

Complex Manifolds - written exam AD 2026

Problem 1 Let $\alpha = dx \wedge dy \in A^2(\mathbb{C})$. Write that form in terms of dz and $d\bar{z}$.

$$dz \wedge d\bar{z} = (dx + i dy) \wedge (dx - i dy) = -2i dx \wedge dy$$

$$\text{so } dx \wedge dy = \frac{i}{2} dz \wedge d\bar{z}$$

Problem 2 Let $f = ((z_1 + 1)^2 + z_2^2)((z_1 - 1)^2 + z_2^2) - 1$. What is the degree Weierstrass polynomial $g \in \mathcal{O}_{(\mathbb{C}, 0)}[z_1]$ (the distinguished variable z_1).

$$f(z_1, 0) = (z_1 + 1)^2 (z_1 - 1)^2 - 1 = (z_1^2 - 1)^2 - 1 = z_1^4 - 2z_1^2$$

The order of o is 2, thus the Weierstrass polynomial has degree 2.

Problem 3 Let $X_k \subset \mathbb{C}^n$, $k \in \mathbb{N}$ be a family of analytic sets. Prove that $\bigcap_{k \in \mathbb{N}} X_k$ is an analytic set (can be described locally by a finite set of equations).

Let $p \in \mathbb{C}^n$ and $I_k \subset \mathcal{O}_{\mathbb{C}^n, p}$ be the ideal of X at p ,

$I_k = (f_1, \dots, f_{m_k})$. Then the ideal of $\bigcap_{k \in \mathbb{N}} X_k$ is generated by $\bigcup_{k \in \mathbb{N}} I_k$. Since the local ring is

Noetherian, the above ideal is finitely generated.

Thus $\bigcap_{k \in \mathbb{N}} X_k$ is described by a finite set of equations.

Problem 4 Let V be a real vector space and let $I \in \text{End}(V)$ be an almost complex structure. Construct a \mathbb{C} -linear embedding $(V, I) \rightarrow (V \otimes \mathbb{C}, 1 \otimes i)$.

$$J(v) = v \otimes 1 - I(v) \otimes i \text{ is } \mathbb{C}\text{-linear.}$$

$$\begin{aligned} \text{Indeed: } f(I(v)) &= I(v) \otimes 1 - I^2(v) \otimes i = \\ &= v \otimes i - I(v) \otimes i^2 \\ &= i(v \otimes 1 - I(v) \otimes i) \end{aligned}$$

It is an embedding since

$$f(v) = v \otimes 1 - I(v) \otimes i = 0 \iff v = 0 \wedge I(v) = 0.$$

Problem 5 Let $\varphi : \mathbb{C}^n \rightarrow \mathbb{C}^m$ be a holomorphic map. Check that $\varphi^*(\alpha) \in A^{p,q}(U)$ for $\alpha \in A^{p,q}(V)$.

$$v \in \mathbb{C}^m, u \in \mathbb{C}^n$$

We check first for $(1,0)$ forms $dz_i \quad i=1, \dots, m$.

$$\varphi = (\varphi_1, \varphi_2, \dots, \varphi_m)$$

$$\varphi^*(dz_i) = d\varphi_i = \sum_{j=1}^n \frac{\partial \varphi_i}{\partial z_j} dz_j + \sum_{j=1}^n \frac{\partial \varphi_i}{\partial \bar{z}_j} d\bar{z}_j \in A^{1,0}(U)$$

Since by assumption φ_i is holomorphic, the second sum vanishes. The statement for (p,q) forms follow by taking wedge and conjugation.

Problem 6 Let $X = \mathbb{P}^1$. Let α be a 1-form of the type $(0,1)$. Does there exist a 0-form β , such that $d\beta = \alpha$?

The answer is no (for a general form).

Example: let $f : \mathbb{C} \rightarrow \mathbb{C}$ be a function with a compact support. The form $\omega = f d\bar{z}$ extends to a form on \mathbb{P}^1 of the type $(0,1)$. In general

$$d(f d\bar{z}) = \frac{\partial f}{\partial z} dz \wedge d\bar{z} \text{ is a non-zero } (1,1) \text{ form.}$$

Therefore ω cannot be in the image of d .

Problem 7 Give an example of a number $g \geq 0$, such that there does not exist a curve $C \subset \mathbb{P}^2$ of genus $g = \dim H^{1,0}(C)$.

