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1 Introduction

1.1 Definition of complex manifolds
1.2 Projective spaces
1.3 Grassmannians Gry(C™). Affine maps: for I = {i1,i9,...,it} C {1,2,...,n}
Ur ={V € Gri(C") | projection V' — I-coordinates is an isomorphism }
Ur ~ Hom(CF,C").
1.4 Pliicker embedding, Gra(C*) as a quadric in P5 = P(A2C*).
1.5 Hyperplane in P" e.g. elliptic curve in P?
y3 +p:1:z2 + qz3 —2%2=0
with p, ¢ fixed.

1.6 Complex manifolds as real manifolds are orientable since any linear complex map preserves the
distinguished orientation of the underlying real vector space.

1.7 Basic information about topological coverings an induced complex structures: If f: X — Y is
a topological covering, Y has a structure of a complex manifold, then X has a natural structure of a
complex manifold and f is a holomorphic.

Curves

1.8 Riemann surfaces (= oriented surfaces with a Riemannian metric) and complex surfaces: each
Riemannian surface has a complex structure. Genus of Riemann surface.

e The rotation by 90° in the tangent space allows to introduce a structure of complex vector space.
This structure is ,,integrable” i.e. it comes from a structure of a complex manifold (a proof will be
later, it follows trivially from Newlander-Nirenberg theorem).

1.9 Riemann uniformization theorem: any complex curve is isomorphic to P! or it is a quotient of C
or D ~ H.

e Another formulation: any simply connected complex curve is isomorphic to P!, C or D. This is a
generalization of the Riemann theorem for open subsets in C.

1.10 The automorphism group of P! is equal to PGL2(C). Any complex-analytic automorphism of
P! is given by a linear formula. (The same statement holds for P™.)

e Proof: Composing with a linear map we can assume that f(0) = 0, f(oco) = oco. Expanding at
infinity we get an estimation 1/|f(2)| < ¢/|z|. Hence the function ¢g(z) = z/f(z) is bounded. It has no
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poles, since at 0 the zero of the denominator cancels out and there are no more zeros of f. Hence by
Liouville theorem g¢(z) is constant.

e Hence each automorphism of P! has a fixed point — the eigenvector of the linear map.
Topological proof: there are no nontrivial topological covering P! ~ §? — C except C = RP?. But the
real projective plane is not orientable, so it cannot be a complex curve.

1.11 Automorphisms of C are given by affine maps f(z) = az + b. There are no fixed points only if
a=1.

e The map f : C — C extends to P'. It is continues at co. By Riemann extension theorem it is
holomorphic co and we apply ((1.10]).

1.12 The complex quotients of C are of the form C/A for a lattice A C C.
e The nontrivial discrete subgroups of A C (C,+) ~ R? are of the form A = (a,b) for b/a € H, (or
A = (a)). We can restrict our attention to subgroups of the form A = (1,7), 7 € H.

e The group PSLy(C) := SLy(C)/{+£I} acts on P! by homography: (5 5) -z = (sz+1t)/(uz+v). The

subgroup PSLs(R) preserves the upper hyperplane H.

e Suppose 7,7 € H. Then C/(1,7) ~ C/(1,7') if and only if 7 and 7’ belong to the same orbit of
PSLy(Z). (Exercise)

1.13 The group of disk automorphisms is isomorphic to the group of the upper hyperplane H auto-
morphisms: Aut(H) = PSLa(R).
e Aut(D) consist of homographies (apply the Schwartz lemma, assuming f(0) = 0).

1.14 Discrete subgroups of PSLs(R) are called Fuchsian groups (grupy Fuksa). The curves of higher
genera g > 1 are quotients H/G where G C PSLy(R) is Fuchsian and acts without fixed points.

1.15 Read more: [Huybrechts, Complex Geometry, Chapter 2.1]

2 Weierstrass preparation

Local theory: see [§1, Huybrechts].

2.1 Cauchy-Riemann operator % = %% + ia% and complex differential %8% — ia%'

2.2 Differentials dz = dx + idy and dz = dx — idy.
e For any C*° function on f : C — C the differential

_Of 0, 9, Of
df = 8xd:v+ 8ydy— 8chz~|— (%dz.

(Hint if A =(} _}) then (A")™' = 3( 1))
2.3 Recollection of theorems for complex analytic functions in one variable
e series expansion
e (Cauchy integration formula
e maximum principle
e identity principle

e Liouville theorem

2.4 Residue res,(f) = 55 [5p. fdz, where D, is a small disk around z.
20
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2.5 Residue theorem: for a meromorphic function f (enough to assume: holomorphic away from a
discrete set {z1, 22, ...,2,}) on a compact Riemann surface S

Zreszk(f) =0.
k

e Proof from the Stokes theorem: Assume that the discs D,, for z € Sing(f) do not intersect:

Z/ fdz:—/ fdz:—/ d(fdz):—/ a—J_ch/\dz:O.
~~ Jop., a(S\UD-,) S\UD-, s\Up., 9z

2.6 A formula for the number of zeros in a disk has a generalization which will be used later. If
f(z) # 0 for |z| = € then for £ > 0 we have

LS e ¢
27 Jg. f(f)g : |a<€%:(a):0a'

Many variables - references to [Huybrechts §1.1]
2.7 Definition: a C* function f : C" — C is holomorphic if 0;, y = 0 for k =1,2,...,n.
2.8 Cauchy integral formula Prop 1.1.2
2.9 Hartogs theorem Prop 1.1.4

2.10 Corollary: zero set of a holomorphic function (f # 0) has real codimension equal 2 or it is
empty.
e Remark: any analytic set (eg zero set of a holomorphic function) is triangulable by Lojasiewicz
theorem, so there is no ambiguity with the notion of dimension.

2.11 Weierstrass preparation theorem (Th. 1.1.6).

2.12 Algebraic fact used in the proof: elementary symmetric functions o can be expressed by power
sums py.

Local ring

2.13 The local ring Ocn g is a unique factorization domain (Prop 1.1.15).

e Key argument: Weierstrass polynomial is indecomposable in Ocn-1 g[z] iff it is indecomposable in

Ocn .

3 Weierstrass 11

3.1 Weierstrass preparation theorem — division version (Prop 1.1.17).
3.2 The local ring Ocn o is noetherian (Prop 1.1.18).

3.3 Remark: If ) # U C C", n > 0 then O¢n(U) is not noetherian.

e Proof: Any I C Ocn is generated by I N (Ogn-1[2]) and any Weierstrass polynomial g € I (by
division version of WPT).

3.4 Germ of sets and ideals in the local ring:
e The germ of the set Z(J) defined by an ideal J C Ocn .
—if J1 C Js then Z(Jl) D) Z(JQ)

e The ideal of function germs vanishing on the germ of a set I(X). We have:
— if X7 C X5 then I(Xl) D) I(XQ)



3.5 Compositions of Z and I
o X C Z(I(X)) for any set germ,
o JCI(Z(J)) for any ideal,
o X = Z(I(X)) for analytic set germs (i.e. of the form X = Z(J))
— since J C I(Z(J)) then X = Z(J) D Z(1(Z(J))) = Z(1(X)).
e Hilbert nullstellensatz: I(Z(J) = +/J (see sketch of a proof in Huybrechts p.20).

3.6 Let g € Ocr o be indecomposable, then if fiz(,) = 0, then g divides f (Cor. 1.1.9)
e Proof from the division version of Weierstrass preparation theorem.

e Key step: if g is indecomposable Weierstrass polynomial, then g, (z) generically (w/r to w) has
distinct roots.

— let K be the quotient field of Ogn-14. The polynomials g, (z) and g,,(z) are coprime (by Gauss
lemma), so there exist a(z),8(z) € K(z) such that a(z)gw(z) + B(2)g,,(2) = 1. Passing to O¢n-1,
removing the denominators

a(2)gw(2) + B(2)g(2) =7
with 0 # v € Ogn-1. At the points where y(w) # 0 the polynomial g,, does not have multiple roots.

3.7 The germ of a set is indecomposable (also called irreducible) if and only if 7(X) is a prime ideal
(Lemma 1.1.28)

Rough notes on GAGA (dla absolwentéw teorii snopéw)
J-P.Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6: 1-42, (1956)
See also: Amnon Neeman, Algebraic and analytic geometry. Cambridge University Press (2007)

3.8 For an algebraic manifold X (a scheme in general) we define ,,analytification” X%".
e Asaset X = X

e While X has Zariski topology, X" has classical topology (glued from the open subsets U C C" ~
R?"). The identity map ¢ : X — X is continuous (every Zariski open set is open in the classical
topology). [Serre §5 Lemma 1]

e Both spaces are ringed. We have distinguished sheaves of rings Ox (algebraic functions) and %
(holomorphic functions), the stalks are local rings. We have a map

Ox : Lil(’)x — I,

i.e. ¢ extends to a map of ringed spaces. Here :~! denotes the pull-back of a sheaf. The map fx is
injective, flat, an isomorphism after completion in m. [Serre §6, prop 4]

3.9 For an algebraic sheaf F over an algebraic manifold we define ,,analytification”
F = 7t ®,-10x LF
Of course OF" = Hx. [Serre §9, Prop 10]

3.10 Definition: Let (Y, %y ) be a ringed space. The sheaf Zy—modules F is coherent iff
1) locally there is a surjective map (%23 )iv — Fju for some N (i.e. F is locally finitely generated),
2) for any map (ZH¥ )jv — Flu the kernel is finitely generated.

By Coh(Y') we denote the category of coherent sheaves.

e Mind the difference comparing with the definition for algebraic varieties.
3.11 Oka Theorem: F = J#x is coherent. (This is not a tautology!) References in [Serre §3 Prop.1]

3.12 Analytification of sheaves is a functor preserving coherent sheaves [Serre §9]

(=)™ : Sh(X) — Sh(X™)



3.13 (Serre) If X is projective, F coherent then the natural map H*(X;F) — H*(X*"; F") is an
isomorphism. [Serre §12 Th. 1]

e Relative version: Let f: X — Y be a projective morphism of algebraic varieties. Then f induces a
functor

an . Coh(X) — Coh(Y™)

and

(fF)m = fam g
(ka*]:)an — kagnfan

If Y = pt then we recover the previous formulation.

3.14 (Serre cont.) If X is a projective variety, then (—)®" restricted to Coh(X) is an equivalence of
categories.
The above means:
(i) Homo (F,G) — Hom y (F**,G*") is an isomorphism. [Serre §12 Th. 2]
(ii) For any analytic coherent sheaf G there exists an algebraic sheaf F such that G ~ F". [Serre §12
Th. 3]

3.15 The proofs can be reduced to X = P". To check the equality H*(X;F) ~ H*(X"; F*") we
can assume (by various cohomology exact sequences) that F ~ O(m).

3.16 For a proof of (i) use the equality of sheaf-Homs
(Homep, (F,G))™ = Hom e (F*",G*")
which holds for algebraic coherent sheaves. Then apply the general principle
Homy (F,G) = H(Y; Homy (F, G)),
and apply

3.17 For a proof of (ii) have to show that any analytic sheaf F' on X = P" after tensoring with
Hx(m) for some big m is globally generated, i.e. there exists k and a surjection

HE — F(m) == F @, Hx(m),
which is equivalent to: for each point x € X
Global sections of F(m) — F(m),

is a surjection, [Serre §16 Lemma 8]. Then F(m) = coker(/¢ — ), thus by (i) it is algebraic,
[Serre §17].

