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1 Introduction

1.1 Definition of complex manifolds

1.2 Projective spaces

1.3 Grassmannians Grk(Cn). Affine maps: for I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}

UI = {V ∈ Grk(Cn) | projection V → I-coordinates is an isomorphism }

UI ≃ Hom(Ck,Cn−k) .

1.4 Plücker embedding, Gr2(C4) as a quadric in P5 = P(Λ2C4).

1.5 Hyperplane in Pn e.g. elliptic curve in P2

y3 + pxz2 + qz3 − x2z = 0

with p, q fixed.

1.6 Complex manifolds as real manifolds are orientable since any linear complex map preserves the
distinguished orientation of the underlying real vector space.

1.7 Basic information about topological coverings an induced complex structures: If f : X → Y is
a topological covering, Y has a structure of a complex manifold, then X has a natural structure of a
complex manifold and f is a holomorphic.

Curves

1.8 Riemann surfaces (= oriented surfaces with a Riemannian metric) and complex surfaces: each
Riemannian surface has a complex structure. Genus of Riemann surface.

• The rotation by 90◦ in the tangent space allows to introduce a structure of complex vector space.
This structure is ,,integrable” i.e. it comes from a structure of a complex manifold (a proof will be
later, it follows trivially from Newlander-Nirenberg theorem).

1.9 Riemann uniformization theorem: any complex curve is isomorphic to P1 or it is a quotient of C
or D ≃ H.

• Another formulation: any simply connected complex curve is isomorphic to P1, C or D. This is a
generalization of the Riemann theorem for open subsets in C.

1.10 The automorphism group of P1 is equal to PGL2(C). Any complex-analytic automorphism of
P1 is given by a linear formula. (The same statement holds for Pn.)

• Proof: Composing with a linear map we can assume that f(0) = 0, f(∞) = ∞. Expanding at
infinity we get an estimation 1/|f(z)| < c/|z|. Hence the function g(z) = z/f(z) is bounded. It has no
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poles, since at 0 the zero of the denominator cancels out and there are no more zeros of f . Hence by
Liouville theorem g(z) is constant.

• Hence each automorphism of P1 has a fixed point – the eigenvector of the linear map.
Topological proof: there are no nontrivial topological covering P1 ≃ S2 → C except C = RP2. But the
real projective plane is not orientable, so it cannot be a complex curve.

1.11 Automorphisms of C are given by affine maps f(z) = az + b. There are no fixed points only if
a = 1.

• The map f : C → C extends to P1. It is continues at ∞. By Riemann extension theorem it is
holomorphic ∞ and we apply (1.10).

1.12 The complex quotients of C are of the form C/Λ for a lattice Λ ⊂ C.

• The nontrivial discrete subgroups of Λ ⊂ (C,+) ≃ R2 are of the form Λ = ⟨a, b⟩ for b/a ∈ H, (or
Λ = ⟨a⟩). We can restrict our attention to subgroups of the form Λ = ⟨1, τ⟩, τ ∈ H.

• The group PSL2(C) := SL2(C)/{±I} acts on P1 by homography:
(
s t
u v

)
·z = (sz+ t)/(uz+ v). The

subgroup PSL2(R) preserves the upper hyperplane H.

• Suppose τ, τ ′ ∈ H. Then C/⟨1, τ⟩ ≃ C/⟨1, τ ′⟩ if and only if τ and τ ′ belong to the same orbit of
PSL2(Z). (Exercise)

1.13 The group of disk automorphisms is isomorphic to the group of the upper hyperplane H auto-
morphisms: Aut(H) = PSL2(R).

• Aut(D) consist of homographies (apply the Schwartz lemma, assuming f(0) = 0).

1.14 Discrete subgroups of PSL2(R) are called Fuchsian groups (grupy Fuksa). The curves of higher
genera g > 1 are quotients H/G where G ⊂ PSL2(R) is Fuchsian and acts without fixed points.

1.15 Read more: [Huybrechts, Complex Geometry, Chapter 2.1]

2 Weierstrass preparation

Local theory: see [§1, Huybrechts].

2.1 Cauchy-Riemann operator ∂
∂z̄ = 1

2
∂
∂x + i ∂∂y and complex differential 1

2
∂
∂x − i

∂
∂y .

2.2 Differentials dz = dx+ idy and dz̄ = dx− idy.

• For any C∞ function on f : C→ C the differential

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z̄
dz̄ .

(Hint if A =
(
1 1
i −i

)
then (AT )−1 = 1

2

(
1 1

−i i

)
.)

2.3 Recollection of theorems for complex analytic functions in one variable

• series expansion

• Cauchy integration formula

• maximum principle

• identity principle

• Liouville theorem

2.4 Residue resz0(f) = 1
2πi

∫
∂Dz0

f dz, where Dz0 is a small disk around z.
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2.5 Residue theorem: for a meromorphic function f (enough to assume: holomorphic away from a
discrete set {z1, z2, . . . , zn}) on a compact Riemann surface S∑

k

reszk(f) = 0 .

• Proof from the Stokes theorem: Assume that the discs Dzk for z ∈ Sing(f) do not intersect:∑
zk

∫
∂Dzk

f dz = −
∫
∂(S\

⋃
Dzk

)
f dz = −

∫
S\

⋃
Dzk

d(f dz) = −
∫
S\

⋃
Dzk

∂f

∂z̄
dz̄ ∧ dz = 0.

2.6 A formula for the number of zeros in a disk has a generalization which will be used later. If
f(z) ̸= 0 for |z| = ε then for ℓ ≥ 0 we have

1

2πi

∫
Sε

f ′(ξ)

f(ξ)
ξℓdξ =

∑
|α|<ε, f(α)=0

αℓ.

Many variables - references to [Huybrechts §1.1]

2.7 Definition: a C∞ function f : Cn → C is holomorphic if ∂z̄kf = 0 for k = 1, 2, . . . , n.

2.8 Cauchy integral formula Prop 1.1.2

2.9 Hartogs theorem Prop 1.1.4

2.10 Corollary: zero set of a holomorphic function (f ̸≡ 0) has real codimension equal 2 or it is
empty.

• Remark: any analytic set (eg zero set of a holomorphic function) is triangulable by  Lojasiewicz
theorem, so there is no ambiguity with the notion of dimension.

2.11 Weierstrass preparation theorem (Th. 1.1.6).

2.12 Algebraic fact used in the proof: elementary symmetric functions σk can be expressed by power
sums pk.

Local ring

2.13 The local ring OCn,0 is a unique factorization domain (Prop 1.1.15).

• Key argument: Weierstrass polynomial is indecomposable in OCn−1,0[z] iff it is indecomposable in
OCn,0.

3 Weierstrass II

3.1 Weierstrass preparation theorem – division version (Prop 1.1.17).

3.2 The local ring OCn,0 is noetherian (Prop 1.1.18).

3.3 Remark: If ∅ ≠ U ⊂ Cn, n > 0 then OCn(U) is not noetherian.

• Proof: Any I ⊂ OCn,0 is generated by I ∩ (OCn−1,0[z]) and any Weierstrass polynomial g ∈ I (by
division version of WPT).

3.4 Germ of sets and ideals in the local ring:

• The germ of the set Z(J) defined by an ideal J ⊂ OCn,0.
— if J1 ⊂ J2 then Z(J1) ⊃ Z(J2)

• The ideal of function germs vanishing on the germ of a set I(X). We have:
— if X1 ⊂ X2 then I(X1) ⊃ I(X2)
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3.5 Compositions of Z and I

• X ⊂ Z(I(X)) for any set germ,

• J ⊂ I(Z(J)) for any ideal,

• X = Z(I(X)) for analytic set germs (i.e. of the form X = Z(J))
— since J ⊂ I(Z(J)) then X = Z(J) ⊃ Z(I(Z(J))) = Z(I(X)).

• Hilbert nullstellensatz: I(Z(J) =
√
J (see sketch of a proof in Huybrechts p.20).

3.6 Let g ∈ OCn,0 be indecomposable, then if f|Z(g) = 0, then g divides f (Cor. 1.1.9)

• Proof from the division version of Weierstrass preparation theorem.

• Key step: if g is indecomposable Weierstrass polynomial, then gw(z) generically (w/r to w) has
distinct roots.
— let K be the quotient field of OCn−1,0. The polynomials gw(z) and g′w(z) are coprime (by Gauss
lemma), so there exist α(z), β(z) ∈ K(z) such that α(z)gw(z) + β(z)g′w(z) = 1. Passing to OCn−1,0,
removing the denominators

α̃(z)gw(z) + β̃(z)g′w(z) = γ

with 0 ̸= γ ∈ OCn−1,0. At the points where γ(w) ̸= 0 the polynomial gw does not have multiple roots.

3.7 The germ of a set is indecomposable (also called irreducible) if and only if I(X) is a prime ideal
(Lemma 1.1.28)

Rough notes on GAGA (dla absolwentów teorii snopów)
J-P.Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier 6: 1-42, (1956)

See also: Amnon Neeman, Algebraic and analytic geometry. Cambridge University Press (2007)

3.8 For an algebraic manifold X (a scheme in general) we define ,,analytification” Xan.

• As a set X = Xan.

• While X has Zariski topology, Xan has classical topology (glued from the open subsets U ⊂ Cn ≃
R2n). The identity map ι : Xan → X is continuous (every Zariski open set is open in the classical
topology). [Serre §5 Lemma 1]

• Both spaces are ringed. We have distinguished sheaves of rings OX (algebraic functions) and HX

(holomorphic functions), the stalks are local rings. We have a map

θX : ι−1OX →HX ,

i.e. ι extends to a map of ringed spaces. Here ι−1 denotes the pull-back of a sheaf. The map θX is
injective, flat, an isomorphism after completion in m. [Serre §6, prop 4]

3.9 For an algebraic sheaf F over an algebraic manifold we define ,,analytification”

Fan = HX ⊗ι−1OX
ι−1F .

Of course OanX = HX . [Serre §9, Prop 10]

3.10 Definition: Let (Y,RY ) be a ringed space. The sheaf RY –modules F is coherent iff
1) locally there is a surjective map (RN

Y )|U → F|U for some N (i.e. F is locally finitely generated),

2) for any map (RM
Y )|U → F|U the kernel is finitely generated.

By Coh(Y ) we denote the category of coherent sheaves.

• Mind the difference comparing with the definition for algebraic varieties.

