

Complex Manifolds — Problems 23.01.2026

Problem 1 The second attempt to show that

$$c_1(L) = [\text{Zeros of a section}] - [\text{Poles of a section}],$$

i.e. the class of the associated divisor.

- (1) Let $L = \mathcal{O}_{\mathbb{P}^n}(1)$ and let be s a nonzero section. Show that $c_1(L) = [\text{Zeros}(s)]$.
- (2) Suppose a line bundle L over X is globally generated, and $s \in \Gamma(X; L)$. Show that $c_1(L) = [\text{Zeros}(s)]$.
- (3) Suppose $L = L_1 \otimes L_2^*$ and L_1 and L_2 are globally generated. Show that $c_1(L) = [\text{Zeros}(s)] - [\text{Poles}(s)]$ for a suitably chosen s . Next argue, that in fact s can be arbitrary.

Hint to (3): Suppose f is a global meromorphic function, show that $[\text{Zeros}(f)] - [\text{Poles}(f)] = 0 \in H^*(X)$.

Problem 2 Let $y \in \mathbb{Q}$ (or you can treat it as a free parameter). For a vector bundle $E \rightarrow X$ define a characteristic class

$$td_y(E) = \sum_{p=0}^{\text{rk}(E)} y^p \cdot td(E) \cdot ch(\Lambda^p E^*) \in H^*(X),$$

(see [Huybrechts 5.1.3-4]).

- (1) Show that

$$td_y(E \oplus F) = td_y(E) \cdot td_y(F) \quad (\text{cup-product in cohomology}).$$

Note that for a Kähler manifold X of dimension n

$$\int_X td_y(TX) = \sum_{p=0}^n \sum_{q=0}^n (-1)^q y^p h^{p,q}(X).$$

The above is called Hirzebruch χ_y -genus.

- (2) What do we get for the special value of the parameter $y = -1$? What is $td_{-1}(E)$?

Problem 3 (1) Compute Hirzebruch χ_y -genus of a smooth hypersurface in \mathbb{P}^3 of degree d for $d = 2, 3, 4$.

- (2) Apply a corollary from the Weak Lefschetz theorem (TBA):

„For a hypersurface the restriction map $H^k(\mathbb{P}^n) \rightarrow H^k(X)$ is an isomorphism for $k < \dim_{\mathbb{C}} X$ and is injective for $k = \dim_{\mathbb{C}} X$.“

to compute all Hodge numbers of X as above.

Problem 4 Check that the Hirzebruch-Riemann-Roch gives the right answer for $L = \mathcal{O}_{\mathbb{P}^n}(k)$, $k \geq 0$, i.e.

$$\int_{\mathbb{P}^n} td(T\mathbb{P}^n) ch(L) = \dim \left(\left[\mathbb{C}[z_0, z_1, \dots, z_n] \right]_{\text{homogenous part of degree } k} \right).$$

Problem 5 Make sure that you can easily solve all the test-like problems listed in the file

<https://www.mimuw.edu.pl/~aweber/ComplexManifolds2025/CoMa26egz.pdf>.

Mini-talk: Assume that X is a connected, simply-connected surface with $\Omega_X^2 \simeq \mathcal{O}_X$. It follows $h^{0,0} = h^{2,0} = h^{0,2} = h^{2,2} = 1$ oraz $h^{1,0} = h^{0,1} = h^{2,1} = h^{1,2} = 0$. Information about $h^{1,1}$ is missing.

- (1) Applying HRR for $E = \mathcal{O}_X$ compute $c_2(TX)$ (since we know $\chi(X, \mathcal{O}_X)$).
- (2) Applying HRR for $E = \Omega_X^1$ compute $\chi(X, \Omega_X^1)$ and deduce what $h^{1,1}$ is.