Complex Manifolds — Problems $21.11 \rightarrow 28.11.2025$

Recollection: For a complex-valued function f on \mathbb{C} with compact support we have defined the convolution $f * \frac{1}{n}$ by the formula

$$(f * \frac{1}{w})(z) = \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{f(w)}{w - z} dw \wedge d\bar{w}$$

and we have shown that

$$\frac{d}{d\bar{z}}(f*\frac{1}{w}) = f.$$

Problem 1 Modification of the convolution: Let $\mathbb{D} \subset \mathbb{C}$ be the unit disk, f a C^{∞} function on \mathbb{C} . Let

$$S(f) = \frac{1}{2\pi i} \int_{\mathbb{D}} \frac{f(w)}{w - z} dw \wedge d\bar{w}$$
.

Show that

$$\frac{d}{d\bar{z}}\mathcal{S}(f) = f$$
.

Problem 2 Let f be a complex valued function on \mathbb{C}^n . Let

$$S_k(f)(z) = \frac{1}{2\pi i} \int_{\mathbb{D}} \frac{f(z_1, \dots, z_{k-1}, w, z_{k+1}, \dots, z_n)}{w - z} dw \wedge d\bar{w}.$$

Define a linear operator

$$H_k: A^{0,q}(\mathbb{C}^n) \to A^{0,q-1}(\mathbb{C}^n)$$

satisfying

$$H_k(f d\bar{z}_k \wedge d\bar{z}_A) = S_k(f) d\bar{z}_A$$
 and $H_k(f d\bar{z}_A) = 0$

provided that the multiindex $A \subset \{1, \ldots, n\}$ does not contain k. For a given $\overline{\partial}$ -closed form $\alpha \in A_c^{0,q}(\mathbb{C}^n)$ construct the sequence of forms α_k for $k = 0, 1, \ldots, n$ by induction

$$\alpha_0 = \alpha$$
, $\alpha_{k+1} = \alpha_k - \overline{\partial} H_k(\alpha_k)$.

Show that

- a) α_k has no $d\bar{z}_j$ for $j \leq k$, when written in the basis $d\bar{z}_A$,
- b) the coefficients of α_k are holomorphic with respect to the variables $j \leq k$.

Deduce $\overline{\partial}$ -Poincaré Lemma.

Problem 3 Show from definition of the Dolbeault cohomology that $H^1(\mathbb{C}^*, \mathcal{O}_{\mathbb{C}^*}) = 0$.

Hint: Consider the covering $\exp: \mathbb{C} \to \mathbb{C}^*$ and cyclic functions on \mathbb{C} .

Problem 4 Define a 2-tensor $\varphi: T\mathbb{P}^n \otimes T\mathbb{P}^n \to \mathbb{R}$ by the formula

$$\varphi(v, w) = -\omega(iv, w)$$

where ω is the Fubini-Study form [Huybrechts, Examples 3.1.9]. Show that

- $-\varphi(v,w)$ is symmetric and positively defined (i.e. it is a Riemanian metric)
- $-\varphi(v,w)=\varphi(iv,iw)$ i.e. it is *I*-invariant.

Hint for the proof of positivity: Show that ω is U(n+1)-invariant and check for n=1.

Problem 5 Show that for any complex submanifold $M \subset \mathbb{P}^n$, $\dim_{\mathbb{C}} M = k$

$$\int_{M} \omega^{k} > 0.$$

Problem 6 Consider \mathbb{P}^n with the Riemanian metric construted in Problem 4. Let M be a smooth manifold and $f:(0,1)\times M\to \mathbb{P}^n$. Suppose that for $t\in(0,1)$ the image $M_t=f(\{t\}\times M)$ is a complex submanifold. Show that the volume $vol(M_t)$ does not depend on t.

Hint: Is there any relation between the volume form on M_t and the ω^k ?