generated by v = (e1)a ⊗ (e1 ∧ e2)b. The remaining vectors are obtained by application

of the operators E21, E31, E32 given by the action of elementary matrices.

Proofs of properties of the root system 8.8

8.18 Theorem: Any compact connected Lie group of rank 1 is isomorphic to SU(2) or SO(3) or S1.

Proof: Let n = dim(G). G acts on Sn−1 ⊂ g via Ad. The action Ad fixes = t. Therefore G/T → Sn−1

is a covering, so it has to be a homeomorphism. We get a fibration S1 = T → G → G/T = Sn−1. If

n > 3 the π1(T ) → π1(G) is a monomorphism. The group G contains a subgroup H isomorphic to

SU(2) or SO(3) with the Lie algebra t ⊕ gα0 ⊕ g−α0 , where α0 the longest root. There is an element

g ∈ N(T ) ⊂ H such that Ad(g)|t = −Id : t → t, so gtg−1 = t−1. But in G the conjugation by g is

homotopic to Id. Contradiction. Hence n ≤ 3. �

8.19 Proof of 8.8.1. More general we have
⋂
α∈R ker(α) = T (Z(G)).

8.20 Proof of 8.8.2. g is a real representation of T . The summands of the decomposition of gC come

in pairs.

8.21 Proof of 8.8.3. For any root α let

kα = t⊕
⊕

β proportional to α

gβ

Let K generated by exp(kα); the roots of the closure have the same kernel as α, hence K closed. By

8.18 dimK = 3.

8.22 Proof of 8.8.4. The action of

(
0 1
−1 0

)
∈ SU(2)α is the reflection in ker(hα) (denoted by sα).

It preserves the root system.

8.23 Proof of 8.8.5. The vector space W =
⊕

k∈Z gβ+kα is a representation of sl2(C)α. The number

nα,β is the weight of v ∈ gβ. So it is an integer

[hα, v] =
2

(α, α)
[Hα, v] =

2

(α, α)
β(Hα)v = 2

(α, β)

(α, α)
v

9 Lecture 25.04. Positive and simple roots, Weyl group

9.1 We have defined the Weyl group as NT/T . It acts on t∗ preserving roots. For a root α we have

a copy of SU(2) or SU(2)/〈±I〉 in G, dnoted by Kα.

◦ N(TKα) ⊂ N(T ) and the nontrivial element of WKα acts as a reflection in α.

◦ We will identify the Weyl group N(T )/T as the group of isometries of t∗ generated by sα. For

the moment we consider abstract root systems and abstract Weyl group generated by the reflections.

If we deal with a Lie algebra of a compact group, then the elements sα are realized as the effect of the

action of elements from N(T ).

9.2 For the root systems of rank 2 (ie. dimE = 2) we have

◦ A1 ∪A1 realized as the root system of SU(2)× SU(2)
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◦ A2 realized by SU(3)

◦ B2, also called C2 realized by SO(5) or Sp(2)

◦ G2 given by 8.14

Positive and simple roots [Kirillov 7.4]

9.3 Dividing E into two half–spaces we decompose R = R+ tR−.

◦ The division is given by the sign (α, ρ), where ρ is a generic vector of t∗.

9.4 A positive root is simple if cannot be written as a sum of two positive roots. Every positive roots

can be written as a sum of simple roots.

9.5 For two simple roots (α, β) ≤ 0. [Kirillov, Lem. 7.11 and 7.14]

◦ The proof follows from the analysis of root systems of rank 2.

9.6 The set of all simple roots form a basis.

• Obviously it spans

• If v =
∑
aiαi =

∑
bjβj with ai, bj ≥ 0, then ||v|| = 0

◦
||v||2 =

∑
i,j

aibj(αi, βj) ≤ 0

◦ On the other hand (v, ρ) > 0. Contradiction.

9.7 Dynkin diagram:

◦ vertices = simple roots denoted in Kirillov by Π

◦ edges:

no edge if nα,β = 0

α−−− β if nαβnβα = −1

α =<= β if nαβnβα = −2, |α| < |β|
α ≡<≡ β if nαβnβα = −3, |α| < |β|

9.8 All possible irreducible (i.e. connected) Dynkin diagrams. The longer roots are in colour:
SU(n+ 1) SLn(C) An
SO(2n+ 1) SO2n+1(C) Bn
Sp(n) Spn(C) Cn

SO(2n) SO2n(C) Dn

E6

E7

E8

F4

Aut(O) G2
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9.9 Having chosen division into positive and negative roots one redefine the functional defining the

split:

ρ = 1
2

∑
α∈R+

α .

◦ Theorem: ρ ∈ P .

9.10 Weyl Chambers = connected components of E \
⋃
α∈RHα, where

Hα = {λ ∈ E : (α, λ) = 0}

◦ The positive chamber:

C+ = {λ ∈ E : ∀α∈R+ (α, λ) > 0}

◦ The chamber C+ has exactly n = dimE walls corresponding to simple roots.

◦ Aplying reflections in walls one can transform C+ to any other chamber.

9.11 Weyl group = the group generated by the reflections sα

W = 〈sα | α ∈ R〉 .

9.12 Theorem:

◦ 1) W acts transitively on the set of chambers

◦ 2) W is generated by the reflections in simple roots

◦ 3) W acts freely on the set of chambers

• 1) and 2) is easy by a geometric argument

9.13 Suppose C = w(C+) let. Define the length `(w)

`(w) = |{α ∈ R+ | w(α) ∈ R−}| .

(Number of walls separating C from C0.)

9.14 Theorem: If w = sα1sα2 . . . sαk is a shortest presentation of w ∈W , then k = `(w).

◦ From above follows 9.12.3. That is the stabilizer of C+ consists of elements of w of length 0, i.e.

it consists only of the identity. (Exercise 7.3 in Kirillov.)

9.15 Topological proof of 9.12.3 with the root system of a compact Lie group: if g ∈ NT preserves

the chamber C+, one may assume g(X) = X for some X ∈ C+. The group topologically generated by

exp(tX) and g is abelian, ' torus×Zn can be topologically generated by one element, so it is contained

in a maximal torus. This torus has to be T (∗). Hence [g] = 1 ∈ N(T )/T .

◦ (∗) The centralizer of the torus exp(tX) has the Lie algebra equal to

t⊕
⊕

α: α(X)=0

gα .

9.16 Corollary: Since Wtop := N(T )/T acts freely and Walg := 〈sα : α ∈ R〉 acts transitively, thus

Wtop = Walg, i.e. two notions of the Weyl group coincide. The Weyl group acts freely and transitively

on the set of Weyl chambers.
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9.17 The vertices Π of the Dynkin diagram may be treated as generators of W , the number of the

edges between α and β, i.e. nαβnβα encodes the angle ∠(α, β). Hence the order the corresponding

rotation sαsβ.

• First of all s2
α = 1

• no edge: sα, sβ commute ⇐⇒ (sαsβ)2 = 1

• one edge (sαsβ)3 = 1 (equivalently the braid relation sαsβsα = sβsαsβ)

• double edge (sαsβ)4 = 1

• triple edge (sαsβ)6 = 1

9.18 Theorem [not so obvious]: These are the relations defining W .

◦ This is an example of a Coxeter group.

14