3.18 Corollary (Chow Theorem): Any analytic subvariety P™ is described by a set of polynomial
equations..

4 Morse theory for C*°-manifolds and weak Lefschetz
[Milnor — Morse theory, 1963]

4.1 Def: Morse function f : M — R is a proper smooth function such that if Df(p) =0 for p € M
then D?f(p) is nondegenerate. Additionally we assume that for each critical value there exist only one
critical point of f (critical values of distinct points do not collide).

4.2 ind(p)= the index of a critical point = the number of minuses after diagonalization of D?f(p).



4.3 for t € R let
M« ={pe M| f(p) <t}.

4.4 Theorem:
1) If there is no critical value in the interval [a,b], then the inclusion M<, C M, is a homotopy
equivalence
2) If f(p) = ¢ € [a,b] is the only one critical value in the interval [a, b] then M<; is homeomorphic to
M<, with attached I ind(p) 5 pn—ind(p) glong Grinde) x r—indp) (up to homotopy we attach a cell of
the dimension k = ind(p)).

4.5 The effect of attaching k-dimensional cell:
Moy =M<, Uy DF . ¢: S o Mo,
There is an exact sequence
0 - HYMg) — HYY(Mo) S H“’(skl) — HMMg) — HF(M<,) — 0

|
Z

The for the remaining gradations H'(M<p,) ~ H'(M<,) (the case i = 0 needs a separate discussion).
For real (or rational) coefficients: replace Z by R (or Q). Then there are two cases: ¢ = 0 or not.

e If ¢ =0, then H*¥(M<p) ~ H*¥(M<,) ® R, and the remaining gradations are not changed.

o If ¢ # 0, then H*"1(M<p) ~ ker(¢), and the remaining gradations are not changed.
4.6 Corollary: If all the cells are of even dimension, then
HOdd(M) -0 sz(M) ~ Z# of 2k cells .
4.7 Suppose M C RY is a compact submanifold, let f,(z) = dist(q,x)? for a fixed ¢ € RN \ M.

4.8 For almost all ¢ € RY the function fq is Morse.

4.9 Assume that ¢ =0, p = (,0,...,0) with a € Ry, T,M = {xp41 = Tpi2 = -+ = 0}; then M
locally is the graph of a function g = (a +g1,92,...gn—n : R® = RN™" ¢1(0) =0, g,(0) =0 for k > 1,
Dg(0) = 0;

Parametrization of M:
= (x1,22,...,2n) — (a+ g1(x),92(2), ... gN—n(Z),T1,22,...,Tp).
e then
N—n n n
fo@) = (a+ (@)’ + D gi(@)*+ Y i = a7 +2aQ(z) + O(||z||*),
j=2 i=1 i=1

where @ is a quadratic form of g, hence

D2J,(p) = 2(I +2aQ).

Therefore
ind(p) = #{\ € spec Q | A < —%



Weak Lefschetz

4.10 Lemma: If M c CV is a complex submanifold, ¢ € M and p is a critical point of fq, then

index(p) < dim¢ (M)

e Proof: we assume as before that ¢ =0, p = (a,0,...,0),a € Ry C C.

e Very easy algebraic lemma: Suppose () is a nondegenerate quadratic form on C™. If v is an eigenvector
of the real part Re(Q)) with the eigenvalue A, then iv is an eigenvector with the eigenvalue —\. Hence
the eigenvalues are symmetrically distributed with respect to 0.

e Corollary the index of 2(I + aRe(D?g(0)) = 2(I + 2a Re(Q)) is at most 3 dimg(M).

4.11 If M c C¥ is a complex submanifold of the complex dimension n, then M has the homotopy
type of n-dimensional CW-complex. Hence H*(M; R) = 0 for k > n (with coefficient in any ring R).

4.12 ,,Weak Lefschetz” aka ,,Lefschetz hyperplane theorem” [Milnor, Morse Theory §7]: If
X c PV is a complex submanifold of dimension n, i :Y = X NPN~! — X then X is a sum of Y with
cells of dimension & > n. Thus

e i*: H¥(X) — H*(Y) is an isomorphism for k£ < n — 1 and mono for k =n — 1,
o i, : Hi(Y) — Hy(X) is an isomorphism for £k < n — 1 and epi for k =n — 1.
e Moreover i, : m1(Y) — 71(X) is an isomorphism if 2 < n, epimorphism if 2 = n.

4.13 If X c PV, and M is a smooth hypersurface of degree d, then M N X ~ «(X) N H, where
t: PN — P(Sym?(CN+1)) is the Veronese embedding and H is a linear hypersurface in P(Sym<(CN*1)).

e Hence for complete intersection X € PV we have information about all Betti numbers, except the
middle one:
X=XN_n CXNp1C--CXn_1 CXN:IP’N

dim(X;) = N — i, since k < n < dim(X;) for i < N — n, we have isomorphisms H*(X;) ~ H"*(z;,1).

HE(X) = Z for k even
0 for k£ odd
for k < n, and from Poincaré duality H*(X) ~ Hy,_(X) we get the same result for n > k.

4.14 Exercise: compute dim(H"™(Q,,)) for a nonsingular quadric Q,, C P**1.

5 Hodge theory
Differential forms and de Rham cohomology — summary

5.1 Clobal differential forms on a C°*-manifold M will be denoted by A*(M) = @M Ak(M).
(The notation Q°*(M) is reserved for holomorphic forms.)

5.2 A*(M) is a commutative algebra with gradation ab = (—1)des(@) deg(®)pq )
5.3 differential satisfies the Leibniz rule d(ab) = ad(b) + (—1)de8(@)p
5.4 the linear space A¥(M) is the space of the global sections of a sheaf A'fw.

5.5 Ry — AS, — AL, — A3, — ... is a soft (in particular acyclic) resolution of the constant sheaf
R, therefore
H*(A*(M),d) = HF(M;Ry,) ~ HE, . (M;R).

sing

The cohomology groups are denoted by H¥(M), we skip R in the notation.



5.6 exterior product of forms induces multiplication in cohomology H*(M) x H*(M) — H*T¢(M)

5.7 if M is compact, n = dim M and M has a chosen orientation, then the integral of n-forms induces
amap [,,: H"(M) — R. If M is connected, then f[,, is an isomorphism.

5.8 (Poincaré Duality) if M is compact, oriented of dimension n, then the bilinear form
/ —A—:HYM) x H" ¥ (M) - R
M

is nondegenerate.
5.9 if M is oriented (not necessarily compact), then we consider cohomology with compact supports
HE (M) = H*(A2(M)).

Then
/ —A—:HNM) x H"F (M) - R
M

is defined and it is a nondegenerate 2-linear form.

5.10 Having a Riemannian metric on a compact manifold allows to define harmonic forms H* (M)
(see[5.17). The harmonic forms are closed and the resulting map H*(M) — H¥(M) is an isomorphism.
However the product of harmonic forms does not have to be harmonic.

Hodge theory for ("*° manifolds

Suppose M is equipped with Riemannian metric, i.e. a scalar product at each tangent space T, M. Let
n =dim M.

5.11 Volume form is denoted by vol € A™(M).

5.12 Hodge star: for x € M
w0 AFTEM — AR T M

It is defined by the property
a A *xb = (a,b)vol

for each a,b € A*T*M. The Hodge star extends to
w0 AF(M) — A" F(M)
pointwise.

5.13 We have
(i) #% = (—1)]“("’@ on k-forms.

(i) (@, %B) = (=1)*" P (xa, B),
5.14 Let’s define d* = (—1)"* D+ g : AR(M) — AF1(M).
5.15 For compact manifold M, a € A*~1(M), b € A¥(M) we have
(da,b)pr = (a,d*b)

We say that d* is formally adjoint to d.

Proof
0:/ d(a A xb) :/ da/\*b+(1)k_1/ a A d(xb).
M M M

/M da A xb = (—1) /M a A d(xb).

8

Hence



(a,d*b)p = / (a, (=1)FH+D+ 4 44 bYvol
M

= (—1)dt+1)+1 / aN*xdxb deg(xdxb) =k —1
M
= (—1)dkHDHIH (k=) (d—k+1) / andxb dk+1)+1+k-1)(d-—k+1) = k
M

= (=1)F /M a A d(xb) = /M da A xb = /M<da, byvol

5.16 Laplacian on forms is defined by
A =dd* +d*d
It can be interpreted as the ,,super-commutator” [d, d*]s.

e In general the supercommutator of elements of a graded algebra A = @, AF is defined by
(6. 0)s =g — (-1)*pe if e Ar, pe A
5.17 Harmonic forms: H := kerA.
5.18 The operator A = dd* + d*d is formally self-adjoint
(Aa,b) = (a, Ab).

5.19 For a compact oriented C*°-manifold M the following holds in A®(M)
1) H = ker(d) N ker(d*)
2) ker(d*) = im(d)*, ker(d) = im(d*)*, ker(A) = im(A)*L,
(hence H = ker(d) Nim(d)*)
3) the spaces H, im(d) and im(d*) are perpendicular.

Proof:
1) suppose a € ker(A):

0 = (Aa,a) = (dd*a,a) + (d*da,a) = (d*a,d*a) + (da, da) = ||d*al|* + ||dal)?
2) Let P =d, d* of A. If a € ker(P*) then 0 = (P*a,b) = (a, Pb), hence a € im(P)" .
Conversely, if a € im(P)*, then 0 = (a, PP*a) = ||P*al||?, so P*a = 0.
3) It remains to show that the spaces im(d) and im(d*) are perpendicular (d*a,db) = (a,d?b) = 0.
(Here we used that d? = 0, all the rest was an abstract properties of formally adjoint operators.)

5.20 Hodge decomposition
A* (M) = im(d) & H ®im(d").
————
ker(d)
This decomposition is orthogonal.

e The decomposition follows from a general property of elliptic differential operators, which we will not
prove. We would have to extend the space of C* forms and consider Sobolev spaces. See [C. Voisin,
Hodge Theory And Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics.
Theorem 5.22, p.128-9]. For any elliptic operator P : C*®(E) — C*(F)

C®(E) = ker(P) @& P*(C™(F)).

(Exercise: prove the corresponding statement for a linear map between finite dimensional spaces.)

e Inourcase P=A, PP=A
A*(M)=H e A(A*(M)).

Moreover we have
im(A) C im(d) +im(d).

But from orthogonality (im(d) @ im(d*)) N"H = 0, hence
im(A) = im(d) @ im(d").



5.21 Corollary 1: H — H*(M) is an isomorphism.
Moreover: if A(a) =0 and o' = a + db, then ||d’|| > ||all.
Any harmonic form is the representative of its cohomology class, which has the smallest norm.