3.11 Oka Theorem: F = HX is coherent. (This is not a tautology!) References in [Serre §3 Prop.1]

3.12 Analytification of sheaves is a functor preserving coherent sheaves [Serre §9]

(−)an : Sh(X)→ Sh(Xan)
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3.13 (Serre) If X is projective, F coherent then the natural map H∗(X;F) → H∗(Xan;Fan) is an
isomorphism. [Serre §12 Th. 1]

• Relative version: Let f : X → Y be a projective morphism of algebraic varieties. Then f induces a
functor

fan∗ : Coh(Xan)→ Coh(Y an)

and
(f∗F)an = fan∗ Fan

(Rkf∗F)an = Rkfan∗ Fan

If Y = pt then we recover the previous formulation.

3.14 (Serre cont.) If X is a projective variety, then (−)an restricted to Coh(X) is an equivalence of
categories.
The above means:
(i) HomOX

(F ,G)→ HomHX
(Fan,Gan) is an isomorphism. [Serre §12 Th. 2]

(ii) For any analytic coherent sheaf G there exists an algebraic sheaf F such that G ≃ Fan. [Serre §12
Th. 3]

3.15 The proofs can be reduced to X = Pn. To check the equality H∗(X;F) ≃ H∗(Xan;Fan) we
can assume (by various cohomology exact sequences) that F ≃ O(m).

3.16 For a proof of (i) use the equality of sheaf-Homs

(HomOX
(F ,G))an = HomHX

(Fan,Gan)

which holds for algebraic coherent sheaves. Then apply the general principle

HomY (F,G) = H0(Y ;HomY (F,G)) ,

and apply 3.13.

3.17 For a proof of (ii) have to show that any analytic sheaf F on X = Pn after tensoring with
HX(m) for some big m is globally generated, i.e. there exists k and a surjection

H k
X → F (m) := F ⊗HX

HX(m) ,

which is equivalent to: for each point x ∈ X

Global sections of F (m)→ F (m)x

is a surjection, [Serre §16 Lemma 8]. Then F (m) = coker(H ℓ
X → H k

X ), thus by (i) it is algebraic,
[Serre §17].

3.18 Corollary (Chow Theorem): Any analytic subvariety Pn is described by a set of polynomial
equations..

4 Morse theory for C∞-manifolds and weak Lefschetz

[Milnor – Morse theory, 1963]

4.1 Def: Morse function f : M → R is a proper smooth function such that if Df(p) = 0 for p ∈ M
then D2f(p) is nondegenerate. Additionally we assume that for each critical value there exist only one
critical point of f (critical values of distinct points do not collide).

4.2 ind(p)= the index of a critical point = the number of minuses after diagonalization of D2f(p).
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4.3 for t ∈ R let
M≤t = {p ∈M | f(p) ≤ t} .

4.4 Theorem:
1) If there is no critical value in the interval [a, b], then the inclusion M≤a ⊂ M≤b is a homotopy
equivalence
2) If f(p) = c ∈ [a, b] is the only one critical value in the interval [a, b] then M≤b is homeomorphic to
M≤a with attached Iind(p) × In−ind(p) along ∂Iind(p) × In−ind(p), (up to homotopy we attach a cell of
the dimension k = ind(p)).

4.5 The effect of attaching k-dimensional cell:

M≤b = M≤a ∪ϕ Dk , ϕ : Sk−1 →M≤a .

There is an exact sequence

0 → Hk−1(M≤b) → Hk−1(M≤a)
ϕ∗→ Hk−1(Sk−1) → Hk(M≤b) → Hk(M≤a) → 0

∥
Z

The for the remaining gradations H i(M≤b) ≃ H i(M≤a) (the case i = 0 needs a separate discussion).
For real (or rational) coefficients: replace Z by R (or Q). Then there are two cases: ϕ = 0 or not.

• If ϕ = 0, then Hk(M≤b) ≃ Hk(M≤a)⊕ R, and the remaining gradations are not changed.

• If ϕ ̸= 0, then Hk−1(M≤b) ≃ ker(ϕ), and the remaining gradations are not changed.

4.6 Corollary: If all the cells are of even dimension, then

Hodd(M) = 0 , H2k(M) ≃ Z# of 2k cells .

4.7 Suppose M ⊂ RN is a compact submanifold, let fq(x) = dist(q, x)2 for a fixed q ∈ RN \M .

4.8 For almost all q ∈ RN the function fq is Morse.

4.9 Assume that q = 0, p = (a, 0, . . . , 0) with a ∈ R+, TpM = {xn+1 = xn+2 = · · · = 0}; then M
locally is the graph of a function g = (a+ g1, g2, . . . gN−n : Rn → RN−n, g1(0) = 0, gk(0) = 0 for k > 1,
Dg(0) = 0;
Parametrization of M :

x = (x1, x2, . . . , xn) 7→ (a+ g1(x), g2(x), . . . gN−n(x), x1, x2, . . . , xn) .

• then

fq(x) = (a+ g1(x))2 +

N−n∑
j=2

gj(x)2 +

n∑
i=1

x2i =

n∑
i=1

x2i + 2aQ(x) +O(||x||4) ,

where Q is a quadratic form of g1, hence

D2fq(p) = 2(I + 2aQ) .

Therefore
ind(p) = #{λ ∈ spec Q | λ < − 1

2a}
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Weak Lefschetz

4.10 Lemma: If M ⊂ CN is a complex submanifold, q ̸∈M and p is a critical point of fq, then

index(p) ≤ dimC(M)

• Proof: we assume as before that q = 0, p = (a, 0, . . . , 0), a ∈ R+ ⊂ C.

• Very easy algebraic lemma: Suppose Q is a nondegenerate quadratic form on Cn. If v is an eigenvector
of the real part Re(Q) with the eigenvalue λ, then iv is an eigenvector with the eigenvalue −λ. Hence
the eigenvalues are symmetrically distributed with respect to 0.

• Corollary the index of 2(I + aRe(D2g(0)) = 2(I + 2aRe(Q)) is at most 1
2 dimR(M).

4.11 If M ⊂ CN is a complex submanifold of the complex dimension n, then M has the homotopy
type of n-dimensional CW-complex. Hence Hk(M ;R) = 0 for k > n (with coefficient in any ring R).

4.12 ,,Weak Lefschetz” aka ,,Lefschetz hyperplane theorem” [Milnor, Morse Theory §7]: If
X ⊂ PN is a complex submanifold of dimension n, i : Y = X ∩ PN−1 → X, then X is a sum of Y with
cells of dimension k ≥ n. Thus

• i∗ : Hk(X)→ Hk(Y ) is an isomorphism for k < n− 1 and mono for k = n− 1,

• i∗ : Hk(Y )→ Hk(X) is an isomorphism for k < n− 1 and epi for k = n− 1.

• Moreover i∗ : π1(Y )→ π1(X) is an isomorphism if 2 < n, epimorphism if 2 = n.

4.13 If X ⊂ PN , and M is a smooth hypersurface of degree d, then M ∩ X ≃ ι(X) ∩ H, where
ι : PN → P(Symd(CN+1)) is the Veronese embedding and H is a linear hypersurface in P(Symd(CN+1)).

• Hence for complete intersection X ⊂ PN we have information about all Betti numbers, except the
middle one:

X = XN−n ⊂ XN−n−1 ⊂ · · · ⊂ XN−1 ⊂ XN = PN

dim(Xi) = N − i, since k < n < dim(Xi) for i < N − n, we have isomorphisms Hk(Xi) ≃ Hk(xi+1).

Hk(X) =

{
Z for k even

0 for k odd

for k < n, and from Poincaré duality Hk(X) ≃ H2n−k(X) we get the same result for n > k.

4.14 Exercise: compute dim(Hn(Qn)) for a nonsingular quadric Qn ⊂ Pn+1.

5 Hodge theory

Differential forms and de Rham cohomology – summary

5.1 Global differential forms on a C∞-manifold M will be denoted by A•(M) =
⊕dimM

k=0 Ak(M).
(The notation Ω•(M) is reserved for holomorphic forms.)

5.2 A•(M) is a commutative algebra with gradation ab = (−1)deg(a) deg(b)ba )

5.3 differential satisfies the Leibniz rule d(ab) = ad(b) + (−1)deg(a)b

5.4 the linear space Ak(M) is the space of the global sections of a sheaf AkM .

5.5 RM ↪→ A0
M → A1

M → A2
M → . . . is a soft (in particular acyclic) resolution of the constant sheaf

RM , therefore
Hk(A•(M), d) = Hk(M ;RM ) ≃ Hk

sing(M ;R) .

The cohomology groups are denoted by Hk(M), we skip R in the notation.
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5.6 exterior product of forms induces multiplication in cohomology Hk(M)×Hℓ(M)→ Hk+ℓ(M)

5.7 if M is compact, n = dimM and M has a chosen orientation, then the integral of n-forms induces
a map

∫
M : Hn(M)→ R. If M is connected, then

∫
M is an isomorphism.

5.8 (Poincaré Duality) if M is compact, oriented of dimension n, then the bilinear form∫
M
− ∧− : Hk(M)×Hn−k(M)→ R

is nondegenerate.

5.9 if M is oriented (not necessarily compact), then we consider cohomology with compact supports

Hk
c (M) = Hk(A•

c(M)).

Then ∫
M
− ∧− : Hk

c (M)×Hn−k(M)→ R

is defined and it is a nondegenerate 2-linear form.

5.10 Having a Riemannian metric on a compact manifold allows to define harmonic forms Hk(M)
(see 5.17). The harmonic forms are closed and the resulting map Hk(M)→ Hk(M) is an isomorphism.
However the product of harmonic forms does not have to be harmonic.

Hodge theory for C∞ manifolds

Suppose M is equipped with Riemannian metric, i.e. a scalar product at each tangent space TxM . Let
n = dimM .

5.11 Volume form is denoted by vol ∈ An(M).

5.12 Hodge star: for x ∈M
∗ : ΛkT ∗

xM → Λn−kT ∗
xM

It is defined by the property
a ∧ ∗b = ⟨a, b⟩vol

for each a, b ∈ ΛkT ∗
xM . The Hodge star extends to

∗ : Ak(M)→ An−k(M)

pointwise.

5.13 We have
(i) ∗2 = (−1)k(n−k) on k-forms.
(ii) ⟨α, ∗β⟩ = (−1)k(n−k)⟨∗α, β⟩,

5.14 Let’s define d∗ = (−1)n(k+1)+1 ∗ d∗ : Ak(M)→ Ak−1(M).

5.15 For compact manifold M , a ∈ Ak−1(M), b ∈ Ak(M) we have

⟨da, b⟩M = ⟨a, d∗b⟩M

We say that d∗ is formally adjoint to d.
Proof

0 =

∫
M
d(a ∧ ∗b) =

∫
M
da ∧ ∗b+ (−1)k−1

∫
M
a ∧ d(∗b) .

