Serre's GAGA

(Géometrie Algébrique et Géométrie Analytique)

- 1 Throughout, let X be a separated scheme of finite type over \mathbb{C} (in practice, an algebraic variety, often projective, i.e. a set defined in \mathbb{P}^n by homogeneous polynomials). The analytification X^{an} is defined for such X and depends only on its structure as a \mathbb{C} -scheme.
 - **2** For an algebraic manifold X we define its analytification X^{an} .
- As a set, we identify

$$X^{an} \cong X(\mathbb{C}),$$

the set of complex points of X. Thus X^{an} and X have the same \mathbb{C} -valued points, but endowed with different topologies.

• While X is endowed with the Zariski topology, X^{an} carries the analytic topology, obtained by gluing open subsets of $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ in local embeddings. The identity map

$$\iota: X^{an} \longrightarrow X$$

is continuous, since every Zariski open subset is open in the analytic topology (Serre, §5, Lemma 1).

3 Both spaces are *ringed spaces*. We have the sheaves \mathcal{O}_X of regular functions and \mathscr{H}_X of holomorphic functions, whose stalks are local rings. There exists a natural morphism of sheaves of rings

$$\theta_X: \iota^{-1}\mathcal{O}_X \longrightarrow \mathscr{H}_X,$$

so that ι extends to a morphism of ringed spaces.

- The map θ_X is an injective local homomorphism; each stalk $\theta_{X,x}$ is flat, and the induced map on \mathfrak{m} -adic completions of stalks is an isomorphism. This means \mathscr{H}_X is a flat $\iota^{-1}\mathcal{O}_X$ -module and θ_X is compatible with completions (Serre, §6, Prop. 4).
 - 4 For an algebraic sheaf \mathcal{F} on X, its analytification is defined by

$$\mathcal{F}^{an} = \mathscr{H}_X \otimes_{\iota^{-1}\mathcal{O}_X} \iota^{-1}\mathcal{F}.$$

In particular, $\mathcal{O}_X^{an} = \mathcal{H}_X$ (Serre, §9, Prop. 10).

- Because \mathscr{H}_X is flat over $\iota^{-1}\mathcal{O}_X$, the analytification functor $(-)^{an}$ is exact on coherent sheaves.
 - **5 Definition.** Let (X, \mathcal{R}_X) be a ringed space. A sheaf of \mathcal{R}_X -modules \mathcal{F} is called *coherent* if
- (1) Locally there exists a surjective morphism $(\mathscr{R}_X^N)_{|U} \to \mathcal{F}_{|U}$ for some N (i.e. \mathcal{F} is locally finitely generated).
- (2) For any morphism $(\mathscr{R}_X^M)_{|U} \to \mathcal{F}_{|U}$, the kernel is locally finitely generated.
- We denote by Coh(X) the category of coherent \mathcal{R}_X -modules.
- For analytic spaces this condition (2) is necessary, since the rings $\mathcal{R}_X(U) = \mathcal{H}_X(U)$ are not Noetherian in general.
- **6 Oka's Theorem.** If X^{an} is a complex analytic space (in particular, a complex manifold), then \mathcal{H}_X is coherent (Oka–Cartan theorem; Serre, §3, Prop. 1).
 - 7 The analytification functor extends to

$$(-)^{an}: \operatorname{Sh}(X) \longrightarrow \operatorname{Sh}(X^{an}), \qquad (-)^{an}: \operatorname{Coh}(X) \longrightarrow \operatorname{Coh}(X^{an}),$$

1

and preserves exact sequences of coherent sheaves.

8 Serre's Fundamental Theorem (GAGA, §12, Th. 1). If X is projective and \mathcal{F} is a coherent algebraic sheaf, the natural comparison map

$$H^*(X; \mathcal{F}) \xrightarrow{\sim} H^*(X^{an}; \mathcal{F}^{an})$$

is an isomorphism. Hence algebraic and analytic cohomology agree for projective varieties.

- Properness (or projectivity) is essential: for non-proper varieties, the comparison of cohomology or categories of coherent sheaves may fail.
- **9 Relative version.** If $f: X \to Y$ is a *projective* morphism of algebraic varieties (i.e. there is a factorisation $X \hookrightarrow Y \times \mathbb{P}^N \twoheadrightarrow Y$), then f induces a functor

$$f_*^{an}: \operatorname{Coh}(X^{an}) \longrightarrow \operatorname{Coh}(Y^{an}),$$

and for all $k \geq 0$,

$$(f_*\mathcal{F})^{an} = f_*^{an}\mathcal{F}^{an}, \qquad (R^k f_*\mathcal{F})^{an} = R^k f_*^{an}\mathcal{F}^{an}.$$

For Y = pt, this reduces to the cohomology comparison above.