5.22 Corollary 2: Tricky proof of the Poincaré duality: Let [o] # 0 € H*(M), then there exists a
class [f] (in the complementary gradation) such that [,, & A 3 # 0.

e Proof: let’s assume that « is harmonic. Set 8 = xa. Then (5 is harmonic as well (d(xa) = £xd*(a) =0
and d*(xa) = £ *xd(a) = 0). We have

/a/\*a—/ l|a|[Pvol = ||a||3;.
M M

5.23 Heat equation o : Ry — A*(M) with the initial condition a(0) = «

d

“a(t) = ~da(t),
see [D. Arapura, Algebraic Geometry over the Complex Numbers] §8
e the solution exists for ¢t > 0
o ap = limy_, a(t) exists and is a harmonic form.
(Laplacian has nonnegative eigenvalues: if A(a) = Aa then

Mall = (Aa, @) = [|dal* +[|d*al[* = 0.

hence the limit exists.)
o a=ayg+ AG(a), where G(a) = [;*(a(t) — ar)dt is the Green operator G : HE — A (M).

e Let’s check for o being an eigenvector Aa = A, A # 0: The solution is of the form a(t) = e *a.

Then - - -
A (/ e_)‘tadt) = / e Mha dt = </ e M dt) a=ao.
0 0 0

e If 3(t) is a solution with the initial condition 3, then d3(t) is a solution with the initial condition df
(because dA = ddd* + dd*d = dd*d = dd*d + d*dd = Ad).

o If o = ay + dp then oy = oy, + df;.
o If do =0, then day = 0 and [oy] = [
Proof a = oy, +dB, (o — ap) = —A(dB:) = —dA(Br)

Hermitian linear algebra
Suppose (V, 1) is a real vector space with a complex structure.

5.24 Hermitian product
VeV =C
(v, w)) = (v,w) —iw(v, w)
consists of:
— I-invariant scalar product (v, w),
— I-symplectic form w(v, w)
— the scalar product and the symplectic form determine each other w(v,w) = (I(v),w) = —(v, I(w)).

5.25 The volume form is defined as the wedge of an orthonormal (positively oriented) basis vectors
of V*:
e suppose dimg(V) =n

vol = (dwy Adyr) A+ A (day Adyn) = (5)"(dz1 Adz1) A+ A (dzn A dZy,)

n n
w = Zdl‘k/\dyk = %Zdzk/\d?k.
k=1 k=1
w™ =nlvol .

10



5.26 w as a differential form on C" is closed and U,, invariant.

6

6.1 General picture:
e 1) Manifolds with Riemannian metric ~» harmonic forms represent cohomology classes

e 2) Complex manifolds ~» complex coordinates, forms dz and dz, decomposition of differential
forms into types (p, q)

e 1) & 2) hermitian manifolds ~» the differential form w of type (1,1)

e 3) Kéhler manifolds (the condition dw = 0) ~» decomposition of cohomology into types and sl
action.

Main example - the projective space

6.2 The projective space P" can be obtained as the quotient $2"*! /S, The tangents space TP =
T,S% T, (S12).

6.3 the form w is well defined on the quotient space: tangent vector space 7,(S'z) is spanned by the
vector (4etz),_o = Iz. Therefore for w € T,$*"1 = 2+

w(w,Iz) = (Jw,Iz) = (w,z) =0.
Since w is S! invariant the choice of z € [2] leads to the same form.

6.4 We define a 2-form wpg(w1,w2) = w(iwy,Ws), where 1wy, ws are any lifts of wy, wy € TP to
T,S%" 1 Let p: 5?"*1 — P” be the projection.

e The form wpg satisfies p*(wpg) = w.

e The form wpg is closed because p* is injective on forms and dw = 0.
6.5 For n =1, on Uy = {zp # 0} ~ C there is a section

(81,82) : U() — SS C (C2

1 z

51(2) = —/—, s2(2) = ——.
Y e e Y/ SN FE
Then )
? * = * —
wrs(z) = 5(31((121 A dzy) + s5(dza N dz2))

Since the image of s; is contained in R, thus sj(dz;1 A dz;) = 0. The second summand is equal to
Jacobian times dx A dy,

(2,y) — = : )
VIta?+y?2 1+ +2
_ 1 1+9y2 —ay
S = ot (e |

1

Hence

The volume of P!:

1 r r2=y 1
/Rz It+a2+y22 Y ”/R+ (T2 ”/R+ Ttu2™ ™"
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6.6 Often we normalize

WErs ‘= ;WFS .
With this normalization fpn wpg = L.
6.7 The class [wrs] € H2(P") is a generator of H* (P R) ~ R[h]/(h""1)

6.8 The normalized class [wrs] is represented by the (Poincaré dual) of [P"~!] with P"~! embedded
as a linear hypersurface.

1 7
1;—linear algebra

6.9 Complex structure on a real vector space is an automorphism I satisfying I? = —id. It decom-
poses Vp := V ® C into eigenspaces
Ve=Vi+V,
Necessarily dim V' is even and one can find a real basis e1,es,...,e,, f1, f2,..., fn of V, such that
I(ex) = fr, I(fx) = —
e The vectors eg — ifj, form a basis of V;: I(ey —ifx) = fr +iex =i(ex —ifx)

e The vectors e + ifr form a basis of V_;: I(er +ify) = fr —iex = —ilex —ifx)
6.10 We are more concerned about the dual space: C-linear form are said to have the type (1,0)
APV .= {¢p € Homg(V,C) | ¢(Iv) = i¢(v) },
the antilinear forms are said to have the type (0,1)

Ay .= {¢p € Homg(V,C) | ¢(Iv) = —ip(v) },

We have
V* ® C = AlOV* ® A()lv* ]

6.11 The dual basis is denoted by
dxy =€), dyg:= fr.

We define
dzp = dxp +idyr, dzZp = dxp — idyg .

The 1-forms dzj, are the basis of A'°V*, and dz}’s are the basis of AV,

6.12 We have a C-linear isomorphism (V*,I) ~ (AIOV* i), ®(f)(v) = f(v) —if(Iv))
O(1f)(v) = f(Iv) —if (I*v) = (IU)+Zf(U i(f(v) —if(Iv)) = i®(f)(v)

) =
And an anti-linear isomorphism: (V* I) ~ (AOlV i), U(f)(v) = f(v) +if(Iv))
U(If)(v) = f(Iv) +if(I*v) = f(Iv) —Zf(v) = —i(f(v) +if(Iv)) = =i¥(f)(v)

6.13 The exterior forms of the type (p, q):

MVE= @ A, AP = AP(AOV) A AT(ACTYV).
p+q=Fk

— Conjugation acts on A¥(V* ® C) = (A*V*) @ C. We have
APs = AP,
— The operator I acts on AP7V* via multiplication by i(?~%
6.14 Remark: the form w belongs to A2V* N AMV* C A2V,

6.15 Exercise A0 | A0L

12



Linear algebra on the tangent space

6.16 Assume that M is a complex manifold, then tangent space T}, M at each point p € M is a complex
vector space. We treat it as a real vector space wit an automorphism I given by the multiplication by
i. Globally I € End(T'M), i.e. is an endomorphism of the tangent bundle.

6.17 Our method: Linear algebra ~» differential /complex manifolds structure

6.18 An almost complex manifold (M, I) is a pair, where M is a real C°°-manifold and I € End(T'M)
a tensor satisfying I? = —id (i.e. a complex structure in each T,M smoothly depending on the point
peEM.)

[W tym roku nie bedziemy rozwazaé rozmaitosci niemal zespolonych w ogélnosci, ale od razu zaktadamy,
Ze mamy rozmaito$é zespolong. Patrz [Huybrechts §1.2], w szczegdlnisci [Huybrechts 2.6.19]]

6.19 The eigenspace of I acting on T*M ® C decomposes this bundle into a direct sum of complex
subbundles:
(M eC)yye(T"M xC)_;.

e The global sections of the above bundles will be denoted by A'°(M) and A (M).

e Locally a form in A'(M) can be written as Y, ax(2)dz. If we change the coordinate chart it can
be written in the same form. This is because for a holomorphic map ¢ : U’ — U the composition
zg 0 ¢ : U — C is holomorphic, so d(z 0 ¢) = Y, a}.(z")dz, for some functions a} (2).

6.20 The complexified space of forms decomposes as a direct sum A*(M)c = @ APA(M).

ptq=k
e (p,q)-form locally can be written as

Z Z aap(z)dza Ndzp

|Al=p |B|=q

Hermitian structure

Assume that M has a hermitian structure, this is equivalent of having Riemannian metric, which is
I-invariant.

6.21 The form w is of the type (1,1), in addition it has real coefficients.

6.22 The Lefschetz operator
Lla) =wAa.

6.23 Suppose dim V = n. Let us define H € End(AV*) as the multiplication by k& —n on AFV.
e We have [H, L] = 2L.

6.24 Let us define the adjoint operator L*
(La, B) = {a, L*B)

lowering the gradation by 2. We have:
e [H L|=2L, [H,L*]=-2L"
o [L,L*]=H.

6.25 The vector space of forms at a point p € M, ie. @, AkT;(M) is a representation of the Lie
algebra slo(Z). We obtain a representation on the global forms.

p:slh(Z) — End(A*(M)),  p(h)=H, p)=L,  p(t*)=L*,

1 0 01 . (00
el ) B U FR s (]
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Recollection from representation theory

See e.g. [Fulton-Harris, Representation Theory: A First Course, §11]
e Representation of a Lie algebra g on V' is (by definition) a morphism of Lie algebras g — End (V).

e Having a representation of sl3(7Z) is equivalent to having three linear maps L, H, L* such that
[H,L|=2L, [H,L*]=-2L" [L,L*]=H.

It costs nothing to extend linearly such representation to slo(K) if V' is a vector space over the field
K =RorC.

e Any finite dimensional representation of sly(Z) is a direct sum of simple subrepresentations. (,,Simple”
means that it has no nontrivial subrepresentations.)

e Simple representations are of the form Sy = Sym”(C?) (the same for the theory over R). Other
description:
Sk = {homogeneous polynomials of degree k in variables z, y}

() =y, o) =2L.

6.26 With the assumption that dw = 0 we will show that sly action on forms induces an action on
cohomology and deduce very important consequences.

7 Differential on complex manifolds

7.1 If M is a complex manifold, then

d(AP9(M)) C APTHI(M) @ APTTY(M)

9, 90+099=0.

S
I
Q

+

Q
QO

no

|
@)
I

7.2 Let QP(M) denote the form of the type (p,0) with holomorphic coefficients.

e Lemma:
QP (M) = ker(9 : APY(M) — APH(M)).
7.3 Dolbeault complex: for 0 < p < dimc M we have a complex
0= APO() & art(an) & 8 apdim My g

7.4 We define Dolbeault cohomology [Huybrechts 2.6.20]:

HL (M;QP) .= HI(AP*(M), )
7.5 Holomorphic Poincaré lemma [Huybrechts 1.3.7]: the complex of sheaves on M

0— QP — APO 5 APL 5 AP2 5

1s exact.

e This means that if o = 0, o € AP4(U), then locally there exists B such that 0B = «, i.e. for each
point p € U there exists V C U, p € V and 8 € AP%1(V) such that 98 = Qv

7.6 It is enough to solve the following problem:

e Holomorphic Poincaré lemma in 1 variable: Let D. C U C C, where U is open, and let f € C°°(U;C)
be a smooth function. Suppose %f = 0, then there exists g € C°°(D,; C) such that %g = f.

e The solution to the previous problem, with f = f,, depending smoothly on a parameter can be found
in a way that g,, depends smoothly on the parameter.