Hence ∫
M
da ∧ ∗b = (−1)k

∫
M
a ∧ d(∗b) .
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⟨a, d∗b⟩M =

∫
M
⟨a, (−1)d(k+1)+1 ∗ d ∗ b⟩vol

= (−1)d(k+1)+1

∫
M
a ∧ ∗ ∗ d ∗ b deg(∗d ∗ b) = k − 1

= (−1)d(k+1)+1+(k−1)(d−k+1)

∫
M
a ∧ d ∗ b d(k + 1) + 1 + (k − 1)(d− k + 1) ≡2 k

= (−1)k
∫
M
a ∧ d(∗b) =

∫
M
da ∧ ∗b =

∫
M
⟨da, b⟩vol

5.16 Laplacian on forms is defined by

∆ = dd∗ + d∗d

It can be interpreted as the ,,super-commutator” [d, d∗]s.

• In general the supercommutator of elements of a graded algebra A =
⊕

k∈ZA
k is defined by

[ϕ, ψ]s = ϕψ − (−1)kℓψϕ if ϕ ∈ Ak, ψ ∈ Aℓ.

5.17 Harmonic forms: H := ker∆.

5.18 The operator ∆ = dd∗ + d∗d is formally self-adjoint

(∆a, b) = (a,∆b).

5.19 For a compact oriented C∞-manifold M the following holds in A•(M)
1) H = ker(d) ∩ ker(d∗)
2) ker(d∗) = im(d)⊥, ker(d) = im(d∗)⊥, ker(∆) = im(∆)⊥,
(hence H = ker(d) ∩ im(d)⊥)
3) the spaces H, im(d) and im(d∗) are perpendicular.

Proof:
1) suppose a ∈ ker(∆):

0 = (∆a, a) = (dd∗a, a) + (d∗da, a) = (d∗a, d∗a) + (da, da) = ||d∗a||2 + ||da||2

2) Let P = d, d∗ of ∆. If a ∈ ker(P ∗) then 0 = (P ∗a, b) = (a, Pb), hence a ∈ im(P )⊥.
Conversely, if a ∈ im(P )⊥, then 0 = (a, PP ∗a) = ||P ∗a||2, so P ∗a = 0.
3) It remains to show that the spaces im(d) and im(d∗) are perpendicular (d∗a, db) = (a, d2b) = 0.
(Here we used that d2 = 0, all the rest was an abstract properties of formally adjoint operators.)

5.20 Hodge decomposition
A•(M) = im(d)⊕H︸ ︷︷ ︸

ker(d)

⊕im(d∗).

This decomposition is orthogonal.

• The decomposition follows from a general property of elliptic differential operators, which we will not
prove. We would have to extend the space of C∞ forms and consider Sobolev spaces. See [C. Voisin,
Hodge Theory And Complex Algebraic Geometry I, Cambridge Studies in Advanced Mathematics.
Theorem 5.22, p.128-9]. For any elliptic operator P : C∞(E)→ C∞(F )

C∞(E) = ker(P )⊕ P ∗(C∞(F )) .

(Exercise: prove the corresponding statement for a linear map between finite dimensional spaces.)

• In our case P = ∆, P ∗ = ∆
A•(M) = H⊕∆(A•(M)) .

Moreover we have
im(∆) ⊂ im(d) + im(d∗).

But from orthogonality (im(d)⊕ im(d∗)) ∩H = 0, hence

im(∆) = im(d)⊕ im(d∗).
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5.21 Corollary 1: H → H∗(M) is an isomorphism.
Moreover: if ∆(a) = 0 and a′ = a+ db, then ||a′|| ≥ ||a||.
Any harmonic form is the representative of its cohomology class, which has the smallest norm.

5.22 Corollary 2: Tricky proof of the Poincaré duality: Let [α] ̸= 0 ∈ H∗(M), then there exists a
class [β] (in the complementary gradation) such that

∫
M α ∧ β ̸= 0.

• Proof: let’s assume that α is harmonic. Set β = ∗α. Then β is harmonic as well (d(∗α) = ±∗d∗(α) = 0
and d∗(∗α) = ± ∗ d(α) = 0). We have∫

M
α ∧ ∗α =

∫
M
||α||2vol = ||α||2M .

5.23 Heat equation α : R+ → A∗(M) with the initial condition α(0) = α

d

dt
α(t) = −∆α(t) ,

see [D. Arapura, Algebraic Geometry over the Complex Numbers] §8

• the solution exists for t ≥ 0

• αH := limt→∞ α(t) exists and is a harmonic form.
(Laplacian has nonnegative eigenvalues: if ∆(α) = λα then

λ||α|| = (∆α, α) = ||dα||2 + ||d∗α||2 ≥ 0 .

hence the limit exists.)

• α = αH + ∆G(α), where G(α) =
∫∞
0 (α(t)− αH)dt is the Green operator G : H⊥ → A•(M).

• Let’s check for α being an eigenvector ∆α = λα, λ ̸= 0: The solution is of the form α(t) = e−λtα.
Then

∆

(∫ ∞

0
e−λtαdt

)
=

∫ ∞

0
e−λtλα dt =

(∫ ∞

0
e−λtλ dt

)
α = α .

• If β(t) is a solution with the initial condition β, then dβ(t) is a solution with the initial condition dβ
(because d∆ = ddd∗ + dd∗d = dd∗d = dd∗d+ d∗dd = ∆d).

• If α = αH + dβ then αt = αh + dβt.

• If dα = 0, then dαt = 0 and [αt] = [α]
Proof α = αh + dβ, (αt − αh)′ = −∆(dβt) = −d∆(βt)

Hermitian linear algebra

Suppose (V, I) is a real vector space with a complex structure.

5.24 Hermitian product
V ⊗ V → C

⟨⟨v, w⟩⟩ = ⟨v, w⟩ − iω(v, w)

consists of:
– I-invariant scalar product ⟨v, w⟩,
– I-symplectic form ω(v, w)
– the scalar product and the symplectic form determine each other ω(v, w) = ⟨I(v), w⟩ = −⟨v, I(w)⟩.

5.25 The volume form is defined as the wedge of an orthonormal (positively oriented) basis vectors
of V ∗:

• suppose dimC(V ) = n

vol = (dx1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn) = ( i2)n(dz1 ∧ dz̄1) ∧ · · · ∧ (dzn ∧ dz̄n)

•

ω =

n∑
k=1

dxk ∧ dyk = i
2

n∑
k=1

dzk ∧ dzk .

ωn = n!vol .

10



5.26 ω as a differential form on Cn is closed and Un invariant.

6

6.1 General picture:

• 1) Manifolds with Riemannian metric ; harmonic forms represent cohomology classes

• 2) Complex manifolds ; complex coordinates, forms dz and dz̄, decomposition of differential
forms into types (p, q)

• 1) & 2) hermitian manifolds ; the differential form ω of type (1,1)

• 3) Kähler manifolds (the condition dω = 0) ; decomposition of cohomology into types and sl2
action.

Main example - the projective space

6.2 The projective space Pn can be obtained as the quotient S2n+1/S1. The tangents space T[z]Pn =
TzS

2n+1/Tz(S
1z).

6.3 the form ω is well defined on the quotient space: tangent vector space Tz(S
1z) is spanned by the

vector ( ddte
itz)t=0 = Iz. Therefore for w ∈ TzS2n+1 = z⊥

ω(w, Iz) = ⟨Iw, Iz⟩ = ⟨w, z⟩ = 0 .

Since ω is S1 invariant the choice of z ∈ [z] leads to the same form.

6.4 We define a 2-form ωFS(w1, w2) = ω(w̃1, w̃2), where w̃1, w̃2 are any lifts of w1, w2 ∈ T[z]Pn to
TzS

2n+1. Let p : S2n+1 → Pn be the projection.

• The form ωFS satisfies p∗(ωFS) = ω.

• The form ωFS is closed because p∗ is injective on forms and dω = 0.

6.5 For n = 1, on U0 = {z0 ̸= 0} ≃ C there is a section

(s1, s2) : U0 → S3 ⊂ C2

s1(z) =
1√

1 + |z|2
, s2(z) =

z√
1 + |z|2

.

Then

ωFS(z) =
i

2
(s∗1(dz1 ∧ dz̄1) + s∗2(dz2 ∧ dz̄2))

Since the image of s1 is contained in R, thus s∗1(dz1 ∧ dz̄1) = 0. The second summand is equal to
Jacobian times dx ∧ dy,

(x, y) 7→

(
x√

1 + x2 + y2
,

y√
1 + x2 + y2

)

J(x, y) = det

(
1

(1 + x2 + y2)3/2

[
1 + y2 −xy
−xy 1 + x2

])
Hence

ωFS(z) =
1

(1 + x2 + y2)2
dx ∧ dy .

The volume of P1:∫
R2

1

(1 + x2 + y2)2
dx ∧ dy = 2π

∫
R+

r

(1 + r2)2
dr

r2=u
= π

∫
R+

1

(1 + u)2
du = π .

11



6.6 Often we normalize

ωFS :=
1

π
ωFS .

With this normalization
∫
Pn ω

n
FS = 1.

6.7 The class [ωFS ] ∈ H2(Pn) is a generator of H∗(Pn;R) ≃ R[h]/(hn+1)

6.8 The normalized class [ωFS ] is represented by the (Poincaré dual) of [Pn−1] with Pn−1 embedded
as a linear hypersurface.

11
2
–linear algebra

6.9 Complex structure on a real vector space is an automorphism I satisfying I2 = −id. It decom-
poses VC := V ⊗ C into eigenspaces

VC = Vi + V−i .

Necessarily dimV is even and one can find a real basis e1, e2, . . . , en, f1, f2, . . . , fn of V , such that
I(ek) = fk, I(fk) = −ek.
• The vectors ek − ifk form a basis of Vi: I(ek − ifk) = fk + iek = i(ek − ifk)
• The vectors ek + ifk form a basis of V−i: I(ek + ifk) = fk − iek = −i(ek − ifk)

6.10 We are more concerned about the dual space: C-linear form are said to have the type (1,0)

Λ10V ∗ := {ϕ ∈ HomR(V,C) | ϕ(Iv) = iϕ(v) } ,

the antilinear forms are said to have the type (0,1)

Λ01V ∗ := {ϕ ∈ HomR(V,C) | ϕ(Iv) = −iϕ(v) } ,

We have
V ∗ ⊗ C = Λ10V ∗ ⊕ Λ01V ∗ .

6.11 The dual basis is denoted by

dxk := e∗k , dyk := f∗k .

We define
dzk := dxk + idyk , dzk := dxk − idyk .

The 1-forms dzk are the basis of Λ10V ∗, and dzk’s are the basis of Λ01V ∗.

