Examples of problems for written exam AD 2026

Problem 1 Suppose $f: \mathbb{C} \to \mathbb{C}$ is holomorphic. Express the differential of the function |f(z)| in terms of $\frac{d}{dz}$, dz and $d\bar{z}$.

Problem 2 Let $f(x,y) := 2x^2 - x^4 - 2y^2 - 2x^2y^2 - y^4$. Find the associated Weierstrass polynomial $g \in \mathcal{O}_{(\mathbb{C},0)}[x]$, such that x is the distinguished variable.

Problem 3 Suppose $U \subset \mathbb{C}^n$ is an open subset, n > 1. Let $f : U \to \mathbb{C}$ be a holomorphic function. Show that if the zero set Z(f) is compact, then it is empty.

Problem 4 Let $X_k \subset \mathbb{C}^n$, $k \in \mathbb{N}$ be a family of analytic sets. Prove that $\bigcap_{k \in \mathbb{N}} X_k$ is an analytic set.

Problem 5 Consider \mathbb{R}^3 with the standard scalar product inducing Riemannian metric and with the standard orientation. Let (x, y, z) be coordinates. Compute $d^*(x^2y dx + xz dy)$.

Problem 6 Let $\mathbb{C} \subset \mathbb{P}^1$ be equipped with the metric induced from the Fubini-Study metric. Compute the Hodge star of the forms dz and $d\bar{z}$.

Problem 7 Let $V=\mathbb{C}^2$ considered as a real vector space. The space $(\Lambda^2V^*)\otimes_{\mathbb{R}}\mathbb{C}$ contains the subspaces

$$W_1 = \Lambda^{1,1} V^*$$
 and $W_2 = \Lambda^2 V^*$.

Find a basis of the intersection $W_1 \cap W_2$ (of course over \mathbb{R} because W_2 is a real subspace).

Problem 8 Let V be a real vector space and let $I \in End(V)$ be an almost complex structure. Construct a map of complex vector spaces

$$(V,I) \longrightarrow (V \otimes \mathbb{C}, 1 \otimes i)$$
.

Problem 9 Let $U \subset \mathbb{C}^n$ and $V \subset \mathbb{C}^m$. Let $\varphi : U \to V$ be a holomorphic map. Check that

$$\varphi^*(\alpha) \in A^{p,q}(U)$$
 for $\alpha \in A^{p,q}(V)$.

Problem 10 Let $X \subset \mathbb{P}^n$ be a hypersurface of degree d. Compute the volume of X with respect to the Fubini-Study metric.

Problem 11 Let $X = \mathbb{C}^*$. Let α be a 1-form of the type (0,1). Does there exist a 0-form β , such that $d\beta = \alpha$?

Problem 12 For which $n \in \mathbb{N}$ does the product of spheres $S^2 \times S^n$ admit a structure of a Kähler manifold?

Problem 13 Let $V = \mathbb{C}^2$ with the standard volume form. Define a hermitian form Φ on $\Lambda^{p,q}V^*$, p+q=2 given by the identity

$$\alpha \wedge \bar{\beta} = \Phi(\alpha, \beta) vol$$
.

What is the signature of that form?

Problem 14 Let $X = \mathbb{C}^2/A$, where A is generated by the vectors

$$\alpha_1 = (1,0), \quad \alpha_2 = (0,1), \quad \alpha_3 = (1+i,i), \quad \alpha_4 = (2\pi i, e+i).$$

Define a real submanifold $Y \subset X$

$$\widetilde{Y} = lin_{\mathbb{R}} \{\alpha_3, \alpha_4\}, \quad Y = \widetilde{Y}/(\widetilde{Y} \cap A).$$

Compute $\int_Y dz_1 \wedge d\bar{z}_2$.

Problem 15 List Hodge numbers of the smooth quadrics of dimensions 1, 2, 3 and 4.

Problem 16 Suppose that M is a compact Kähler manifold of dimension 3 (over \mathbb{C}). Is it possible, that the dimensions of the cohomology groups are

What about

Problem 17 Suppose M is a compact Kähler manifold. Let $\alpha \in \Omega^p(M)$ be a global holomorphic form. Show that $\partial \alpha = 0$.

Problem 18 Let X be a connected compact Kähler surface. Suppose that its cohomology is generated by the fundamental classes of complex submanifolds. Find a relation between Euler characteristic and the signature.

Problem 19 Let X be the blow-up of \mathbb{P}^3 at a point. Compute its Hodge numbers.

Problem 20 Let X be a smooth hypersurface of degree 4 in \mathbb{P}^4 . Compute its Euler characteristic,

- or (applying Weak Lefschetz) compute the dimensions of $H^k(X)$,
- or (applying Weak Lefschetz and HRR) compute all Hodge numbers.

Problem 21 Let X be quintic (a hypersurface of degree 5) in \mathbb{P}^4 . Compute $\chi(X, \mathcal{O}_X)$.

Problem 22 Let E be a vector bundle of rank n. Show that $c_1(E) = c_1(\Lambda^n E)$.

Problem 23 Let E, F be smooth vector bundles with connections ∇_E, ∇_F . Construct a connection on the bundle Hom(E, F).

Problem 24 Let $0 \to E_1 \to E_2 \to E_3 \to 0$ be a short exact sequence of vector bundles over a smooth manifold. Suppose that on E_2 there is a connection preserving E_1 . It induces a connection on $E_3 = E_2/E_1$. Show that the equality of total Chern classes $c(E_2) = c(E_1)c(E_3)$ holds not only in cohomology, but also on the level of differential forms defined by the connections.

Problem 25 TBA