14



21

o) =T = 5 [ Edg ni.

e Analogy with the real case:
— for a real (compactly supported) f: R — R we define the primitive function

/ F(6)de = K(g ) F(©)de,
where
_J0itg<o N fren
K(f){lifgzo and  K'(€) = by.

So the primitive function is expressed by the convolution with K, i.e Z(f)(x) = (K * f)(z).
(In general (f1* f2)' = f * fa.)

— similarly for complex, compactly supported function f: C — C

9(z) = (K * f)(2),

where K(z) = which has the property a_ =do

2m z ’
Sheaf cohomology - a summary, see eg [Huybrechts, Appendix B]

7.7 Cohomology with the coefficients in a sheaf F: there are two important construction
e Cech cohomology

e Sheaf cohomology as the derived functor of I' - taking the global sections.
1) we find a resolution of F, i.e. an exact complex

0F—=1"=T" 17—

with the sheave A* sufficiently good (acyclic, e.g. injective)
2) we apply the functor of global sections (and cut off the first term)

NI’ -ty -3 -

This complex is no longer exact.
3) W compute cohomology:
H*(M; F) = HHYT(I%)).

We have H?(M; F) = T'(F), because the functor T is left-exact.

7.8 In our case, when the base is paracompact any soft resolution is acyclic. (,,Soft” means, that
sections defined on a closed set can be extended to global sections.)

e Suppose M is a C*°-manifold. Any sheaf which is a module over the ring of C°°-functions is soft.

e The complex of C*®-forms on C*®-manifold A° — A' — A% — ... is a resolution of the sheaf
ker(d: A — Al) = R,,, the sheaf of locally constant functions.

7.9 The sheaves A9 are A-modules, hence they are soft.
e The Dolbeault complex is a resolution of Qf, = ker(9 : AP0 — AP\1)

HN(M;9) = HF (47 (M)

i.e the Dolbeault cohomology is the sheaf cohomology in the sense of the homological algebra.

15



7.10 If M is a complex manifold, then A% = ®p+q:o
e For p > 0 define the Hodge’a filtration (on the sheaf level)

rrAb = A

p'+q=k, p'>p

AP is a resolution of the sheaf Cj;.

Claim: FPA® is a subcomplex of A°.
e The resulting filtration in cohomology H*(M;C) = H*(A*(M)c)

FPHM(M;C) = im(HF(FPA*(M)) — HF(A*(M)c)) .

7.11 We have
FPAR JprHL AR ~ ppk—p

e The quotient map is a map of complexes (with a shift of the gradation)
(FPAPE® d) — (AP*,0)
e We have maps of complexes (I denote the shift of gradations by [i]. i.e. (F[i]¥ = FF+7)
A® < FPA* — AP*[—p]
e Passing to cohomology:
H*(M;C) « HF(M;FPA®) — H*P(X;QP).

7.12 The relation between cohomologies of the quotients with cohomology of the entire sheaf is given
by the spectral sequence

EPY = HPTI(FPA*(M)/FPHTAS(M)) = HY(M;Q8,) = HPT(M;C).

Generalities about spectral sequence
If C* is a complex with decreasing filtration
C*=FC* > F'C* > F*’C*> ...,
then one wishes to relate cohomologies H*(FPC®/FPTLC®) with H*(C*).
e There exists a spectral sequence (under some boundness of degree assumptions)

Eg,q _ FpCp-|—q/1;1p-s-1Cp—i—q7 Equ - Hp+q(FpC-/Fp+1C.) 7

e There exists a sequence of tables EF*? with differentials of degree (1 — r,r), such that
1) H*(E*) = ExY
2) B = FPHPYI(C®)/FPTLHPTI(C®)

7.13 For the total complex of the bicomplex AP4(M) with the Hodge filtration FPA®*(M) = A=P*(M)
the resulting spectral sequence is called the Frolicher spectral sequence.

Hodge theory for Hermitian manifolds

7.14 Hermitian structure on a complex manifold M is a choice of a Hermitian product in each tangent
space.

e such structure is a section of T*M ® T M which is symmetric and positively definite. We assume
that it is a C*°

e real part is a scalar product, the imaginary part - a differential 2-form (which does not have to be
closed).

e Hermitian structures exist for paracompact manifolds: we can chose a Hermitian structure locally
in maps and glue them using partition of unity.

16



7.15 We extend Hodge * C-linearly
o IfdimM =1

xdz = *(dz+idy) = dy—idx = —i(dx+idy) = —idz, xdz = *(dx—idy) = dy+ide = i(dv—idy) = idz
*1:w:d:v/\dy:%dz/\d2, *w =1

e In higher dimensions

~

o APy pAnanp
xdzr Ndzy = CdZ[n]\J A dz[n]\l

Exercise: compute c.

e Occasionally will appear antilinear star
%o AP9 Sy AP *(a) = xa = *a.

7.16 We have operators real L, L*, H = [L,L*] = (deg—n)id acting on C*°-forms A*(X). The
adjoint operator
L* =% 1L = (—1)%8 « L .
(The sign should be (—1)(dimz M—deg)deg 1yt here dimg T'M is even). Often in literature L* is denoted
by A, but it can be confused with the exterior power). The adjoint operator satisfies (Lo, 5) = (o, L*3).

e The complexified operators L, L*, H = [L, L*] = (deg —n)id act on A*(X)c. Hence A*(X)c becomes
a (infinite dimensional) representation of s((2).

o We take complexification, because we are also interested in the bigradation, available only over C.

7.17 We define operators
0" = — % 0% : APYUX) — Apfl’q(X) ,
(p,q) = n—gn—p)—m—-—gn-—p+1)—(p—1,9)
and B
0" = — %0 : API(X) — Ap’q_l(X) .
We have d* = 9* + 0*.

e explanation of signs: d* = (—1)dimz M(deg+D)+1 5 gy — _ 4 g

7.18 Kaihler structure
It can be defined in equivalent ways:

e Definition 1: locally there exists local coordinates in which w = £ 3", dzj, A dzj, + O(||z]]?).
i.e. in some coordinates the Hermitian metric is the same as for flat the manifold C™ up to the terms
of order 2.

e Definition 2: dw =0
e Proof 1) = 2) obvious.

7.19 Proof 2) = 1) [C. Voisin, Hodge Theory And Complex Algebraic Geometry I, Prop 3.14]

e How to construct good coordinates?

w= 3> de Adzp+ Y (el + el )z Adz + O(|2])
2 k.l
where 621 is a holomorphic linear form, ¢f,; antiholomorphic liner form.

° EzJ = El}fk since w is real.

D h _ O _h :
® 52k = 9, Cju Since W is closed

17



7.20 Hodge identities:
i) [0, L] = [0, L] = 0 (since w is closed)
i) equivalently [L*, 0] = [L*,0*] =0
ii) [0%, L] = i0, [0*, L] = —i0
i) equlvalently [L*,0] = —i0*, [L*,0] = i0* (this is the most difficult, the rest follows)
iii) [0,0%]s = [0%,0]s = 0 (i.e 39* + 0*0 = 0 etc, this is a formal consequence of ii))
iv) Ag =A5 = %A and it commutes with 9, 9, 9*, 9%, L i L* (formal algebraic proof)

7.21 Short proof from [C. Voisin, Hodge Theory And Complex Algebraic Geometry I, Prop 6.5].

e Assume according to Definition 1) that w has a standard form up to the terms of order 2. Therefore
in calculations involving only the first derivatives at a point we can assume that

= %Zdzk/\dzk

e We show ii’) i.e. [L*,d] = i0*. It is enough to check
(L7, 8)(@))z=0 = (9" ) =0

o We decompose w =) ) wg, W = %dzk A dz.
The adjoint operator Lj = (wgpA)* is expressed by the contraction of differential forms

Ly, = —2iig, Ly, ,
where v = 8%16’ U = B%k'
e We decompose 0 = > Jy. The adjoint differentials
o) 3 o)
o 282k Loy, 5 o = _2%%@7
A sample of check in dim=1
O fde=—%0x fdz = —x0(—ifdz) :i*%de/\dz: —Z%f xtdz Ndz = —2%f

7.22 Second Hodge identity [L*,d] = i0* for the flat metric: We decompose 0 = Y0 and L* =
> L;. Show that 0} = —2Lgk%, where v, = G%k Note 9y commutes with L for k # . It remains
to check [L}, 0] for a = fdz; A dz;, considering 4 cases k € or ¢ to I and J. For example: suppose
kel, keJ. Thatis [ ={k}Ul', J={k}UJ"

[LZ, 8k]fdzk ANdzZy Ndzp NdzZp =
L’,;@k(fdzk ANdZp Ndzp A di]/) - akLZ(dek ANdZp Ndzp A dZJ/) =
200k (fdzp Ndzy) =
Qzaf dzi Ndzp Ndzyp =
21'8—%% (dzx Ndzx Ndzp NdzZy) =
i0*(fdz, N dz, Ndzp NdZg),

e It remains to check 3 other cases.

7.23 For a computational proof see Huybrechts.
e The Huybrechts’ proof of ii’): an operator d® = I~'dI is introduced and the adjoint operator (d¢)*

d° = —i(0— ), (d°) = —xd°=

He shows ii”) [L*,d] = —(d®)*. The proof is computational, using Lefschetz decomposition into LFa,
where « is primitive.

18



8 Kahler identities cont.

8.1 Proof of iii) and iv) from i)&ii)
o iii)
i0,0 2 [0,[L7,0)] = OL*0 — 8°L* + L*0* — OL*9 = 0

e To show and iv) it is convenient to introduce the language of supercommutators [a,b] = ab —
(—1)dee(@)deg(®)pg, In that notation
Ay =[0,07].

e Leibniz rule, equivalent to the graded Jacobi identity
[a, [b, €] = [[a, b], ¢] + (=1)4&@ e ]p [q, ]] .

[la,0), €] = [a, [b, ] + (—1)€ % [a, ] 1]

Ay = [0, 0] 2i[[L*, 8], 0] "2 i, 9.9~ [1*,9].9) D15%,0) = Ay
0

and from iii) A = Ay + Ag.

L, Ap] = [L,[0,0%]] ““& (1L, 8],6"] + [0, [L, 0] 2 i[8, —id] = 0
g

Cohomology of Kahler manifold

e Corollary H*(M) ~ H is a representation of sly(Z).

8.2 STRATEGY: We obtain a list operators, decompositions etc. We have shown that this structure,
initially defined on forms, survives in cohomology of a complex Kéahler variety.

Lefschetz decomposition

8.3 Let W be a representation of slo,
e the eigenspaces of h are equal Wj_,, = AkT;M ® C,
e L% defines an isomorphism W_;, — W}, (k > 0),
o L: Wy — Wiio is mono for k < 0, epi for k+2 > 0.

o Lefschetz decomposition: For k > 0 let us define the primitive subspace
P, ={we W_,| L*w = 0}.