6.12 We have a C-linear isomorphism (V ∗, I)
Φ≃ (Λ10V ∗, i), Φ(f)(v) = f(v)− if(Iv))

Φ(If)(v) = f(Iv)− if(I2v) = f(Iv) + if(v) = i(f(v)− if(Iv)) = iΦ(f)(v)

And an anti-linear isomorphism: (V ∗, I)
ψ
≃ (Λ01V, i), Ψ(f)(v) = f(v) + if(Iv))

Ψ(If)(v) = f(Iv) + if(I2v) = f(Iv)− if(v) = −i(f(v) + if(Iv)) = −iΨ(f)(v)

6.13 The exterior forms of the type (p, q):

ΛkV ∗
C =

⊕
p+q=k

Λpq , Λpq := Λp(Λ10V ∗) ∧ Λq(Λ01V ∗) .

– Conjugation acts on Λk(V ∗ ⊗ C) = (ΛkV ∗)⊗ C. We have

Λpq = Λqp.

– The operator I acts on Λp,qV ∗ via multiplication by i(p−q)

6.14 Remark: the form ω belongs to Λ2V ∗ ∩ Λ11V ∗ ⊂ Λ2V ∗
C .

6.15 Exercise Λ10 ⊥ Λ01
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Linear algebra on the tangent space

6.16 Assume thatM is a complex manifold, then tangent space TpM at each point p ∈M is a complex
vector space. We treat it as a real vector space wit an automorphism I given by the multiplication by
i. Globally I ∈ End(TM), i.e. is an endomorphism of the tangent bundle.

6.17 Our method: Linear algebra ; differential/complex manifolds structure

6.18 An almost complex manifold (M, I) is a pair, where M is a real C∞-manifold and I ∈ End(TM)
a tensor satisfying I2 = −id (i.e. a complex structure in each TpM smoothly depending on the point
p ∈M .)
[W tym roku nie bȩdziemy rozważać rozmaitości niemal zespolonych w ogólności, ale od razu zak ladamy,
że mamy rozmaitość zespolona̧. Patrz [Huybrechts §1.2], w szczególnísci [Huybrechts 2.6.19]]

6.19 The eigenspace of I acting on T ∗M ⊗ C decomposes this bundle into a direct sum of complex
subbundles:

(T ∗M ⊗ C)i ⊕ (T ∗M ⊗ C)−i .

• The global sections of the above bundles will be denoted by A10(M) and A01(M).

• Locally a form in A10(M) can be written as
∑

k ak(z)dzk. If we change the coordinate chart it can
be written in the same form. This is because for a holomorphic map ϕ : U ′ → U the composition
zk ◦ ϕ : U ′ → C is holomorphic, so d(zk ◦ ϕ) =

∑
k a

′
k(z

′)dz′k for some functions a′k(z
′).

6.20 The complexified space of forms decomposes as a direct sum Ak(M)C =
⊕

p+q=k A
p,q(M).

• (p, q)-form locally can be written as∑
|A|=p

∑
|B|=q

aA,B(z)dzA ∧ dz̄B

Hermitian structure

Assume that M has a hermitian structure, this is equivalent of having Riemannian metric, which is
I-invariant.

6.21 The form ω is of the type (1,1), in addition it has real coefficients.

6.22 The Lefschetz operator
L(α) := ω ∧ α .

6.23 Suppose dimV = n. Let us define H ∈ End(ΛV ∗) as the multiplication by k − n on ΛkV .

• We have [H,L] = 2L.

6.24 Let us define the adjoint operator L∗

⟨Lα, β⟩ = ⟨α,L∗β⟩

lowering the gradation by 2. We have:

• [H,L] = 2L, [H,L∗] = −2L∗

• [L,L∗] = H .

6.25 The vector space of forms at a point p ∈ M , i.e.
⊕

k ΛkT ∗
p (M) is a representation of the Lie

algebra sl2(Z). We obtain a representation on the global forms.

ρ : sl2(Z)→ End(A•(M)), ρ(h) = H, ρ(ℓ) = L, ρ(ℓ∗) = L∗ ,

where

h =

(
1 0
0 −1

)
, ℓ =

(
0 1
0 0

)
, ℓ∗ =

(
0 0
1 0

)
.
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Recollection from representation theory

See e.g. [Fulton-Harris, Representation Theory: A First Course, §11]

• Representation of a Lie algebra g on V is (by definition) a morphism of Lie algebras g→ End(V ).

• Having a representation of sl2(Z) is equivalent to having three linear maps L,H,L∗ such that

[H,L] = 2L, [H,L∗] = −2L∗ [L,L∗] = H .

It costs nothing to extend linearly such representation to sl2(K) if V is a vector space over the field
K = R or C.

• Any finite dimensional representation of sl2(Z) is a direct sum of simple subrepresentations. (,,Simple”
means that it has no nontrivial subrepresentations.)

• Simple representations are of the form Sk = Symk(C2) (the same for the theory over R). Other
description:

Sk = {homogeneous polynomials of degree k in variables x, y}

ℓ(f) = y dfdx , ℓ∗(f) = x dfdy .

6.26 With the assumption that dω = 0 we will show that sl2 action on forms induces an action on
cohomology and deduce very important consequences.

7 Differential on complex manifolds

7.1 If M is a complex manifold, then

d(Ap,q(M)) ⊂ Ap+1,q(M)⊕Ap,q+1(M)

d = ∂ + ∂, ∂2 = 0 = ∂
2
, ∂∂ + ∂∂ = 0 .

7.2 Let Ωp(M) denote the form of the type (p, 0) with holomorphic coefficients.

• Lemma:

Ωp(M) = ker(∂ : Ap,0(M)→ Ap,1(M)) .

7.3 Dolbeault complex: for 0 ≤ p ≤ dimCM we have a complex

0→ Ap,0(M)
∂→ Ap,1(M)

∂→ . . .
∂→ Ap,dimM (M)→ 0, ,

7.4 We define Dolbeault cohomology [Huybrechts 2.6.20]:

Hq
Dol(M ; Ωp) := Hq(Ap,•(M), ∂)

7.5 Holomorphic Poincaré lemma [Huybrechts 1.3.7]: the complex of sheaves on M

0→ Ωp → Ap,0 → Ap,1 → Ap,2 → . . .

is exact.

• This means that if ∂̄α = 0, α ∈ Ap,q(U), then locally there exists β such that ∂̄β = α, i.e. for each
point p ∈ U there exists V ⊂ U , p ∈ V and β ∈ Ap,q−1(V ) such that ∂̄β = α|V .

7.6 It is enough to solve the following problem:

• Holomorphic Poincaré lemma in 1 variable: Let Dε ⊂ U ⊂ C, where U is open, and let f ∈ C∞(U ;C)
be a smooth function. Suppose ∂

∂z̄f = 0, then there exists g ∈ C∞(Dε;C) such that ∂
∂z̄g = f .

• The solution to the previous problem, with f = fw depending smoothly on a parameter can be found
in a way that gw depends smoothly on the parameter.
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g(z) = I(f)(z) =
1

2πi

∫
Dε

f(ξ)
ξ−z dξ ∧ dξ̄.

• Analogy with the real case:
— for a real (compactly supported) f : R→ R we define the primitive function

I(f)(x) =

∫ x

−∞
f(ξ)dξ =

∫ +∞

−∞
K(ξ − x)f(ξ)dξ,

where

K(ξ) =

{
0 if ξ < 0

1 if ξ ≥ 0
and K ′(ξ) = δ0 .

So the primitive function is expressed by the convolution with K, i.e I(f)(x) = (K ∗ f)(x).
(In general (f1 ∗ f2)′ = f ′1 ∗ f2.)
— similarly for complex, compactly supported function f : C→ C

g(z) = (K ∗ f)(z),

where K(z) = 1
2πi

1
z , which has the property ∂

∂z̄K = δ0

Sheaf cohomology - a summary, see eg [Huybrechts, Appendix B]

7.7 Cohomology with the coefficients in a sheaf F : there are two important construction

• Čech cohomology

• Sheaf cohomology as the derived functor of Γ - taking the global sections.
1) we find a resolution of F , i.e. an exact complex

0→ F → I0 → I1 → I2 → . . .

with the sheave Ak sufficiently good (acyclic, e.g. injective)
2) we apply the functor of global sections (and cut off the first term)

Γ(I0)→ Γ(I1)→ Γ(I2)→ . . .

This complex is no longer exact.
3) W compute cohomology:

Hk(M ;F) = Hk(Γ(I•)) .

We have H0(M ;F) = Γ(F), because the functor Γ is left-exact.

7.8 In our case, when the base is paracompact any soft resolution is acyclic. (,,Soft” means, that
sections defined on a closed set can be extended to global sections.)

• Suppose M is a C∞-manifold. Any sheaf which is a module over the ring of C∞-functions is soft.

• The complex of C∞-forms on C∞-manifold A0 → A1 → A2 → . . . is a resolution of the sheaf
ker(d : A0 → A1) = RM , the sheaf of locally constant functions.

7.9 The sheaves Ap,q are A0-modules, hence they are soft.

• The Dolbeault complex is a resolution of Ωp
M = ker(∂̄ : Ap,0 → Ap,1)

•
Hk(M ; Ωp) = Hk(Ap,•(M))

i.e the Dolbeault cohomology is the sheaf cohomology in the sense of the homological algebra.
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7.10 If M is a complex manifold, then A•
C =

⊕
p+q=•A

p,q is a resolution of the sheaf CM .

• For p ≥ 0 define the Hodge’a filtration (on the sheaf level)

F pAk =
⊕

p′+q=k, p′≥p
Ap

′,q .

Claim: F pA• is a subcomplex of A•.

• The resulting filtration in cohomology Hk(M ;C) = Hk
(
A•(M)C

)
F pHk(M ;C) = im(Hk(F pA•(M))→ Hk

(
A•(M)C)

)
.

7.11 We have
F pAk/F p+1Ak ≃ Ap,k−p .

• The quotient map is a map of complexes (with a shift of the gradation)

(F pAp+•, d)→ (Ap,•, ∂̄)

• We have maps of complexes (I denote the shift of gradations by [i]. i.e. (F [i]k = F k+i)

A• ← F pA• → Ap,•[−p]

• Passing to cohomology:

Hk(M ;C)← Hk(M ;F pA•)→ Hk−p(X; Ωp) .

7.12 The relation between cohomologies of the quotients with cohomology of the entire sheaf is given
by the spectral sequence

Ep,q1 = Hp+q(F pA•(M)/F p+1A•(M)) = Hq(M ; Ωp
M ) ⇒ Hp+q(M ;C).

Generalities about spectral sequence

If C• is a complex with decreasing filtration

C• = F 0C• ⊃ F 1C• ⊃ F 2C• ⊃ . . . ,

then one wishes to relate cohomologies H∗(F pC•/F p+1C•) with H∗(C•).