10 Equivalence of Categories (Serre, §12, Th. 2–3). If X is projective, the functor

$$(-)^{an}: \operatorname{Coh}(X) \longrightarrow \operatorname{Coh}(X^{an})$$

is an equivalence of categories, meaning:

(i) The analytification functor is fully faithful:

$$\operatorname{Hom}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}) \xrightarrow{\sim} \operatorname{Hom}_{\mathscr{H}_X}(\mathcal{F}^{an},\mathcal{G}^{an})$$

for all coherent algebraic sheaves \mathcal{F}, \mathcal{G} .

- (ii) The functor is essentially surjective: for every coherent analytic sheaf G on X^{an} , there exists an algebraic coherent sheaf \mathcal{F} on X such that $G \simeq \mathcal{F}^{an}$.
- 11 Outline of Proof. The argument is reduced to $X = \mathbb{P}^n$. By analyzing long exact cohomology sequences, it suffices to verify the equality $H^*(\mathbb{P}^n; \mathcal{O}(m)) = H^*(\mathbb{P}^{n,an}; \mathcal{H}(m))$.
- The standard cohomology of line bundles on projective space is

$$H^{q}(\mathbb{P}^{n}, \mathcal{O}(m)) \cong \begin{cases} \operatorname{Sym}^{m}(\mathbb{C}^{n+1})^{\vee} & \text{if } q = 0, \ m \geq 0, \\ \operatorname{Sym}^{-m-n-1}(\mathbb{C}^{n+1}) & \text{if } q = n, \ m \leq -n-1, \\ 0 & \text{otherwise,} \end{cases}$$

and the same holds analytically via Dolbeault or Hodge theory, giving the desired isomorphism.

• For (i), one uses the identity of internal Hom-sheaves:

$$(\underline{\operatorname{Hom}}_{\mathcal{O}_X}(\mathcal{F},\mathcal{G}))^{an} = \underline{\operatorname{Hom}}_{\mathscr{H}_X}(\mathcal{F}^{an},\mathcal{G}^{an}),$$

and the principle

$$\operatorname{Hom}_Y(F,G) = H^0(Y; \underline{\operatorname{Hom}}_Y(F,G)),$$

together with the cohomology comparison.

• For (ii), let F be a coherent analytic sheaf on $X = \mathbb{P}^n$. There exists m_0 such that for $m \geq m_0$ the twisted sheaf

$$F(m) = F \otimes_{\mathscr{H}_X} \mathscr{H}_X(m)$$

is globally generated. Equivalently, for every $x \in X$, the evaluation map

$$H^0(X; F(m)) \longrightarrow F(m)_x$$

is surjective (Serre, §16, Lemma 8). Thus F(m) is the cokernel of a morphism $\mathscr{H}_X^\ell \to \mathscr{H}_X^k$, hence algebraic by (i). Twisting back by $\mathscr{H}_X(-m)$ shows F itself is algebraic (Serre, §17).

12 Examples.

- (a) For $X = \mathbb{P}^1$, the analytification X^{an} is the Riemann sphere $\mathbb{C} \cup \{\infty\}$. We have $H^0(\mathbb{P}^1; \mathcal{O}(m)) = H^0(\mathbb{P}^{1,an}; \mathcal{H}(m))$, both equal to the space of homogeneous polynomials of degree m. Thus analytic and algebraic cohomology agree explicitly.
- (b) If $C \subset \mathbb{P}^n$ is a smooth projective curve, its analytification C^{an} is a compact Riemann surface. GAGA identifies algebraic vector bundles on C with holomorphic vector bundles on C^{an} and ensures

$$H^1(C; \mathcal{O}_C) \simeq H^1(C^{an}; \mathscr{H}_C),$$

so algebraic and analytic deformations coincide.

- (c) \spadesuit For affine varieties X, both the algebraic and analytic theories have vanishing higher cohomology: by Serre's affineness theorem $H^i(X, \mathcal{F}) = 0$ for i > 0 and any quasi-coherent \mathcal{F} ; analytically, X^{an} is Stein, so by Cartan's Theorem B, $H^i(X^{an}, \mathcal{G}) = 0$ for i > 0 and any coherent analytic \mathcal{G} . However, the equivalence of categories in GAGA generally fails when X is not proper.
- 13 Corollary (Chow's Theorem). Every closed analytic subvariety of $\mathbb{P}^n(\mathbb{C})$ is algebraic; equivalently, it is the zero locus of finitely many homogeneous polynomials. Indeed, the analytic ideal sheaf is coherent and thus algebraizable by GAGA.

Historical Remark. Serre's 1956 paper "Géometrie Algébrique et Géométrie Analytique" established a precise bridge between algebraic and analytic geometry over \mathbb{C} . For projective varieties, analytification preserves not only cohomology but also the entire category of coherent sheaves. This result provided a prototype for modern comparisons between algebraic and analytic (or topological) categories and deeply influenced Grothendieck's theory of schemes and coherence. See also Hartshorne II.4, III.12.