We have
W_i =Py, ® LPrio® LZPk+4 D....

8.4 The primitive cohomology classes (attention at the gradation shift): for 0 < k < n let us define
Pk ={a e H" k(M) | LF o =0}
PPY = P4 N Pé’ﬂ )

ph= g pre
ptg=n—k

We have

Practical consequences:
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8.5 Hard Lefschetz Theorem Let M be a Kéahler manifold od dimension n and let0 < k& < n.
Then
LF : H R (M) — H"F (M)

is an isomorphism.

o It follows
dim H*(M) < dim H**2(M)  ifk+1<n,

dim H*(M) > dim H**2(M)  ifk+1>n.
8.6 Hodge decomposition for the operator 0

APU(M) = im(9) ® HE? @im(9").
W
ker(0)

o APa—1l A}o,q7 o* - AP+l AP

ANf- OP) ~ LPd
H (Ma Q ) - %5 ’
e Since Ay = %A, we have
pPq __ p,q
Hy' =H",
HPa = HIP KHPd — Yr—Gn—P

1= nre.

p+a=k

8.7 Hodge decomposition in cohomology

e Recall the Hodge filtration
FPARM) = 5 AP(M)
p'2p, pta=k

and the induced filtration in cohomology
FPHM(M) = im(H*(FPA*(M) — H*(M)) .
The definition is independent from the metric and

FPH*(M) = image of @ HPI
p'>p, pta=k
e Conjugating we obtain
FPHk(M) = image of @ HIP
p'2p, p+q=k

e Define
HPY(M) = FpHp+q(M)) NFaHPTa(M).

This definition does not depend on the Kéahler metric.

HY M) = @ HP(M),
p+q=k
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8.8 Let hP? = dim HP4(M).

e Hard Lefschetz implies inequalities
R < dim AP ifp b g+ 1<,
RP > dim AP ifpp g+ 1>,

e The symmetries h?9 = R P79 = h%P are organized in the ,,Hodge diamond”

e For example for n = 3

h33 1
h32 h23 ‘ .
h31 h22 h13 <> * <>
R0 h? h1? W = 0O O © O
h20 hll h02 <> & <>
th h01 ‘ .
hY0 1

e Hard Lefschetz implies inequalities
R < dim AP i p g1 < n,

hP4 > dim pPHLatl ifp+qg+1>n,

8.9 Moreover
~Ifk=n— (p+q) >0 then LF: HPI(M) — HPTFa+E(M) is an isomorphism
—If p4+ q < n then

HP9(M) = PPY(M) @ L(PP~YY M) @ L2(PP292(M) @ ...
e Corollary: If M Kéhler and compact, then the (Frolicher) spectral sequence
HY(M;QF) = HPYI(M;C)

degenerates on E7, i.e.
BP9 = HY(M;QP) = EPA.
(the higher differentials vanish).

8.10 Corollary: Suppose M Kéhler and compact: if « € QP(M) then da = 0.
e Holomorphic implies closed.

e This is a generalization of: global holomorphic function is constant.

8.11 We say that M is Calabi-Yau if Q" ~ Oy
(according to more restrictive definitions it is assumed additionally H(M,QP) =0 for 0 < p < n)

e Thus h™7 = h04,
e For n = 3 the Hodge diamond looks like this

1
0 0
0 ) 0
1 Q@ Q@ 1
0 s 0
0 0
1

e We say that M* is a cohomological mirror of M if hP4(M*) = h""P9(M).
e For 3-manifolds this means h'?(M*) = K'Y (M) i R (M*) = h'2(M).
e Problem: how to find M*?
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8.12 Serre duality: the exterior product
A QP x QI — QPTa

defines a bilinear map
H*(M; QP) x HY(M;Q9) — HFY(M; QrFa)

If k+ ¢ = p+ q=n we obtain compose it with the integral [ : H"(M;Q") ~ H*"(M;C) — C.

e By Poincaré duality this form is nondegenerate
H*(M;QP) ~ H"F(M; Q7 P)*
e More generally: we have a nondegenerate form
H*¥(M;E) x HV*(M; E* ® Q") — H"(M;Q") = C
for a locally free sheaf E. In particular for QO = E:
O"7P ~ Hom (P, Q") = (2P)" @ Q"

and we recover the previous formula.

9 Signature, Cousin problems

Signature
9.1 If V is a real vector space with a symmetric nondegenerate form ¢, then the signature
o(V, ¢) := dim{maximal positive definite subspace} — dim{maximal negative definite subspace} ,

ie. #{+} — #{—} after diagonalization.
e If there exists Z C V such that Z+¢ = N, then o(¢) = 0.

9.2 For oriented compact C*°-manifold M of dimension 4m the intersection pairing in H?™(M;R)

)31 = [ ans
M
is symmetric and nondegenerate. Its signature is called the signature of M, denoted sgn(M) or o(M).
o(M) := o(H*™ (M), intersection form).
e Instead of H*™(M) we can take H®""(M) declaring o - 8 = 0 if deg(a) + deg(3) # dim(M).
e Exercise: the signature is multiplicative: o(M x N) = o(M)o(N).

e If M is a boundary of an oriented 4m + 1-manifold W, then o(M) = 0.
Proof: let ¢« : M = OW — W. Define

Z = (H*™(W)) C H(H*™(M))=V.
For [a], [8] € H*™(W) by Stokes

/ML*a/\L*ﬁ—/Wd(a/\ﬂ)—O.

(*) [a] - [¢*B] = 0 for all [3] € H*™(W),

It remains to show, that if
then [a] = *[a].
The condition (*) is equivalent to
la] € ker(H?™(M) % H*™ (W, M) ~ (H>™(W))*).

From the exact sequence
H2™(W) 5 H2™(M) % 52 (W, M)

we get the conclusion.
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9.3 Instead the real intersection form we consider H*(M;C) with the hermitian form. The resulting
signature is the same.

9.4 Hodge’a-Riemann relations [Huybrechts 3.3.15]: Define the hermitian form B(a, ) on H*(M)
as:

B(a,ﬁ):/Ma/\ﬁ_/\w"_k.

This form is symmetric or antisymmetric depending on the parity of k
B(Oé, 6) = (_1)kB(a> B) .

e It is nondegenerate: for o € H¥(M) there exists § € H*(M) such that B(a, 8) # 0.
— Let v € H**(M) such that Sy a AT #0 (eg. v = *a)
— By Hard Lefschetz v = L" %3 for some 8 € H*(M)

Blad) = [ any0.
M
e The pairing B restricted to H??(M) is non degenerate. The form v = %« is of the type (n—q,n—p),
hence L~y is of the type (n — ¢ —n+k,n—p —n+k) = (p,q).

9.5 Antisymmetric forms over C can be turned into symmetric:

e if ¢ jest antisymmetric, i.e.

¢(a7 b) - _¢<b7 CL) )
then ¢ (a,b) :=i¢(a,b) is symmetric.
o If hermitian form 1) is symmetric then ¢ (a,a) = 9 (a, a), hence ¥ (a,a) € R

e We say that such form is positive definite if
P(a,a) >0 fora #0.
9.6 Theorem [Hodge-Riemann relations]: Let £ = p + ¢. The form
P9 (=1)FED2B (o, B)
restricted to the primitive space
PPA(M) = P*(M)n HPY(M)
is symmetric and positive definite.

9.7 Proof reduces to calculations for A*C™: one has to check the sign of the form By restricted to
PP1C AP1 C A(C")* @ C. Here By is defined by the formula

aAB AR = By(a, B)dzy Adyy A -+ Aday, A dyy, .
e We check the following identity for a € P¥:

)
(% * %) L" ko= (-1)"2 (n—Fk)!*I(a),

or equivalently as in [Huybrechts]

i (k+1)
* " "a=(-1) 2 (n—k)!I(a),

where I is the complex structure acting on A(C™)*®rC. On the (p, q) forms it acts by the multiplication
by P~9.
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e We show inductively

k(k—1) 5! :
p——L— Sl N ()
n—k—j) " ()

e Having (x * %):

k(k—1)
aANaA"F=a AL F@)=an(-1)" 2 (n—Fk)!«I(a)=

k(k—1) k(k—1)
=(-1)" 2 aAx(n—FKU(a)=:"P(-1) 2 (n—k) <a,a>wvol

9.8 Corollary [Huybrechts 3.3.18]: Let n = 2m. Then M is a real manifold of dimension 4m. The
intersection form in the middle dimension 2m is symmetric. It coincides with B(«, ).

e The signature of M is defined as the signature of the intersection form H2?™(M) is equal to
k(k—1)+p—g

ST (=17 2 dim(PP(M))

p+q<m, 2|p+q

e We have equality dim PP4(M) = hP4 — hP~1471, Using symmetries of Hodge diamond hP4 = h9P =
h" P11 we obtain a formula for the signature

dim (M)

sgn(M) = > (=1)PrP9.

p,q=0, 2|p+q
e Example: let n = 4: we sum up the terms for which p — ¢ is even:

Tpt0 pdl 22 _pld 404

sgn(M) = +p?0 —pht o 4p0?
+p0,0
+h4’0 —h3’1+h2’0 +h2’2—h1’1 —h1’3+h0’2 —|—h0’4
— —|—h2’0 —hl’l —|—h0’0 —|—h0’2

+h00

+htA
—|—h4’2 _h3,3 +h2’4
— +h4’0 —h3’1 —|—h2’2 —h1’3 +h0’4
_|_h2,0 _hl,l —I—h0’2
+ht0

e We can neglect the remaining summands with p + ¢ odd, since (—1)9hP4 cancels with (—1)Ph%P

dim(M)
sgn(M) = Z (—1)PhPH
p,q=0
Further we can transform the formula:
dim(M) dim M
sgn(M) = Y (=1)9hP9 = 3" x(M;QP).
p,q=0 p=0

e Example: For the connected surfaces the intersection form is of the type (2p%? + 1, A1t —1).
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Motivation leading to the notion of Cech cohomology :

[B. V. Shabath, Introduction to complex analysis II, Chapter IV].

9.9 Additive Cousin Problem: find a global meromorphic function with prescribed poles.
Let M = |JU; be a covering. On each U; there is given a meromorphic function f;. We assume that
the differences g;; = ( fi)v.nv; — (fi)u;nu; are holomorphic. Does there exist a meromorphic function
J on M such that each difference fy, — f; is holomorphic?

9.10 Multiplicative Cousin Problem:

Let {U;}icr be a covering of M. On each U; there is given a meromorphic function f;. We assume that

. fu;nu; . . . .
the quotients g;; = (Iﬂ are holomorphic. Does there exist a meromorphic function f on M such
J (Fiwsnu,

that each quotient f‘flf is holomorphic?