• There exists a spectral sequence (under some boundness of degree assumptions)

Ep,q0 = F pCp+q/F p+1Cp+q, Ep,q1 = Hp+q(F pC•/F p+1C•) , . . . .

• There exists a sequence of tables Ep,qr with differentials of degree (1− r, r), such that
1) H∗(E•,•

r ) = E•,•
r+1

2) Ep,q∞ = F pHp+q(C•)/F p+1Hp+q(C•)

7.13 For the total complex of the bicomplex Ap,q(M) with the Hodge filtration F pA•(M) = A≥p,•(M)
the resulting spectral sequence is called the Frölicher spectral sequence.

Hodge theory for Hermitian manifolds

7.14 Hermitian structure on a complex manifold M is a choice of a Hermitian product in each tangent
space.

• such structure is a section of T ∗M ⊗ T ∗
M which is symmetric and positively definite. We assume

that it is a C∞

• real part is a scalar product, the imaginary part - a differential 2-form (which does not have to be
closed).

• Hermitian structures exist for paracompact manifolds: we can chose a Hermitian structure locally
in maps and glue them using partition of unity.

16



7.15 We extend Hodge * C-linearly

• If dimM = 1

∗dz = ∗(dx+idy) = dy−idx = −i(dx+idy) = −idz , ∗dz̄ = ∗(dx−idy) = dy+idx = i(dx−idy) = idz̄

∗1 = ω = dx ∧ dy = i
2dz ∧ dz̄ , ∗ω = 1

• In higher dimensions
∗ : Λp,q

≃−→ Λn−q,n−p

∗dzI ∧ dz̄J = c dz[n]\J ∧ dz̄[n]\I
Exercise: compute c.

• Occasionally will appear antilinear star

∗̄ : Λp,q
≃−→ Λn−p,n−q, ∗̄(α) = ∗ᾱ = ∗α .

7.16 We have operators real L, L∗, H = [L,L∗] = (deg−n)id acting on C∞-forms A∗(X). The
adjoint operator

L∗ = ∗−1L∗ = (−1)deg ∗ L ∗ .

(The sign should be (−1)(dimRM−deg) deg but here dimR TM is even). Often in literature L∗ is denoted
by Λ, but it can be confused with the exterior power). The adjoint operator satisfies (Lα, β⟩ = ⟨α,L∗β).

• The complexified operators L, L∗, H = [L,L∗] = (deg−n)id act on A∗(X)C. Hence A∗(X)C becomes
a (infinite dimensional) representation of sl(2).

• We take complexification, because we are also interested in the bigradation, available only over C.

7.17 We define operators
∂∗ = − ∗ ∂̄∗ : Ap,q(X)→ Ap−1,q(X) ,

(p, q) 7→ (n− q, n− p) 7→ (n− q, n− p+ 1) 7→ (p− 1, q)

and
∂̄∗ = − ∗ ∂∗ : Ap,q(X)→ Ap,q−1(X) .

We have d∗ = ∂∗ + ∂̄∗.

• explanation of signs: d∗ = (−1)dimRM(deg+1)+1 ∗ d∗ = − ∗ d∗

7.18 Kähler structure
It can be defined in equivalent ways:

• Definition 1: locally there exists local coordinates in which ω = i
2

∑
k dzk ∧ dz̄k +O(||x||2).

i.e. in some coordinates the Hermitian metric is the same as for flat the manifold Cn up to the terms
of order 2.

• Definition 2: dω = 0

• Proof 1) ⇒ 2) obvious.

7.19 Proof 2) ⇒ 1) [C. Voisin, Hodge Theory And Complex Algebraic Geometry I, Prop 3.14]

• How to construct good coordinates?

ω = i
2

∑
k

dzk ∧ dz̄k +
∑
k,l

(εhk,l + εak,l)dzk ∧ dz̄l +O(|z|2)

where εhk,l is a holomorphic linear form, εak,l antiholomorphic liner form.

• εak,l = εhl,k since ω is real.

• ∂
∂zj
εhk,l = ∂

∂zk
εhj,l since ω is closed
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7.20 Hodge identities:
i) [∂̄, L] = [∂, L] = 0 (since ω is closed)
i’) equivalently [L∗, ∂∗] = [L∗, ∂̄∗] = 0
ii) [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄
ii’) equivalently [L∗, ∂̄] = −i∂∗, [L∗, ∂] = i∂̄∗ (this is the most difficult, the rest follows)
iii) [∂, ∂̄∗]s = [∂∗, ∂̄]s = 0 (i.e ∂∂̄∗ + ∂̄∗∂ = 0 etc, this is a formal consequence of ii))
iv) ∆∂ = ∆∂̄ = 1

2∆ and it commutes with ∂, ∂̄, ∂∗, ∂̄∗, L i L∗ (formal algebraic proof)

7.21 Short proof from [C. Voisin, Hodge Theory And Complex Algebraic Geometry I, Prop 6.5].

• Assume according to Definition 1) that ω has a standard form up to the terms of order 2. Therefore
in calculations involving only the first derivatives at a point we can assume that

ω = i
2

∑
dzk ∧ dz̄k

• We show ii’) i.e. [L∗, ∂] = i∂̄∗. It is enough to check

([L∗, ∂](α))z=0 = i(∂̄∗α)z=0

• We decompose ω =
∑

k ωk, ωk = i
2dzk ∧ dz̄k.

The adjoint operator L∗
k = (ωk∧)∗ is expressed by the contraction of differential forms

L∗
k = −2iιv̄kιvk ,

where vk = ∂
∂zk

, v̄k = ∂
∂z̄k

.

• We decompose ∂̄ =
∑
∂̄k. The adjoint differentials

∂∗k = −2 ∂
∂z̄k

ιvk , ∂̄∗k = −2 ∂
∂zk

ιv̄k ,

A sample of check in dim=1

∂∗f dz = − ∗ ∂̄ ∗ f dz = − ∗ ∂̄(−ifdz) = i ∗ ∂
∂z̄fdz̄ ∧ dz = −2 ∂

∂z̄f ∗
i
2dz ∧ dz̄ = −2 ∂

∂z̄f

7.22 Second Hodge identity [L∗, ∂] = i∂̄∗ for the flat metric: We decompose ∂̄ =
∑
∂̄k and L∗ =∑

L∗
k. Show that ∂̄∗k = −2ιv̄k

∂
∂zk

, where v̄k = ∂
∂z̄k

. Note ∂ℓ commutes with L∗
k for k ̸= ℓ. It remains

to check [L∗
k, ∂k] for α = fdzI ∧ dz̄J , considering 4 cases k ∈ or ̸∈ to I and J . For example: suppose

k ∈ I, k ∈ J . That is I = {k} ∪ I ′, J = {k} ∪ J ′:

[L∗
k, ∂k]fdzk ∧ dz̄k ∧ dzI′ ∧ dz̄J ′ =

L∗
k∂k(fdzk ∧ dz̄k ∧ dzI′ ∧ dz̄J ′)− ∂kL∗

k(fdzk ∧ dz̄k ∧ dzI′ ∧ dz̄J ′) =

2i∂k(fdzI′ ∧ dz̄J ′) =

2i ∂f∂zk dzk ∧ dzI′ ∧ dz̄J ′ =

2i ∂f∂zk ιv̄k(dz̄k ∧ dzk ∧ dzI′ ∧ dz̄J ′) =

i∂̄∗(fdzk ∧ dz̄k ∧ dzI′ ∧ dz̄J ′),

• It remains to check 3 other cases.

7.23 For a computational proof see Huybrechts.

• The Huybrechts’ proof of ii’): an operator dc = I−1dI is introduced and the adjoint operator (dc)∗

dc = −i(∂ − ∂̄), (dc)∗ = − ∗ dc ∗ .

He shows ii”) [L∗, d] = −(dc)∗. The proof is computational, using Lefschetz decomposition into Lkα,
where α is primitive.
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8 Kähler identities cont.

8.1 Proof of iii) and iv) from i)&ii)

• iii)

i[∂, ∂̄∗]
ii)
= [∂, [L∗, ∂]] = ∂L∗∂ − ∂2L∗ + L∗∂2 − ∂L∗∂ = 0

• To show and iv) it is convenient to introduce the language of supercommutators [a, b] = ab −
(−1)deg(a) deg(b)ba. In that notation

∆∂ = [∂, ∂∗] .

• Leibniz rule, equivalent to the graded Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)deg(a) deg(b)[b, [a, c]] .

[[a, b], c] = [a, [b, c]] + (−1)deg(b) deg(c)[[a, c], b] .

•
∆∂ = [∂∗, ∂]

ii)
= i[[L∗, ∂̄], ∂]

Leibniz
= i([L∗, [∂̄, ∂]︸ ︷︷ ︸

0

]− [[L∗, ∂], ∂̄])
ii)
= [∂̄∗, ∂̄] = ∆∂̄

and from iii) ∆ = ∆∂ + ∆∂̄ .

[L,∆∂ ] = [L, [∂, ∂∗]]
Leibniz

= [[L, ∂]︸ ︷︷ ︸
0

, ∂∗] + [∂, [L, ∂∗]]
ii)
= i[∂,−i∂̄] = 0

Cohomology of Kähler manifold

• Corollary H∗(M) ≃ H is a representation of sl2(Z).

8.2 STRATEGY: We obtain a list operators, decompositions etc. We have shown that this structure,
initially defined on forms, survives in cohomology of a complex Kähler variety.

Lefschetz decomposition

8.3 Let W be a representation of sl2,

• the eigenspaces of h are equal Wk−n = ΛkT ∗
xM ⊗ C,

• Lk defines an isomorphism W−k →Wk (k ≥ 0),

• L : Wk →Wk+2 is mono for k < 0, epi for k + 2 > 0.

• Lefschetz decomposition: For k ≥ 0 let us define the primitive subspace

Pk = {w ∈W−k |Lk+1w = 0}.

We have
W−k = Pk ⊕ LPk+2 ⊕ L2Pk+4 ⊕ . . . .

8.4 The primitive cohomology classes (attention at the gradation shift): for 0 ≤ k ≤ n let us define

Pn−k = {α ∈ Hn−k(M) | Lk+1α = 0}

P p,q = Hp,q ∩ P p+qC .

We have
Pn−kC =

⊕
p+q=n−k

P p,q .

Practical consequences:
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8.5 Hard Lefschetz Theorem Let M be a Kähler manifold od dimension n and let0 ≤ k ≤ n.
Then

Lk : Hn−k(M)→ Hn+k(M)

is an isomorphism.

• It follows
dimHk(M) ≤ dimHk+2(M) if k + 1 ≤ n ,

dimHk(M) ≥ dimHk+2(M) if k + 1 ≥ n .