We compute the Euler characteristic of C

$$\chi(C) = \int_C \frac{(1+h)^3}{1+dh} = \int_C (3-d)h = d(3-d)$$

where d is the degree of C , $h = c_1(\mathcal{O}(1))_C$.

$$\text{genus} = \frac{2 - \chi(C)}{2} = \frac{1}{2}(2 - 3d + d^2) = \frac{1}{2}(d-1)(d-2).$$

For example genus $= p$ (a prime number) never appears.
p>3

Problem 8 Suppose that M is a compact Kähler manifold of dimension 3 (over \mathbb{C}). Is it possible, that the cohomology ring (with complex coefficients) is isomorphic to

$$\mathbb{C}[a, b]/(a^2, b^2), \quad a \in H^2(M), \quad b \in H^4(M) ?$$

If M is Kähler, then there exists a class $\omega \in H^2(M)$, such that $\omega^3 \neq 0$.

Here $H^2(M)$ is spanned by a and ω .
 $(\lambda a)^2 = 0$, hence $(\lambda a)^3 = 0$.

Problem 9 Let X be a connected compact Kähler manifold, $\dim(X) = 4$. Suppose that its cohomology is generated by the fundamental classes of complex submanifolds and $\dim H^2(X) = \dim H^4(X) = 6$. Compute the signature of X .

$H^{p,q}(X) = 0$ for $p \neq q$, thus the Hodge diamond is as follows

$$\begin{matrix} & & & 1 & & \\ & & & 0 & 0 & \\ & & & 0 & 6 & 0 \\ & & & 0 & 0 & 0 & 0 \\ & & & 0 & 0 & 6 & 0 & 0 \\ & & & 0 & 0 & 0 & 0 & 0 \\ & & & 0 & 6 & 0 & & \\ & & & 0 & 0 & 0 & & \\ & & & 1 & & & & \end{matrix} \quad \begin{aligned} \sigma(X) &= 1 - 6 + 6 - 6 + 1 \\ &= -4 \end{aligned}$$

Problem 10 Let X be a smooth surface in \mathbb{P}^3 of degree 4. Compute $\chi(X; \mathcal{O}(k))$. Is it a polynomial in k ?

By HRR $\chi(X; \mathcal{O}(k)) = \int_X \text{td}(\mathcal{T}X) \text{ch}(\mathcal{O}(k))$.

For surfaces

$$\begin{aligned} \text{td}(\mathcal{T}X) &= (1 + \frac{1}{2}x_1 + \frac{1}{12}x_1^2)(1 + \frac{1}{2}x_2 + \frac{1}{12}x_2^2) = \\ &= 1 + \frac{1}{2}(x_1 + x_2) + \frac{1}{12}(x_1^2 + x_2^2 + 3x_1 x_2) = 1 + \frac{1}{2}c_1 + \frac{1}{12}(c_1^2 + c_2) \end{aligned}$$

$$\text{ch}(\mathcal{T}X) = (1 + h)^4 (1 + 4h)^{-1} = (1 + 4h + 6h^2)(1 - 4h + 16h^2) = 1 + 6h^2 \text{ mod } h^3$$

$$\chi(X; \mathcal{O}(k)) = \int_X (1 + \frac{1}{2}h^2)(1 + kh + \frac{1}{12}(kh)^2) = \int_X \frac{1}{2}(h^2 + k^2h^2) = 2(1 + k^2)$$

Problem 11 Let X be a Kähler manifold, L a holomorphic positive line bundle. Prove that $\chi(X; L^{\otimes d})$ is a polynomial in d . Find its degree. Find the leading coefficient in terms of $c_1(L)$.

Suppose $\dim X = n$. By positivity assumption $\int_X c_1(L)^n > 0$.

Claim: the degree is n , the top coefficient is as below:

$$\chi(X; L^{\otimes d}) = \int_X \text{td}(\mathcal{T}X) \text{ch}(L^{\otimes d}) =$$

$$\int_X (1 + \dots) \underbrace{\left(1 + d c_1(L) + \dots + \frac{1}{n!} (d c_1(L))^n \right)}_{\text{polynomial in } d} = \frac{d^n}{n!} \int_X c_1(L)^n + \text{lower terms}$$

Problem 12 Let X be quintic (a hypersurface of degree 5) in \mathbb{P}^3 . Its χ_y -genus is equal to $5 - 45y + 5y^2$ (take it for granted). Write the Hodge diamond $h^{p,q}$.

By weak Lefschetz the Hodge diamond is of the following form:

$$\begin{matrix} & & 1 & & \\ & & 0 & 0 & \\ & 0 & & 0 & \\ h^{20} & h^{11} & & h^{02} & \\ & 0 & 0 & & \\ & & 1 & & \end{matrix}$$

■ $1 - 0 + h^{02} = 5 \Rightarrow h^{02} = 4$
($= h^{20}$)

■ $0 - h^{11} + 0 = -45 \Rightarrow h^{11} = 45$