Complex Manifolds - written exam AD 2026

Problem 1 Let o = dx A dy € A?(C). Write that form in terms of dz and dz.
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Problem 2 Let f = ((z1 +1)2 4+ z%) ((z1 —1)2+ z%) — 1. What is the degree Weierstrass polynomial
g € Oc)lz1] (the distinguished variable z1).
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Problem 3 Let X; C C", k € N be a family of analytic sets. Prove that (,cy Xk is an analytic set
(can be described locally by a finite set of equations).
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Problem 4 Let V be a real vector space and let I € End(V') be an almost complex structure. Construct
a C-linear embedding (V,I) — (V® C,1®1).

1y = Vo1 — Twed (s € -Liqar.
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Problem 5 Let ¢ : C" — C™ be a holomorphic map. Check that ¢*(a) € AP9(U) for a € API(V).
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Problem 6 Let X = P! Let a be a 1-form of the type (0,1). Does there exist a 0-form (3, such that
df =a?

TM answes S e (@or o )zmrej Qp_eu.«) ;
Eranrle: Ll e be = ol v¥C o
e &aw own P’ o-g e Jw;*e (ord. \w fmv\ew(
01 (_\g &S) :—(5’342 ﬂ; /10(2 \'\Q o on—2vo (’114) \ﬁQVﬂM_

_rlng ve J_A% ol Cc..vxlr\oﬁ4 bc, lea ‘]"(Aﬂ— {"’"\“'jwe "’P o@ .



Problem 7 Give an example of a number g > 0, such that there does not exist a curve C C P? of
genus g = dim H%0(C).
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Problem 8 Suppose that M is a compact Kéhler manifold of dimension 3 (over C). Is it possible, that
the cohomology ring (with complex coefficients) is isomorphic to

Cla,b)/(a%,b?), ae€ H*(M), beH'(M)?
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Problem 9 Let X be a connected compact Kahler manifold, dim(X ) = 4. Suppose that its cohomology
is generated by the fundamental classes of complex submanifolds and dim H?(X) = dim H*(X) = 6.
Compute the signature of X.
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Problem 10 Let X be a smooth surface in P? od degree 4. Compute x(X;O(k)). Is it a polynomial
in k7
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Problem 11 Let X)lge a Kihler manifold, L a holomorphic’positive line bundle. Prove that y(X; L®9)
is a polynomial in d. Find its degree. Find the leading coefficient in terms of ¢;(L).
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Problem 12 Let X be quintic (a hypersurface of degree 5) in P3. Its Xy-genus is equal to 5 — 45y + 51
(take it for granted). Write the Hodge diamond hP-9.
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