8.6 Hodge decomposition for the operator ∂̄

Ap,q(M) = im(∂̄)⊕Hp,q
∂̄︸ ︷︷ ︸

ker(∂̄)

⊕im(∂̄∗).

∂̄ : Ap,q−1 → Ap,q, ∂̄∗ : Ap,q+1 → Ap,q .

•
Hq(M ; Ωp) ≃ Hp,q

∂̄
,

• Since ∆∂̄ = 1
2∆, we have

Hp,q
∂̄

= Hp,q ,

Hp,q = Hq,p , ∗Hp,q = Hn−q,n−p .

•
Hk =

⊕
p+q=k

Hp,q .

8.7 Hodge decomposition in cohomology

• Recall the Hodge filtration

F pAk(M) =
⊕

p′≥p, p+q=k
Ap,q(M)

and the induced filtration in cohomology

F pHk(M) = im
(
Hk(F pA•(M)→ H∗(M)

)
.

The definition is independent from the metric and

F pHk(M) = image of
⊕

p′≥p, p+q=k
Hp,q .

• Conjugating we obtain

F pHk(M) = image of
⊕

p′≥p, p+q=k
Hq,p .

• Define
Hp,q(M) = F pHp+q(M)) ∩ F qHp+q(M) .

This definition does not depend on the Kähler metric.

Hk(M) =
⊕
p+q=k

Hp,q(M) ,
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8.8 Let hp,q = dimHp,q(M).

• Hard Lefschetz implies inequalities

hp,q ≤ dimhp+1,q+1 if p+ q + 1 ≤ n ,

hp,q ≥ dimhp+1,q+1 if p+ q + 1 ≥ n ,

• The symmetries hp,q = hn−p,n−q = hq,p are organized in the ,,Hodge diamond”

• For example for n = 3

h33

h32 h23

h31 h22 h13

h30 h21 h12 h03

h20 h11 h02

h10 h01

h00

=

1
♠ ♠

♢ ♣ ♢
□ ♡ ♡ □
♢ ♣ ♢
♠ ♠

1

• Hard Lefschetz implies inequalities

hp,q ≤ dimhp+1,q+1 if p+ q + 1 ≤ n ,

hp,q ≥ dimhp+1,q+1 if p+ q + 1 ≥ n ,

8.9 Moreover
– If k = n− (p+ q) ≥ 0 then Lk : Hp,q(M)→ Hp+k,q+k(M) is an isomorphism
– If p+ q ≤ n then

Hp,q(M) = P p,q(M)⊕ L(P p−1,q−1(M)⊕ L2(P p−2,q−2(M)⊕ . . .

• Corollary: If M Kähler and compact, then the (Frölicher) spectral sequence

Hq(M ; Ωp)⇒ Hp+q(M ;C)

degenerates on E1, i.e.
Ep,q1 = Hq(M ; Ωp) = Ep,q∞ .

(the higher differentials vanish).

8.10 Corollary: Suppose M Kähler and compact: if α ∈ Ωp(M) then ∂α = 0.

• Holomorphic implies closed.

• This is a generalization of: global holomorphic function is constant.

8.11 We say that M is Calabi-Yau if Ωn ≃ OM
(according to more restrictive definitions it is assumed additionally H0(M,Ωp) = 0 for 0 < p < n)

• Thus hn,q = h0,q.

• For n = 3 the Hodge diamond looks like this

1
0 0

0 ♣ 0
1 ♡ ♡ 1

0 ♣ 0
0 0

1

• We say that M∗ is a cohomological mirror of M if hpq(M∗) = hn−p,q(M).

• For 3-manifolds this means h12(M∗) = h11(M) i h11(M∗) = h12(M).

• Problem: how to find M∗?
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8.12 Serre duality: the exterior product

∧ : Ωp × Ωq → Ωp+q

defines a bilinear map
Hk(M ; Ωp)×Hℓ(M ; Ωq)→ Hk+l(M ; Ωp+q) .

If k + ℓ = p+ q = n we obtain compose it with the integral
∫

: Hn(M ; Ωn) ≃ H2n(M ;C)→ C.

• By Poincaré duality this form is nondegenerate

Hk(M ; Ωp) ≃ Hn−k(M ; Ωn−p)∗ .

• More generally: we have a nondegenerate form

Hk(M ;E)×Hn−k(M ;E∗ ⊗ Ωn)→ Hn(M ; Ωn)→ C

for a locally free sheaf E. In particular for Ωp = E:

Ωn−p ≃ Hom(Ωp,Ωn) = (Ωp)∗ ⊗ Ωn

and we recover the previous formula.

9 Signature, Cousin problems

Signature

9.1 If V is a real vector space with a symmetric nondegenerate form ϕ, then the signature

σ(V, ϕ) := dim{maximal positive definite subspace} − dim{maximal negative definite subspace} ,

i.e. #{+} −#{−} after diagonalization.

• If there exists Z ⊂ V such that Z⊥ϕ = N , then σ(ϕ) = 0.

9.2 For oriented compact C∞-manifold M of dimension 4m the intersection pairing in H2m(M ;R)

[α] · [β] =

∫
M
α ∧ β

is symmetric and nondegenerate. Its signature is called the signature of M , denoted sgn(M) or σ(M).

σ(M) := σ(H2m(M), intersection form) .

• Instead of H2m(M) we can take Heven(M) declaring α · β = 0 if deg(α) + deg(β) ̸= dim(M).

• Exercise: the signature is multiplicative: σ(M ×N) = σ(M)σ(N).

• If M is a boundary of an oriented 4m+ 1-manifold W , then σ(M) = 0.
Proof: let ι : M = ∂W →W . Define

Z = ι∗(H2m(W )) ⊂ ι∗(H2m(M)) = V .

For [α], [β] ∈ H2m(W ) by Stokes ∫
M
ι∗α ∧ ι∗β =

∫
W
d(α ∧ β) = 0 .

It remains to show, that if
(*) [α] · [ι∗β] = 0 for all [β] ∈ H2m(W ),

then [α] = ι∗[α̃].
The condition (*) is equivalent to

[α] ∈ ker
(
H2m(M)

d→ H2m+1(W,M) ≃ (H2m(W ))∗
)
.

From the exact sequence

H2m(W )
ι∗→ H2m(M)

d→ H2m+1(W,M)

we get the conclusion.
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9.3 Instead the real intersection form we consider H∗(M ;C) with the hermitian form. The resulting
signature is the same.

9.4 Hodge’a-Riemann relations [Huybrechts 3.3.15]: Define the hermitian form B(α, β) on Hk(M)
as:

B(α, β) =

∫
M
α ∧ β̄ ∧ ωn−k .

This form is symmetric or antisymmetric depending on the parity of k

B(α, β) = (−1)kB(α, β) .

• It is nondegenerate: for α ∈ Hk(M) there exists β ∈ Hk(M) such that B(α, β) ̸= 0.
— Let γ ∈ H2n−k(M) such that

∫
M α ∧ γ̄ ̸= 0 (e.g. γ = ∗̄α)

— By Hard Lefschetz γ = Ln−kβ for some β ∈ Hk(M)

B(α, β) =

∫
M
α ∧ γ̄ ̸= 0 .

• The pairing B restricted to Hp,q(M) is non degenerate. The form γ = ∗̄α is of the type (n−q, n−p),
hence Lk−nγ is of the type (n− q − n+ k, n− p− n+ k) = (p, q).

9.5 Antisymmetric forms over C can be turned into symmetric:

• if ϕ jest antisymmetric, i.e.
ϕ(a, b) = −ϕ(b, a) ,

then ψ(a, b) := iϕ(a, b) is symmetric.

• If hermitian form ψ is symmetric then ψ(a, a) = ψ(a, a), hence ψ(a, a) ∈ R
• We say that such form is positive definite if

ψ(a, a) > 0 for a ̸= 0 .

9.6 Theorem [Hodge-Riemann relations]: Let k = p+ q. The form

ip−q · (−1)k(k−1)/2B(α, β)

restricted to the primitive space

P p,q(M) = P k(M) ∩Hp,q(M)

is symmetric and positive definite.

9.7 Proof reduces to calculations for Λ•Cn: one has to check the sign of the form B0 restricted to
P p,q ⊂ Λp,q ⊂ Λ(Cn)∗ ⊗ C. Here B0 is defined by the formula

α ∧ β̄ ∧ ωn−k = B0(α, β)dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn .

• We check the following identity for α ∈ P k:

(∗ ∗ ∗) Ln−kα = (−1)
k(k−1)

2 (n− k)! ∗ I(α) ,

or equivalently as in [Huybrechts]

∗Ln−kα = (−1)
k(k+1)

2 (n− k)! I(α) ,

where I is the complex structure acting on Λ(Cn)∗⊗RC. On the (p, q) forms it acts by the multiplication
by ip−q.
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• We show inductively

Ljα = (−1)
k(k−1)

2
j!

(n− k − j)!
∗ Ln−k−jI(α).

• Having (∗ ∗ ∗):

α ∧ α ∧ ωn−k = α ∧ Ln−k(α) = α ∧ (−1)
k(k−1)

2 (n− k)! ∗ I(α) =

= (−1)
k(k−1)

2 α ∧ ∗(n− k)!I(α) = iq−p(−1)
k(k−1)

2 (n− k)! < α,α > vol

9.8 Corollary [Huybrechts 3.3.18]: Let n = 2m. Then M is a real manifold of dimension 4m. The
intersection form in the middle dimension 2m is symmetric. It coincides with B(α, β).

• The signature of M is defined as the signature of the intersection form H2m(M) is equal to

∑
p+q≤m, 2|p+q

(−1)
k(k−1)+p−q

2 dim(P p,q(M))

• We have equality dimP p,q(M) = hp,q − hp−1,q−1. Using symmetries of Hodge diamond hp,q = hq,p =
hn−p,n−q we obtain a formula for the signature

sgn(M) =

dim(M)∑
p,q=0, 2|p+q

(−1)php,q .

• Example: let n = 4: we sum up the terms for which p− q is even:

sgn(M) =
+p4,0 −p3,1 +p2,2 −p1,3 +p0,4

+p2,0 −p1,1 +p0,2

+p0,0

=
+h4,0 −h3,1 + h2,0 +h2,2 − h1,1 −h1,3 + h0,2 +h0,4

+h2,0 −h1,1 + h0,0 +h0,2

+h0,0

=

+h4,4

+h4,2 −h3,3 +h2,4

+h4,0 −h3,1 +h2,2 −h1,3 +h0,4

+h2,0 −h1,1 +h0,2

+h0,0

• We can neglect the remaining summands with p+ q odd, since (−1)qhp,q cancels with (−1)phq,p

sgn(M) =

dim(M)∑
p,q=0

(−1)php,q

Further we can transform the formula:

sgn(M) =

dim(M)∑
p,q=0

(−1)qhp,q =
dimM∑
p=0

χ(M ; Ωp) .