9.11 The answer is in the language of Cech cohomology. For a covering % = {U;} the Cech complex
is defined by:

crwy= ] FU,nU,N---NU).
10<t1 <---<tp
Notation: for a multiindex I = {ig < i1 < --- < i} let Uy = U;,; NU;; N---NUj,. For {s;} € C*1(%)

define the differential i

d({sr})s =Y _(=D*(s5.)0,

a=1
For example
d({si})jo1 = (3j1>|Ujo,j1 N (Sj0)|Uj0vJ’1

d({sio,h})jmjhh = Sjrg2 ~ Sjog2 T Sjo. restricted to Uy jy s
9.12 Cech cohomology is defined by H*(%; F) = H*(C*(%; F),d).

9.13 Additive Cousin Problem : Let F = Oy, the collection of functions {g; ;} € CY(%;Oum)
satisfies the cocycle condition:

9ij — 9ir + gjr = 0.
It defines an element of Cech cohomology of the covering H'({U;}; Oar). The cohomology class is
trivial if the cocycle is a coboundary, i.e. there exists a collection of elements h; € Oy (U;) such that
gij = hj — hi.
e the Cousin problem has a solution if and only if the cohomology class [g;;] = 0.
Proof: If g;; = hj — h;, then the meromorphic functions f; = f; + h; agree at the intersections:
]Ei—fj:fi'i‘hi—fj-i-hj ODUiﬁUj.

(The converse - exercise.)

9.14 Multiplicative Cousin problem has a positive solution if the cocycle g;/g; defines the trivial class
in H'({Ui}; O3y).

9.15 Passing to a finer cover defines a map of Cech cohomology (it does not depend on inscribing
function).

9.16 Theorem: If M is paracompact, then

lim H*(%; F) ~ H*(M; F)
—
4

(The RHS is in the sense of homological algebra.)

25



9.17 If the covering is acyclic (i.e. H*(Uy; F) = 0 for any multiindex I and k > 0) then
HY({U:}; F) = HE(M; F).

9.18 Sufficient conditions for being acyclic:
e For locally constant sheaves on topological spaces: if all U are contractible,
e For coherent sheaves in algebraic geometry: if U are affine,

e For coherent sheaves in analytic geometry: if Uy are Stein spaces

Definition U C M is Stein if:

— for any pair of points p,q € U there exists an analytic function f € Oy such that f(p) # f(q).
— (holomorphic convexity) for any compact set K C U the set

K:={peU|VfeOy|fp)< supqerc| f(q)] }

is compact.

9.19 In the cousin problems one can pass to a finer coverings. Since H'(P";Oys) = 0, so on P”
the additive Cousin problem has always a positive solution. On curves of positive genus - not always:
genus = dim H(C; O¢).

10 Vector bundles and connection

10.1 Let Vect!(X) denotes the set of isomorphism classes of (topological) complex linear bundles X.
Looking at the definition of Cech cohomology we discover a bijection

Veet'(X) = HY(X;C(—,C"),

where C'(—,C*) denotes the sheaf of continuous functions with values in C*.

e Similarly the isomorphism classes of holomorphic vector bundles over complex manifolds are identified
with H1(X; O%).

10.2 The exponential exact sequence of sheaves
0—2Z—C(—C)ZCo(-,C)—0

induces the map

c1: Vect'(X) = HY(X;C(—,C*)) = H*(X,Z).

This is the first Chern class, we will give a differential definition later.

Divisors and line bundles, [Huybrechts §2.3]

We identify holomorphic bundles with sheaves of holomorphic sections. Locally free sheaves of Ox-
modules are identified with holomorphic vector bundles.

10.3 Divisor D = ) a;D; is a formal combination of codimension 1 indecomposable subvarieties (we
assume that X is an analytic manifold).

e We define a restriction of divisors to open sets: Dy = > p ~yzp ai(Di NU)

e D is an effective divisor iff all a; > 0, we write D > 0.

10.4 A meromorphic function defines a principal divisor div(f) = zeros(f) — poles(f).
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10.5 Any divisor D defines a line bundle Ox (D), viewed as a subsheaf of the sheaf Merox of
meromorphic functions: for each open U C X

Ox(D)(U) ={f € Merox(U) : div(f) + D)y is effective in U}

e If Dy = Dy + div(g), where g is a global meromorphic function, then Ox(D1) ~ Ox(D3). The
multiplication by g defines an isomorphism.

e We have an injection
{Divisors}/{Principal divisors} — {Holomorphic Line Bundles} .

The image consists of line bundles admitting a meromorphic section.
e Suppose s : X --» L is a meromorphic section. Define D = zeros(s) — poles(s). Then L ~ Ox (D)

e If L — X is an algebraic bundle, then it admits a meromorphic section.

10.6 Example: the tautological bundle over P!.
On Uy = {20 # 0} we have a section so([1 : z]) = (1,2), on U3y = {z1 # 0} we have a section
s1([w : 1]) = (w, 1). These sections do not vanish, so they define local trivializations. The transition
function g1 9so = s1 satisfies
g10(2)(1,2) = (1/2,1).
Hence
g10:UpNU; =C* - GL;(C) =C*,
go,1(2) = P

e The section sy has pole at oo, hence the tautological bundle is isomorphic to Opi (D), where D =
—{[0: 1]}. Equally well we could have D = —{[1 : 0]} or any other point.

10.7 Taking the transition function g o(2) = 2* we obtain Op1 (k)

10.8 Example: Opn(kH), where H ~ P"~! is the divisor at infinity. If & > 0 the global sections
HO(P"; Opn (kH)) are naturally identified with Clzq, 22, .. ., Znldeg<k =~ Clz0, 21, . - -, Zn)deg=k and

Opn (kH) ~ (tautological®)** =: tautological®* .
The only section for & < 0 is 0 and
Opn (kH) ~ tautological®* |

10.9 The bundle Opn(kH) =~ tautological®~* is denoted Opx (k).
e If Y is a hypersurface in P" of degree d, then Opn(Y') ~ Opn(d).

Connection for a vector bundle over C*°-manifold

10.10 Connection is a linear map V : C®(X; E) — C®°(X;T% ® E) =: AL (E) satisfying the Leibniz
rule

V(fs)=df @ (s)+ [s.

10.11 Let V and V'’ be two connections. The difference V — V' is Al linear. [Huybrechts 4.2.3]
Locally, every connection is of the form V = d + a, where a € A'(X, End(E)).
e If V is a connection and a € A'(X,End(E)) = C®°(X,T*X ® End(FE)), then V + a is a connection.

e Affine combination of connections tV; 4 (1 — t)V3 is a connection.

e Applying a partition of unity associated to the trivializing atlas of E' we glue together local connections
and obtain a global one.

e The space of connections is isomorphic to A'(X,End(F)). (But no connection is distinguished.)
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Connections concordant with structures
10.12 Suppose E is a hermitian bundle. A connection is Hermitian if
d < 81,89 >=< Vs1,89 >+ < 81, Vsy > .
(again the Leibniz formula) [Huybrechts 4.2.9]
10.13 Let V be a Hermitian vector space. By End(V,h) denote the endomorphism a satisfying
<a(v),w >+ <v,a(w) >=0.
If V = C" with the standard hermitian product, then End(V,h) = u, = {A € M,»,(C) | A+ AT = 0}.

e For a Hermitian vector bundle End(V, h) is a real vector bundle of the dimension = dim(u ).
e As before we prove that the space of Hermitian connection is a real vector space isomorphic to
AY(X,End(E,h)). (But no connection is distinguished.)

10.14 If rkE = 1. Then End(E, h) ~ R.

10.15 Suppose X is a complex manifold, FE is a holomorphic bundle (the transition functions are
holomorphic). Let A¥(X,F) = T'(A% ® E), A¥(X,E) = @D, = API(X, E). The operator 9 is well
defined B

Op : AP(X,E) — APTTYX E).
Warning: the operator 0 does not commute with the transition functions. Thus Jdg is not defined,

unless the transition functions are locally constant.

10.16 The connection decomposes into components V1 + V0. We say that V is compatible with
the complex structure if V%! = 9.

10.17 The space of connections compatible with complex structure is isomorphic to A(X, End(E)).
10.18 Theorem [Huybrechts 4.2.14]: For a Hermitian holomorphic bundle there exists exactly one

connection compatible with the complex structure.

e In local coordinates: let H be the matrix of the Hermitian product, V = d+ A, (we identify A locally
with a matrix, we call it connection matrix)

A€ Myyn(AY(X)), H € My (C®(X)), H=HT, n = 1k(E).
e the Hermitian condition reads
dH = ATH + HA.

Hence
oH = ATH |

SO

A=H19(H).
o If n=1, H = [h]. then a = 0log(h).

10.19 Example L = O(—1) on P, i.e. the tautological bundle, L ¢ C"*! x P" has the induced
Hermitian structure from the trivial bundle C"*t1. The connection form

A= dlog(lsl*).
where s is any section (trivialization) of L.
e For example on the chart {zp # 0} ~ C" there is a section
s(Mezpiorizg))=0czr:- 0 2p),
the differential
Fy = ddlog(1 + ||2[]*) = —99log(1 +[|z[*)
is called the curvature.
e Note:

(3
v =—wrs.
2
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11 Chern classes

11.1 We extend the connection using Leibniz formula to obtain the operator Vg : A¥(X, E) —
AML(X | E).

11.2 Theorem: The curvature Fy = V? : A%(E) — A%(E) is A°(X)-linear, hence it defines a section
o the bundle A’T*X ® End(E)).

11.3 Locally in the matrix notation
Fy =dA+ ANAE Myyn(A%(X)).

11.4 For a line bundle E = L = C x X: we have End(L) = C and AANA =0 (since Aisalx1
matrix). Then H = [h], h: X - R

Fg = dA = d0log(h) = 0 log(h) .

11.5 Example L = O(—1) on P", i.e. the tautological bundle, L C C"*! x P" has the induced
Hermitian structure from the trivial bundle C***:

Fy = ddlog(||s]]*) = —00log(||s||*),
where v is any section of L,

?
fFv = —WFs .
27

e For example on the chart {zg # 0} ~ C™ there is a section
s(Leizreeoriz))=0zr02p),

hence B
Fy = —ddlog(1 + ||2]]%).

e Note: ¢1(O(—-1)) = —[wrs].
11.6 Connection on E induces a connection on End(FE)
(VI)(s):=V(f(s)) = fVs = [V, fls.
In particular we can apply V to Fy.

11.7 Bianchi identity:

V(Fy) =0 € A3(X,End(E)),

because [V,V o V] = 0.
e Locally for V=d+ A we have

dFg = d(dA+ ANA) =dANA— ANdA = [dA, A] = [Fy, A].

Hence
0=V(Fy) =dFy + [A, Fy].

We obtain a formula for the differential

|dFy = [Fy, A].|
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Differential definition of Chern classes

Huybrechts §4.4

11.8 Theorem: For any polynomial map P : End(C") — C which is invariant with respect to
conjugation the form P(V%) € A29e8(P)(X) is closed.

e Lemma (see Milnor-Stasheff, Appendix C, p.297) For X = (x;;); ; define the matrix P'(X) = (%)m
(note, that the indices i, j are exchanged). We have:
(1) dP(X) = tr(P'(X) - dX).

