Complex Manifolds — Problems 10.10.2025

Problem 1 Let $f: \mathbb{C} \to \mathbb{C}$ be a C^{∞} -function. Prove the formula

$$\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z} \,.$$

Problem 2 Suppose f is holomorphic defined on a neighbourhood of the disc $\{z \in \mathbb{C}: |z| \leq \varepsilon\}$ and $f(z) \neq 0$ if $|z| = \varepsilon$. Show that for $\ell \geq 0$ we have

$$\frac{1}{2\pi i} \int_{S_{\varepsilon}} \frac{f'(\xi)}{f(\xi)} \xi^{\ell} d\xi = \sum_{|\alpha| < \varepsilon, f(\alpha) = 0} \alpha^{\ell}.$$

Problem 3 Prove that $SL_2(\mathbb{R})$ does not contain a discrete group Γ isomorphic to \mathbb{Z}^2 .

Problem 4 Let $C \subset \mathbb{P}^2$ be a smooth complex curve defined by a homogeneous polynomial $f \in \mathbb{C}[z_0, z_1, z_2]$ of degree d. What is the genus of that curve? (Give an elementary proof, not using e.g. the adjunction formula).

Problem 5 For $I \subset \{1, 2, ..., n\}$ let $\mathbb{C}^I \subset \mathbb{C}^n$ be the corresponding coordinate subspace. Grassmannian of k-dimensional subspaces in \mathbb{C}^n as a set is the union of charts:

$$Gr(k,n) = \bigcup_{I} U_{I},$$

where the indices I run through all subsets of $\{1, 2, ..., n\}$, |I| = k, and $U_I \simeq \operatorname{Hom}(\mathbb{C}^I, \mathbb{C}^{I^{\vee}})$. Here $I^{\vee} = \{1, 2, ..., n\} \setminus I$. A linear map $\mathbb{C}^I \to \mathbb{C}^{I^{\vee}}$ is identified with its graph in \mathbb{C}^n . Show that the transition functions between charts are holomorphic.

Problem 6 Construct an embedding $Gr(2,4) \hookrightarrow \mathbb{P}^5$ and describe the image by a polynomial equation.

A short presentation:

Let Λ be a lattice in \mathbb{C} . Let

$$\mathcal{O}(z) = z^{-2} + \sum_{w \in \Lambda \setminus \{0\}} \left((z - w)^{-2} - w^{-2} \right)$$

be the Weierstrass function. (Argue that the sum is convergent and differentiable term by term.) Show that $\mathcal{G}(z)$ is Λ -periodic. Moreover

$$\mathcal{O}'(z)^2 = 4\mathcal{O}(z)^3 - g_2\mathcal{O}(z) - g_3$$

where

$$g_2 = 60 \sum_{w \in \Lambda \setminus \{0\}} w^{-4},$$

$$g_3 = 140 \sum_{w \in \Lambda \setminus \{0\}} w^{-6}.$$

Show that

$$z \mapsto [\mathcal{D}(z) : \mathcal{D}'(z) : 1]$$

defines a continuous map $\mathbb{C}/\Lambda \to \mathbb{P}^2$, an embedding. The image is given by the equation

$$Q(x, y, z) = y^2 z - 4x^3 + g_2 x + g_3 = 0.$$

(see Kirwan, Complex Algebraic Curves, Chapter 5).