• Example: For the connected surfaces the intersection form is of the type (2h2,0 + 1, h1,1 − 1).
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Motivation leading to the notion of Čech cohomology :

[B. V. Shabath, Introduction to complex analysis II, Chapter IV].

9.9 Additive Cousin Problem: find a global meromorphic function with prescribed poles.
Let M =

⋃
Ui be a covering. On each Ui there is given a meromorphic function fi. We assume that

the differences gij = (fi)|Ui∩Uj
− (fj)|Ui∩Uj

are holomorphic. Does there exist a meromorphic function
f on M such that each difference f|Ui

− fi is holomorphic?

9.10 Multiplicative Cousin Problem:
Let {Ui}i∈I be a covering of M . On each Ui there is given a meromorphic function fi. We assume that

the quotients gij =
(fi)|Ui∩Uj

(fj)|Ui∩Uj

are holomorphic. Does there exist a meromorphic function f on M such

that each quotient
f|Ui
fi

is holomorphic?

9.11 The answer is in the language of Čech cohomology. For a covering U = {Ui} the Čech complex
is defined by:

Čk(U ) =
∏

i0<i1<···<ik

F(Ui0 ∩ Ui1 ∩ · · · ∩ Uik) .

Notation: for a multiindex I = {i0 < i1 < · · · < ik} let UI = Ui0 ∩Ui1 ∩ · · · ∩Uik . For {sI} ∈ Čk−1(U )
define the differential

d({sI})J =

k∑
a=1

(−1)a(sJ\ja)|UJ

For example
d({si})j0,j1 = (sj1)|Uj0,j1

− (sj0)|Uj0,j1

d({si0,i1})j0,j1,j2 = sj1,j2 − sj0,j2 + sj0,j1 restricted to Uj0,j1,j2

9.12 Čech cohomology is defined by Ȟk(U ;F) = Hk(Č•(U ;F), d).

9.13 Additive Cousin Problem : Let F = OM , the collection of functions {gi,j} ∈ Č1(U ;OM )
satisfies the cocycle condition:

gij − gik + gjk = 0.

It defines an element of Čech cohomology of the covering H1({Ui};OM ). The cohomology class is
trivial if the cocycle is a coboundary, i.e. there exists a collection of elements hi ∈ OM (Ui) such that
gij = hj − hi.
• the Cousin problem has a solution if and only if the cohomology class [gij ] = 0.
Proof: If gij = hj − hi, then the meromorphic functions f̃i = fi + hi agree at the intersections:

f̃i − f̃j = fi + hi − fj + hj on Ui ∩ Uj .

(The converse - exercise.)

9.14 Multiplicative Cousin problem has a positive solution if the cocycle gi/gj defines the trivial class
in H1({Ui};O∗

M ).

9.15 Passing to a finer cover defines a map of Čech cohomology (it does not depend on inscribing
function).

9.16 Theorem: If M is paracompact, then

lim
−→
U

Ȟk(U ;F) ≃ Hk(M ;F)

(The RHS is in the sense of homological algebra.)
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9.17 If the covering is acyclic (i.e. Hk(UI ;F) = 0 for any multiindex I and k > 0) then

Hk({Ui};F) ≃ Hk(M ;F).

9.18 Sufficient conditions for being acyclic:

• For locally constant sheaves on topological spaces: if all UI are contractible,

• For coherent sheaves in algebraic geometry: if UI are affine,

• For coherent sheaves in analytic geometry: if UI are Stein spaces
Definition U ⊂M is Stein if:
– for any pair of points p, q ∈ U there exists an analytic function f ∈ OU such that f(p) ̸= f(q).
– (holomorphic convexity) for any compact set K ⊂ U the set

K̄ := {p ∈ U | ∀f ∈ OU |f(p)| ≤ supq∈K |f(q)| }

is compact.

9.19 In the cousin problems one can pass to a finer coverings. Since H1(Pn;OM ) = 0, so on Pn
the additive Cousin problem has always a positive solution. On curves of positive genus - not always:
genus = dimH1(C;OC).

10 Vector bundles and connection

10.1 Let V ect1(X) denotes the set of isomorphism classes of (topological) complex linear bundles X.
Looking at the definition of Čech cohomology we discover a bijection

V ect1(X) = H1(X;C(−,C∗) ,

where C(−,C∗) denotes the sheaf of continuous functions with values in C∗.

• Similarly the isomorphism classes of holomorphic vector bundles over complex manifolds are identified
with H1(X;O∗

X).

10.2 The exponential exact sequence of sheaves

0→ Z→ C(−,C)
exp→ C(−,C∗)→ 0

induces the map
c1 : V ect1(X) = H1(X;C(−,C∗))→ H2(X,Z) .

This is the first Chern class, we will give a differential definition later.

Divisors and line bundles, [Huybrechts §2.3]

We identify holomorphic bundles with sheaves of holomorphic sections. Locally free sheaves of OX -
modules are identified with holomorphic vector bundles.

10.3 Divisor D =
∑
aiDi is a formal combination of codimension 1 indecomposable subvarieties (we

assume that X is an analytic manifold).

• We define a restriction of divisors to open sets: D|U =
∑

Di∩U ̸=∅ ai(Di ∩ U)

• D is an effective divisor iff all ai ≥ 0, we write D ≥ 0.

10.4 A meromorphic function defines a principal divisor div(f) = zeros(f)− poles(f).
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10.5 Any divisor D defines a line bundle OX(D), viewed as a subsheaf of the sheaf MeroX of
meromorphic functions: for each open U ⊂ X

OX(D)(U) = {f ∈MeroX(U) : div(f) +D|U is effective in U}

• If D1 = D2 + div(g), where g is a global meromorphic function, then OX(D1) ≃ OX(D2). The
multiplication by g defines an isomorphism.

• We have an injection

{Divisors}/{Principal divisors} ↪→ {Holomorphic Line Bundles} .

The image consists of line bundles admitting a meromorphic section.

• Suppose s : X 99K L is a meromorphic section. Define D = zeros(s)− poles(s). Then L ≃ OX(D)

• If L→ X is an algebraic bundle, then it admits a meromorphic section.

10.6 Example: the tautological bundle over P1.
On U0 = {z0 ̸= 0} we have a section s0([1 : z]) = (1, z), on U1 = {z1 ̸= 0} we have a section
s1([w : 1]) = (w, 1). These sections do not vanish, so they define local trivializations. The transition
function g1,0s0 = s1 satisfies

g1,0(z)(1, z) = (1/z, 1) .

Hence
g1,0 : U0 ∩ U1 = C∗ → GL1(C) = C∗ ,

g0,1(z) = z−1 .

• The section s0 has pole at ∞, hence the tautological bundle is isomorphic to OP1(D), where D =
−{[0 : 1]}. Equally well we could have D = −{[1 : 0]} or any other point.

10.7 Taking the transition function g1,0(z) = zk we obtain OP1(k)

10.8 Example: OPn(kH), where H ≃ Pn−1 is the divisor at infinity. If k ≥ 0 the global sections
H0(Pn;OPn(kH)) are naturally identified with C[z1, z2, . . . , zn]deg≤k ≃ C[z0, z1, . . . , zn]deg=k and

OPn(kH) ≃ (tautological∗)⊗k =: tautological⊗−k .

The only section for k < 0 is 0 and

OPn(kH) ≃ tautological⊗−k .

10.9 The bundle OPn(kH) ≃ tautological⊗−k is denoted OPn(k).

• If Y is a hypersurface in Pn of degree d, then OPn(Y ) ≃ OPn(d).

Connection for a vector bundle over C∞-manifold

10.10 Connection is a linear map ∇ : C∞(X;E)→ C∞(X;T ∗
X ⊗E) =: A1

X(E) satisfying the Leibniz
rule

∇(fs) = df ⊗ (s) + fs .

10.11 Let ∇ and ∇′ be two connections. The difference ∇−∇′ is A1
X linear. [Huybrechts 4.2.3]

• Locally, every connection is of the form ∇ = d+ a, where a ∈ A1(X,End(E)).

• If ∇ is a connection and a ∈ A1(X,End(E)) = C∞(X,T ∗X ⊗ End(E)), then ∇+ a is a connection.

• Affine combination of connections t∇1 + (1− t)∇2 is a connection.

• Applying a partition of unity associated to the trivializing atlas of E we glue together local connections
and obtain a global one.

• The space of connections is isomorphic to A1(X,End(E)). (But no connection is distinguished.)
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Connections concordant with structures

10.12 Suppose E is a hermitian bundle. A connection is Hermitian if

d < s1, s2 >=< ∇s1, s2 > + < s1,∇s2 > .

(again the Leibniz formula) [Huybrechts 4.2.9]

10.13 Let V be a Hermitian vector space. By End(V, h) denote the endomorphism a satisfying

< a(v), w > + < v, a(w) >= 0 .

If V = Cn with the standard hermitian product, then End(V, h) = un = {A ∈Mn×n(C) | A+ ĀT = 0}.
• For a Hermitian vector bundle End(V, h) is a real vector bundle of the dimension = dim(urkE).

• As before we prove that the space of Hermitian connection is a real vector space isomorphic to
A1(X,End(E, h)). (But no connection is distinguished.)

10.14 If rkE = 1. Then End(E, h) ≃ R.

10.15 Suppose X is a complex manifold, E is a holomorphic bundle (the transition functions are
holomorphic). Let Ak(X,E) = Γ(AkX ⊗ E), Ak(X,E) =

⊕
p+q=k A

p,q(X,E). The operator ∂̄ is well
defined

∂̄E : Ap,q(X,E)→ Ap,q+1(X,E) .

Warning: the operator ∂ does not commute with the transition functions. Thus ∂E is not defined,
unless the transition functions are locally constant.

10.16 The connection decomposes into components ∇10 + ∇01. We say that ∇ is compatible with
the complex structure if ∇0,1 = ∂̄E .

10.17 The space of connections compatible with complex structure is isomorphic to A1,0(X,End(E)).

10.18 Theorem [Huybrechts 4.2.14]: For a Hermitian holomorphic bundle there exists exactly one
connection compatible with the complex structure.

• In local coordinates: let H be the matrix of the Hermitian product, ∇ = d+A, (we identify A locally
with a matrix, we call it connection matrix)

A ∈Mn×n(A1,0(X)) , H ∈Mn×n(C∞(X)) , H̄ = HT , n = rk(E).