(2) if P is Ad-invariant, then the matrices P'(X) and X commute.
Proof:
ad (1) easy
ad (2) P((I +tE;;)X) = P(X(I +tE;;)), hence
orP __ apP
Dk Tik P,y = Dok Bag Thid
e Proof of theorem:

dP(Fy) (2 t?”(P/(Fv)dFv) = tT(P/(Fv)[Fv, A]) = L‘?“(P,(Fv) NEg NA-— P/(Fv) NAN Fy) =

—~

2) tr(Fg A (P'(Fg) N A) — (P'(Fy) N A) AN Fy) = tr([Fy, P'(Fy) A A]) =0.
11.9 Remark: the map
C[Myxn(C))9En — C[diagonal matrices]™ = Cloy, 09, . . ., op)

is an isomorphism. If P is Ad-invariant, then it can be expressed by the coefficients of the characteristic
polynomial. Equivalently, P(A) is a symmetric function in eigenvalues of A.

11.10 The 2-form P(Fy) defines a cohomology class, which does not depend on the connection
(dowod TBA).

e For P = (i)k ok, ( (=1)*0y, is (1kE — k)-th coefficient of the characteristic polynomial) the resulting

forms represent the Chern classes.

The first Chern class ¢;(L) of a line bundle - various constructions

e Axiomatic definition, see Milnor-Stasheff:

a) c1:Vect'(=) — H?(—,7Z) is a natural transformation of functors Top — GrAb
b) eci1(l1 ® L2) = c1(L1) + c1(L2)
¢) c1(Opi(1)) = the distinguished generator [pt] € H?(P!)

e The identification Vect! (X) = [X,P*] = [X, K(Z,2)] = H*(X;7Z),
where [—, —| denotes the set of homotopy classes of maps.

e Via the differential in the long exact sequence of cohomologies associated to the short exact sequence
of sheaves
0 — 2miZ — C(X,C) Z¥ C(X,C*) = 0

0=HYX,C(X,C)) - H'(X,C(X,C") = H*(X;2miZ) — H*(X,C(X,C)) =0
Note, that we have an identification Vect!(X) = H (X, HY(X,C(X,C")).
e via the obstruction theory: the obstruction to the existence of a nonzero section belongs to

H*(X;m(C)) ~ H*(X; Z)

e ci(L) = [zero section] € H*(L) ~ H*(X)
e a definition via connection (when X is a manifold) t.j.w. £[Fy] = ;£[00logh] € H*(X;C),
[Huybrechts §4].
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Generalities about characteristic classes for higher rank bundles

o Let

Vect"(X) = {isomorphism classes of n-dimensional complex vector bundles over X}

e Def: a characteristic class on n-dimensional bundle is a transformation of functors hTop — Sets
Vect"(-) — H*(-).
Since Vect™(—) is representable,
Vect"(X) = {homotopy classes f: X — Grass,(C*)}
for finite CW-complexes, by Yoneda lemma

{Characteristic classes of n-bundles} = H*(Grass,(C>)) = Z[ci, ¢, ..., cx) .

e More generally, for a compact Lie group (or a reductive algebraic group) G, for cohomology with
coefficients in C:

Let Bun®(X) be the set of isomorphism classes of G-bundles over X. This functor hTop — Set is
representable by BG, thus

{Characteristic classes of G-bundles}c = H*(BG;C) = C[g]¥ = C[§" .

by Borel theorem. Here g is the Lie algebra of G, t the Lie algebra of the maximal torus, and W = NT'/T
is the Weyl group.
e For G = GL,, we have

ClgV = Clty, ta, .. . ta]™",

the ring of symmetric functions in n variables.

11.11 Axioms of Chern classes
c(E)=1+c(E)+c(E)+- 4+ (E), r=rk(E), c(B) € H*(X;7).
1) Functoriality: ¢(—) is a transformation of functors
Vect"(-) = H*(—2),
2) Whitney formula:
c(E1 @ E2) = c(Eq) Uc(E9),

where U denotes product in cohomology, sometimes written simply as -.
3) Normalization:

c(Op1(1)) =1+ [pt],
where [pt] is the generator of H?(P!;Z), which agrees with the complex orientation. (In de Rham
cohomology [pt] = [wrg]).
e By splitting principle we can assume that a vector bundle is a sums of line bundles. The cost is
that we replace the base X by FI(F), the bundle of flags over X, which is harmless, since it is mono

on cohomology. Topologically every line bundle can be pulled back from P> (which has the same
cohomology H? as P'). Hence the axioms determine c(E).
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12 Chern classes and others
The total ¢(E) is associated to the Ad-invariant (nonhomogeneous) polynomial P : X — det(X + I)

12.1 Let f: Y — X be a C*°-map, F — X a complex bundle with a connection V. The pull back:
if locally V = dx + A, then f*V =d, + f*A - (Huybrechts 4.2.6.v)

End(f*E) @ T*Y|;-1y +— End(f*E)® f*T*X;-1y — End(E)®T* Xy

Fa N | at]
U

fHw) — c X

12.2 Let P be an Ad-invariant polynomial. The class of P(Fy) in H*(X) does not depend on the
connection. (Assumption: X is a real manifold.)
Proof: for two connections Vg, V define a connection on X xR by the formula V = ¢ p*V; +(1—t)p*Vo,
where p: X x R — X is the projection. Inclusions ig,4; : X — X X R on submanifolds t =0 and ¢t =1
are homotopic, so [P(Fy,)] = i1 P([Fg)| = ig[P(Fg)] = [P(Fv,)]-

12.3 Verification of axioms:
1) Functoriality (the connection can be pulled back)
2) Whitney formula
C(E1 D EQ) = C(El)C(EQ) ,

Let connection on E; @ Ey be of the product form V(si, s2) = (Vis1, Vasa). Then
Fy = Fy, ® Fy, € (End(E;) ® End(E»)) ® A*(X) C End(FE;, @ E») ® A%(X).
3) Normalization ¢;(O(—1)) = —[wrs], by the definition of the Fubini-Study form.

12.4 Remark: The differential forms obtained by the above constructions are integral (i.e. come from
H*(X;7Z).

12.5 Supppse X is complex manifold, L a holomorphic line bundle with a Hermitian structure. Then
Fy =dA =00logh is a (1,1)-form.
e If X is Kéhler manifold, then c;(L) € HYY(X) Nimage(H*(X;7Z)).

12.6 Theorem: Let X be a Kahler manifold, E' a holomorphic bundle, then ¢ (E) € H k(X;C) is
represented by a (k, k)-form (5=)"o(Fy).
e Splitting principle: Let p : FI(E) — X be a bundle of flag spaces over X.

FIE) = {(z,Vi,Va,... Vi) |2 € X, Vi C Ey, dim(V}) =4, V; C Viyq }.

Let L; = V;/V;_1. The Hermitian structure defines an isomorphism V; = L; @ V;_;. (Note: This
isomorphism is not holomorphic.)
Topologically p*E = EB;E? L;. The Chern classes are topological invariants, hence

rkE
e E) = [[(1+ e1(Li))
i=1
Each ¢1(L;) is of the type (1,1) thus cx(p*FE) is of the type (k, k).
Fact: p* : H*(X) — H*(FI(F)) is a monomorphism. Moreover it preserves types. Conclusion:
ck(E) is of the type (k, k).

12.7 Huybrechts 4.2.18: in general one can define Atiyah class A(E) € H'(X; QY @ End(FE)), which
agree with o= Fy € A%(X;End(E)).
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Other classes

12.8 Chern character. Let P € C[[M,xy]] be given by the formula:

> tr(B*
=2 <k! )

k=0

where B = %Fv. In terms of symmetric functions

P(ty,to,...,t ZZ

k=0 i=1

~
S

;?‘

x

t

| Ze
=0

The resulting characteristic class is denoted by ch(FE).

e Properties:
Ch(El D Eg) = Ch(El) + Ch(Ez)
Ch(El ® EQ) = Ch(El) U Ch(EQ)

The second identity follows from e®t® = e® eb.

12.9 In general having a formal power series f[[z]|] we define an additive characteristic class satisfying:
e as(L) = f(c1(L)) for a line bundle L
o af(E1 @ Ey) = ap(Ey) + f(E2)

12.10 Example: if f[[z]] = €”, then af(E) = ch(F).
e To express the homogeneous components of ch(FE) assume that E is a sum of line bundles L;, let
z; = c1(Li)
e ch(E)) =rkE
o ch(E)yy=m1+22+ + x5 =c1(E)
o ch(E)g =3@i+a3+- - +a2)=F(@m+ao+- - +an)? =Y zizj = 3c1(E) — c2(E)

12.11 For a formal power series f[[z]] we define a multiplicative characteristic class satisfying:
e my(L) = f(c1(L)) for a line bundle L
o my(E1 @ Ey) =my(Er) Umy(E)
e Example: if f[[z]] = 1+ x, then ms(E) = co(E).

12.12 Todd class: Let

T T x 1‘2 $4 T

— = :1 ’. Ta  ~aon
e == = = epra.. " T2 12 720 " 0em0

6

(the coefficients are o Bernoullinumber)
o ld(E )( 0 =1
o td(E)q) = 3a1(E )

o td(E )(2) = *é +Z
for rkE = 2)

e Alternative description: td(F) is associated to the function on matrices B

2
2+ 2 = L(A(E) + c2(E)) (for degrees < 2 it is enough to perform computation

det(B)
det(id—e=B) "

12.13 Hirzebruch-Riemann-Roch (Huybrechts 5.1.1) Let E be a holomorphic vector bundle on a
compact manifold X. Then

V(X:E) = /X tA(TX) U ch(E) .
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12.14 Essentially it is enough to check the equality for X = P" E = O(k).

k
LHS = dim(Clzg, z1, ..., Tnx) = <n—]§ >
e Lemma: Euler exact sequence

0 — Opn — Opn (1) 5 TP - 0.

w(re) = (= )”“,

1—eh

Hence

where h = [wpg] € H?(P").

RHS = ( hekh> =
Pr 1—e"

h n+1 h ekh elk+n+1)h
=\ e = Resp—o| ———— = | = Resp—g-—F———— = ...
[<1 N 6_h> coef of h" ’ (1 - 67h)n+1 ’ (eh - ]_)n-l—l

Let u=e" — 1, du = edh

(u + 1)n+k
un+1

12.15 Exercise: X = hypersurface of degree d in P", E = O(k):

h \"l—ed a1
1- e‘h> dh d (1—eh)"HT

- = Resy—o = [(u 4 )" ™ coet of un

td(TX) = td(TP")/td(vx) = (

12.16 If dim X = 1, suppose L is of degree d, i.e. ¢1(L) = d[pt] then
1
X(X5L) = [(1+ e (TX)/2)(1 + e1(L))] 1y = deg(cr(TX)/2 + c1 (L)) = 3 Xtop(x) + d=1-—genus+d.

12.17 If dim X = 2, L = O(D), then ¢1(L) = [D]. Let ¢; = ¢;(TX)

XX L) = (14 01/2+ (6 + )1+ Dt D)) = deg(g (6 + ) + 22D
X(X;0x) + 61D2+D2
Using a common notation in algebraic geometry ¢; = —Kx
V(L) = x(x:0x) + D0
or with p, = —dim H'(X;Ox) = x(X;Ox) — 1 (arithmetic genus)
X(X;L)zl—i—pa-i-(D_I;XHD.

