Complex Manifolds — Problems 05.12.2025

Let V be a complex vector space with a Hermitian structure

$$\langle \langle v, w \rangle \rangle = \langle v, w \rangle - i\omega(v, w)$$
.

The vector space V (as a real vector space) has a natural orientation, thus Hodge * is defined. Consider the real exterior power $\Lambda V^* := \Lambda_{\mathbb{R}} V^*$. Recall that the scalar product in ΛV^* satisfies

$$\langle \alpha, \beta \rangle vol = \alpha \wedge *\beta.$$

We extend the scalar product to a Hermitian form on $(\Lambda_{\mathbb{R}}V^*)\otimes\mathbb{C}=\Lambda_{\mathbb{C}}(V_{\mathbb{C}}^*)$ by the formula

$$\langle\!\langle \alpha, \beta \rangle\!\rangle vol = \alpha \wedge *\overline{\beta}.$$

Problem 1 Show that the Hodge star induces an isomorphism

$$*: \Lambda^{p,q} \xrightarrow{\simeq} \Lambda^{n-q,n-p}$$

$$*(dz_I \wedge d\bar{z}_J) = const \, dz_{J^{\vee}} \wedge d\bar{z}_{I^{\vee}}$$

where $J^{\vee} = \{1, 2, \dots, n\} \setminus J$, $I^{\vee} = \{1, 2, \dots, n\} \setminus I$. Compute the constant.

Remark: Assume that dx_j , dy_j form an othonormal basis of V^* . The Hodge star is defined on the real vector space ΛV^* , it is easily described by values on $dx_I \wedge dy_J$. The goal is to find what happens in the complexificatation, when the star is applied to $dz_I \wedge d\bar{z}_J$.

Problem 2 Show that $\Lambda^{p,q} \perp \Lambda^{p',q'}$ if $(p,q) \neq (p',q')$.

Problem 3 "Linear version of Hard Lefschetz". Suppose $\dim_{\mathbb{C}} V = n$. Show that that a proper power of the operator L defines isomorphisms between the opposite exterior powers

$$L^k: \Lambda^{n-k}V^* \xrightarrow{\simeq} \Lambda^{n+k}V^*$$
.

Problem 4 Decompose $\Lambda_{\mathbb{R}}V^*$ for $V=\mathbb{C}^2$ into irreducible representations of \mathfrak{sl}_2 . For each summand find the the vectors spanning the lowest weight space.

Problem 5 For a hermitian manifold show that

$$L^*=(-1)^k*L* \qquad \text{restricted to } \Lambda^kV^*,$$

$$\partial^*=-*\overline{\partial}*,$$

$$\overline{\partial}^*=-*\partial*$$

are the adjoint operators to $L, \partial, \overline{\partial}$.

Problem 6 Show that the metric associated to the Fubini-Study form ω is given by the following: fix $w \in \mathbb{C}^{n+1} \setminus \{0\}$ and let $[w] \in \mathbb{P}^n$. The scalar product of vectors $\alpha, \beta \in T_{[w]}\mathbb{P}^n$ satisfies

$$\langle \alpha, \beta \rangle = \frac{1}{\pi} \frac{\langle w, w \rangle \langle \tilde{\alpha}, \tilde{\beta} \rangle - \langle \tilde{\alpha}, w \rangle \langle w, \tilde{\beta} \rangle}{\langle w, w \rangle^2},$$

where $\tilde{\alpha}, \tilde{\beta} \in T_w \mathbb{C}^{n+1}$ are lifts of the vectors with respect to the quotient map $\mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{P}^n$.

Problem 7 The Hopf fibration is constructed as follows:

Let $S^3 \subset \mathbb{C}^2$ be the unit sphere. The group S^1 of unit complex numbers act on \mathbb{C}^2 preserving S^3 . The quotient S^3/S^1 is identified with the projective line $\mathbb{P}^1 \simeq S^2$. The quotient map $S^3 \to S^2$ is a fibration with the fiber S^1 .

We say that two disjoined circles $S_1, S_2 \subset S^3$ are linked if for any disk $D \subset S^3$, such that $\partial D = S^1$ the intersection $D \cap S_2$ is not empty. Show that any two fibers of the Hopf fibration are linkled.

The picture from Wikipedia

Mini-talk DK: A Hermitian manifold is Kähler if and only if locally there exist a real valued function φ , such that $\omega = i\partial\bar{\partial}\varphi$. The function φ is called the Kähler potential.

References:

1. Shiing-shen Chern - Complex Manifolds without Potential Theory (1979, Springer) **page 59, condition (C)** 2. R. O. Wells Jr. - Differential Analysis on Complex Manifolds-Springer New York Graduate Texts in Mathematics 65, (1980) **Lemma 2.15, page 50**