12.18 Hirzebruch class: Let

14 ye™ x

fylw) =@ 1—e? 1—e*
Here y is a parameter or a free variable.

e Exercise by Hirzebruch-Riemann-Roch (Huybrechts Cor. 5.1.4)

1 1 1
TY,2_ +yx4+ tY 6

1
—oy =4y + 50—yt 720 30240

5 + ...

=(1+y)

n
/ Hirzebruch class = Z X (X, Q% )yP = Z RPayP .
X
p=0 P

e For y = —1 we obtain x¢.p(X) the topological Euler characteristic,
For y = 0 we obtain T'd(X) = x(X, Ox) Todd genus
For y = 1 we obtain the signature.
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13 Positive line bundles

13.1 Riemann-Roch

V(X:B) = /X tA(TX) U ch(E).

Holomorphic invariant = Topological data.
e Goal: compute dimT'(X, E) = dim H(X; E).
e In general it is not possible (by topological data).
o If H*(X;E) =0 for k > 0, then dimT'(X, E) = x(X; E).
e Hence importance of vanishing theorems.

We concentrate on linear bundles

13.2 Linear algebra:
{13 —linear forms on V} < AZVENAYVF C A2(V*@rC).

13.3 We say that w € ALY (X) N A%(X;R) C A%(X;C) is positive, if there exists a hermitian product
such that w is equal to minus its imaginary part (z,y)) = (x,y) —iw(x,y). If locally in some coordinates
the hermitian product is given by a matrix H = [h; ;], then

i _
w = 5 Zhijdzi /\de .

13.4 A linear bundle is positive if it admits a connection V such that ;- Fy is a positive (1,1)-form.
13.5 Example of positive bundles: Opn(k), k > 0.
13.6 Denote Q4m¥ by Ky, call it the canonical bundle/divisor.

13.7 Kodaira(-Nakano) Vanishing theorem
[Huybrechts Proposition 5.2.2; Griffiths-Harris p 154.]
If L is positive, then H(X; Kx ® L)) = 0 for i > 0.
(In algebraic geometry notation L = O(D). The vanishing theorem reads H*(X; Kx + D) = 0.)
[Dow6d na koricu w §14]

13.8 Corollary: Assume L is positive. For any line bundle L' we have vanishing H/(X; LY ® L') =0
fori >0, v >> 0.

I'oLl =Ky (Ky'@L"aL).
The bundle K;(l ® LY ® L' has the connection form equal to
fFVKX + VFVL + FVL’ .

For sufficiently large v it is positive.

o If K;(l is positive, then vanishing holds already for » = 1. (Fano manifold, e.g. P", Grassmannians,
flag varieties.)

13.9 If L is generated by global holomorphic sections (we say ,,globally generated”) iff for each z € X
there exists a section s € H%(X; L), such that s(z) # 0.

13.10 Let sq, s2,. .., s, be the basis of H’(X;L). Define ¢ : X — P" by

T [sgrsyic Sy,
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e Coordinate-free construction: If L is globally generated, then for z € X define a function on the
space of the global sections H°(X; L)

up to a scalar
~Y

®(z) € Hom(H(X; L), L,) ~ HY(X;L)",
O(z):s—s(x)e L, ~C.

e We obtain a natural map
¢: X - PHX;L)").

e Then L = ¢*(O(1)) (by tautological identification H°(P(V*); O(1)) ~ V). Hence L is ,,nonnegative”,
i.e. L admits a connection such that the associated Hermitian form is nonnegative semi-definite.

e This property is preserved by pull-backs.

13.11 Kodaira embedding theorem.
[Huybrechts Proposition §5.3, Griffiths-Harris p 176.]
If a bundle L is positive, then for ¥ >> 0 the tensor power L” is generated by global sections and the
natural map X — P(H?(X;L")*) is an embedding. (We only assume that, X is a compact analytic
complex manifold, and as a corollary from GAGA we obtain that X is algebraic.)

e Steps of the proof:
a) assume that ¢rv is well defined, i.e. the base locus of L is empty:

Vee X HYX;L")— LY =HX;L'® Ox/my,)
b) ¢rv separates the points: suppose for x € X the restriction H°(X; L¥) — L% @ Ly is surjective.

(note b) = a) )
b’) Equivalently: the restriction

H(X; L) — HO(E; L) = HO(X; L © O3 /1g)

is surjective, where X = Bl,Bl, X, L is the pull-back of L to X, E the sum of the exceptional divisors,
Ip ~ O(—F) the ideal sheaf of E. The restriction map is a part of an exact sequence

— HYX; L") —» HYX;L" ® 0% /Ip) — HY(X; LY ® O(-E)) —

obtained from
0= 0z(-FE)—= 0% = 0O —0.

By vanishing theorem H'(X; L @ O(—E)) = 0 for v >> 0.

Similarly:
¢) ¢r» has nondegenerate differential at x. Equivalently

HYX; LV ®@my) —» LV @TiX = H'(X; L' @ Q% @ Ox/my)

is surjective.
¢’) the restriction

HY(X; LY @ Ig) = HY(E; Ly ® Ig) = H'(X; LY © O /1 ® Ig)

is surjective, where X = Bl, X, L where X is the pull-back of L, E is the exceptional divisor, I is the
ideal sheaf of E. Note that Ig restricted to £ = P(T,X) is isomorphic to O(1), hence

HYE; Ly © 1) = Ly @ T X .
The restriction map is a part of an exact sequence

— HYX; LY @Ip) » HY(X; LY ® Ox /I @ Ip) — HY(X; L") —
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13.12 Kéahler manifolds with integral (up to a scalar) Kéhler form are projective. If
(X,w) is a Kédhler manifold and [w] is of the form A[w'] for A € Ry, [w'] € H*(X;Z), then X embeds

into a projective space.
e Proof. It is enough to show that: if [w] is integral, then there exist a holomorphic line bundle L with
a curvature form equal to ZX¢;(L).
e The short exact sequence
Z—C— Ox

of sheaves induces a long exact sequence
— Pic(X) = HY(X,0%) S H*(X;Z) % H*(X;0x) — .

Assume that [w'] is integral. We will show that [w'] lies in the image of ¢1, or equivalently it belongs to
the kernel of the map ¢. The map ¢ factors as follows

H*(X;7Z) — H*(X;C) = H*°(X) @ HY(X) ® H**(X) » H**(X) = H*(X;Ox).
The second map is induced by the map of shaves C — Ox.The classes of the type (1, 1) lie in the kernel.
e It remains to show, that if ¢;(L) = [w] then L admits a connection V with

—Fy =w.
271'Vw

13.13 adjusting the connection. Suppose [w] = c1(L) € H?(X), where w is a real (1,1)-form.
Then there exists a connection V such that w = 5= Fy.

e Proof: locally in a trivialization Fy = ddlog(h(z)). For a different choice of a metric A’ = e”h.
Hence B B
Fygr = 00log(e’h(z)) = Fy + 00p.

We want to find
Fyr = 27miw = Fy + df

for a given 3 € AY(X). It remains to solve an equation
00p =dp.

Then ' = e’h and V' is the required connection.

e We apply 85—_lemma [Huy, Cor 3.2.10]: for a given exact form df of the type (1,1), there exists p
such that dg = 00p.

e Existence of p is the conclusion of d0-lemma For ¢ € AP
p=df = Iy ¢=0ady

13.14 Numerical criteria for admitting a positive connection, i.e. ampleness
e Nakai-Moishezon criterion

e Kleiman criterion
[Ten temat juz nalezy do innego przedmiotu.]

14 Dowdd twierdzenia Kodairy-Nakano o znikaniu

14.1 Jedli L i K dodatnie, to L ® K tez. Jesli K = L®" jest dodatnie, to L tez. Obciecie zachowuje
dodatniosé.

Ponizej uzywamy E jako oznaczenie wigzki, bo L jest zarezerwowane na operator Lefschetza. Zaktadamy,
ze X jest wartq rozmairo$ciq analityczng.
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14.2 Ustalamy metryke hermitowska na X i E. Definiujemy skrecone harmoniczne
HPYUE) :=ker(Ag) C APY(E), Ap = 0pdy + 050E
14.3 Jesli X jest zwarta to
APYE) = HPY(E) @ im(0g) + im(95)
14.4 7 rozkladu Hodge’a dla 0
HPY(X; E) = HPYE) = ker(Ag) .

14.5 Mamy
— Operator L : APY(X; E) — APYLOH (X, E) i spragzony L*
—V = V0 4+ 9p oraz tozsamoséé (u Huybrechtsa nazwana tozsamoscia Nakano)
[L*,0p) = —i(V"O)",
ktéra jest uogdlnieniem tozsamosci Kihlera [L*, 0] = —id*.
14.6 (Znikanie Kodairy-Nakano) Jesli E jest dodatnia, to HP(X;E) = HI1(X;0% @ E) = 0 dla

p+q>dimX.
Forma krzywizny Fy jest typu (1,1), lokalnie

Fg = dA = 00(logh) .
Lokalnie dla przekroju n
VH0) = on + d(logh) A1

Op(VIOn) = (—00n + 8(d(log h) A n)) = —30n — d(log h) A dn + dd(logh) An
V0(dEn) = 00n + d(log h) A dn

FyAn= 5EV1’OT] + Vl’ogEn

Niech n € HPY(E), B )
Opn =0, oEgn =20

Wtedy

Fynn= 5EV1’077

Stad
(L Fon,n) = i(L*0pV 00, n) VE" i((Op L — (V1) )V0n, ) =
= i((OpL*,n) + (VIO V0, m) = i{(L*, 0pm) + (V10, V10) = (VH0, v10) > 0
Podobnie
i{FgLn,n) = i{(0pV"° + V1 00p) L*n,n) = i{(V"°0) L*n,n) = i(VO(L*0p + (V)" )n,n) =
—(VE(TEO) ) = (V1) (VH0)™n) < 0

Stad
(L%, Foln,m) = |Vl + IV 99]1* > 0

Ale
by AN —=2nL

bo L jest dodatnia, wiec %Fv jest forma Kéhlera. Stad

i([L*, Fyln,n) = 2x([L*, Lln,n) = =27 (Hn,n) = 2x(n — (p+ q))|In]>.

Jedlin — (p+q) <0, to i{[L*, Fy]n,n) < 0. Zatem [|n||> = 0.
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14.7 Wniosek: jesli E%" = O(1)x dla pewnego zanurzenia X C PV, to H*(X,Q% ® E) = 0 dla
k> 0.

14.8 Poprzez dualnosé Serre’a (lub bezposrednio, korzystajac z tego, ze %Fv e = —W):
H*¥X,E*)=0

dla k < n.

39



	Introduction
	Weierstrass preparation
	Weierstrass II
	Morse theory for C-manifolds and weak Lefschetz
	Hodge theory
	
	Differential on complex manifolds
	Kähler identities cont.
	Signature, Cousin problems
	Vector bundles and connection
	Chern classes
	Chern classes and others
	Positive line bundles
	Dow'023 od twierdzenia Kodairy-Nakano o znikaniu