• the Hermitian condition reads
dH = ATH +HA .

Hence
∂H = ATH ,

so
A = H̄−1∂(H̄) .

• If n = 1, H = [h]. then a = ∂ log(h).

10.19 Example L = O(−1) on Pn, i.e. the tautological bundle, L ⊂ Cn+1 × Pn has the induced
Hermitian structure from the trivial bundle Cn+1. The connection form

A = ∂ log(||s||2) ,

where s is any section (trivialization) of L.

• For example on the chart {z0 ̸= 0} ≃ Cn there is a section

s([1 : z1 : · · · : zn]) = (1 : z1 : · · · : zn) ,

the differential
F∇ = d∂ log(1 + ||z||2) = −∂∂̄ log(1 + ||z||2) ,

is called the curvature.

• Note:
i

2π
F∇ = −ωFS .
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11 Chern classes

11.1 We extend the connection using Leibniz formula to obtain the operator ∇E : Ak(X,E) →
Ak+1(X,E).

11.2 Theorem: The curvature F∇ = ∇2 : A0(E)→ A2(E) is A0(X)-linear, hence it defines a section
o the bundle Λ2T ∗X ⊗ End(E)).

11.3 Locally in the matrix notation

F∇ = dA+A ∧A ∈Mn×n(A2(X)).

11.4 For a line bundle E = L = C × X: we have End(L) = C and A ∧ A = 0 (since A is a 1 × 1
matrix). Then H = [h], h : X → R

F∇ = dA = d∂ log(h) = ∂̄∂ log(h) .

11.5 Example L = O(−1) on Pn, i.e. the tautological bundle, L ⊂ Cn+1 × Pn has the induced
Hermitian structure from the trivial bundle Cn+1:

F∇ = d∂ log(||s||2) = −∂∂̄ log(||s||2),

where v is any section of L,
i

2π
F∇ = −ωFS .

• For example on the chart {z0 ̸= 0} ≃ Cn there is a section

s([1 : z1 : · · · : zn]) = (1 : z1 : · · · : zn) ,

hence
F∇ = −∂∂̄ log(1 + ||z||2) .

• Note: c1(O(−1)) = −[ωFS ].

11.6 Connection on E induces a connection on End(E)

(∇f)(s) := ∇(f(s))− f∇s = [∇, f ]s .

In particular we can apply ∇ to F∇.

11.7 Bianchi identity:

∇(F∇) = 0 ∈ A3(X,End(E)),

because [∇,∇ ◦∇] = 0.

• Locally for ∇ = d+A we have

dF∇ = d(dA+A ∧A) = dA ∧A−A ∧ dA = [dA,A] = [F∇, A] .

Hence
0 = ∇(F∇) = dF∇ + [A,F∇] .

We obtain a formula for the differential

dF∇ = [F∇, A] .
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Differential definition of Chern classes

Huybrechts §4.4

11.8 Theorem: For any polynomial map P : End(Cn) → C which is invariant with respect to
conjugation the form P (∇2

E) ∈ A2 deg(P )(X) is closed.

• Lemma (see Milnor-Stasheff, Appendix C, p.297) For X = (xij)i,j define the matrix P ′(X) = ( ∂P
∂xji

)i,j

(note, that the indices i, j are exchanged). We have:
(1) dP (X) = tr(P ′(X) · dX).
(2) if P is Ad-invariant, then the matrices P ′(X) and X commute.

Proof:
ad (1) easy
ad (2) P ((I + tEij)X) = P (X(I + tEij)), hence∑

k xi,k
∂P
∂xjk

=
∑

k
∂P
∂xki

xk,j

• Proof of theorem:

dP (F∇)
(1)
= tr(P ′(F∇)dF∇) = tr(P ′(F∇)[F∇, A]) = tr(P ′(F∇) ∧ F∇ ∧A− P ′(F∇) ∧A ∧ F∇) =

(2)
= tr(F∇ ∧ (P ′(F∇) ∧A)− (P ′(F∇) ∧A) ∧ F∇) = tr([F∇, P

′(F∇) ∧A]) = 0 .

11.9 Remark: the map

C[Mn×n(C)]GLn → C[diagonal matrices]Σn = C[σ1, σ2, . . . , σn]

is an isomorphism. If P is Ad-invariant, then it can be expressed by the coefficients of the characteristic
polynomial. Equivalently, P (A) is a symmetric function in eigenvalues of A.

11.10 The 2-form P (F∇) defines a cohomology class, which does not depend on the connection
(dowód TBA).

• For P =
(
i
2π

)k
σk, ( (−1)kσk is (rkE−k)-th coefficient of the characteristic polynomial) the resulting

forms represent the Chern classes.

The first Chern class c1(L) of a line bundle - various constructions

• Axiomatic definition, see Milnor-Stasheff:

a) c1 : V ect1(−)→ H2(−,Z) is a natural transformation of functors Top→ GrAb
b) c1(L1 ⊗ L2) = c1(L1) + c1(L2)
c) c1(OP1(1)) = the distinguished generator [pt] ∈ H2(P1)

• The identification V ect1(X) = [X,P∞] = [X,K(Z, 2)] = H2(X;Z),
where [−,−] denotes the set of homotopy classes of maps.

• Via the differential in the long exact sequence of cohomologies associated to the short exact sequence
of sheaves

0→ 2πiZ→ C(X,C)
exp→ C(X,C∗)→ 0

0 = H1(X,C(X,C))→ H1(X,C(X,C∗))
≃→ H2(X; 2πiZ)→ H2(X,C(X,C)) = 0

Note, that we have an identification V ect1(X) = Ȟ1(X,H1(X,C(X,C∗)).

• via the obstruction theory: the obstruction to the existence of a nonzero section belongs to

H2(X;π1(C∗)) ≃ H2(X;Z)

• c1(L) = [zero section] ∈ H2(L) ≃ H2(X)

• a definition via connection (when X is a manifold) t.j.w. i
2π [F∇] = i

2π [∂∂̄ log h] ∈ H2(X;C),
[Huybrechts §4].
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Generalities about characteristic classes for higher rank bundles

• Let

V ectn(X) = {isomorphism classes of n-dimensional complex vector bundles over X}

• Def: a characteristic class on n-dimensional bundle is a transformation of functors hTop→ Sets

V ectn(−) −→ H∗(−) .

Since V ectn(−) is representable,

V ectn(X) = {homotopy classes f : X → Grassn(C∞)}

for finite CW -complexes, by Yoneda lemma

{Characteristic classes of n-bundles} = H∗(Grassn(C∞)) = Z[c1, c2, . . . , cn] .

• More generally, for a compact Lie group (or a reductive algebraic group) G, for cohomology with
coefficients in C:
Let BunG(X) be the set of isomorphism classes of G-bundles over X. This functor hTop → Set is
representable by BG, thus

{Characteristic classes of G-bundles}C = H∗(BG;C) = C[g]G = C[t]W .

by Borel theorem. Here g is the Lie algebra of G, t the Lie algebra of the maximal torus, and W = NT/T
is the Weyl group.

• For G = GLn we have
C[t]W = C[t1, t2, . . . tn]Σn ,

the ring of symmetric functions in n variables.

11.11 Axioms of Chern classes

c(E) = 1 + c1(E) + c2(E) + · · ·+ cr(E) , r = rk(E) , ck(E) ∈ H2k(X;Z) .

1) Functoriality: c(−) is a transformation of functors

V ectr(−)→ H∗(−;Z) ,

2) Whitney formula:
c(E1 ⊕ E2) = c(E1) ∪ c(E2),

where ∪ denotes product in cohomology, sometimes written simply as ·.
3) Normalization:

c(OP1(1)) = 1 + [pt] ,

where [pt] is the generator of H2(P1;Z), which agrees with the complex orientation. (In de Rham
cohomology [pt] = [ωFS ]).

• By splitting principle we can assume that a vector bundle is a sums of line bundles. The cost is
that we replace the base X by Fl(E), the bundle of flags over X, which is harmless, since it is mono
on cohomology. Topologically every line bundle can be pulled back from P∞ (which has the same
cohomology H2 as P1). Hence the axioms determine c(E).
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12 Chern classes and others

The total c(E) is associated to the Ad-invariant (nonhomogeneous) polynomial P : X 7→ det(X + I)

12.1 Let f : Y → X be a C∞-map, E → X a complex bundle with a connection ∇. The pull back:
if locally ∇ = dX +A, then f∗∇ = dy + f∗A - (Huybrechts 4.2.6.v)

End(f∗E)⊗ T ∗Y|f−1U ←− End(f∗E)⊗ f∗T ∗X|f−1U −→ End(E)⊗ T ∗X|U

f∗A ↖
y A ↑

y
f−1(U) −→ U ⊂ X

12.2 Let P be an Ad-invariant polynomial. The class of P (F∇) in H∗(X) does not depend on the
connection. (Assumption: X is a real manifold.)
Proof: for two connections∇0, ∇1 define a connection on X×R by the formula ∇̃ = t p∗∇1+(1−t)p∗∇0,
where p : X ×R→ X is the projection. Inclusions i0, i1 : X → X ×R on submanifolds t = 0 and t = 1
are homotopic, so [P (F∇1)] = i∗1P ([F∇̃)] = i∗0[P (F∇̃)] = [P (F∇0)].

12.3 Verification of axioms:
1) Functoriality (the connection can be pulled back)
2) Whitney formula

c(E1 ⊕ E2) = c(E1)c(E2) ,

Let connection on E1 ⊕ E2 be of the product form ∇(s1, s2) = (∇1s1,∇2s2). Then

F∇ = F∇1 ⊕ F∇2 ∈ (End(E1)⊕ End(E2))⊗A2(X) ⊂ End(E1 ⊕ E2)⊗A2(X) .

3) Normalization c1(O(−1)) = −[ωFS ], by the definition of the Fubini-Study form.

12.4 Remark: The differential forms obtained by the above constructions are integral (i.e. come from
H∗(X;Z).

12.5 Suppose X is complex manifold, L a holomorphic line bundle with a Hermitian structure. Then
F∇ = dA = ∂̄∂ log h is a (1,1)-form.

• If X is Kähler manifold, then c1(L) ∈ H1,1(X) ∩ image(H2(X;Z)).

12.6 Theorem: Let X be a Kähler manifold, E a holomorphic bundle, then ck(E) ∈ H2k(X;C) is
represented by a (k, k)-form ( i

2π )kσk(F∇).

• Splitting principle: Let p : Fl(E)→ X be a bundle of flag spaces over X.

Fl(E) = {(x, V1, V2, . . . VrkE) | x ∈ X, Vi ⊂ Ex, dim(Vi) = i, Vi ⊂ Vi+1 } .

Let Li = Vi/Vi−1. The Hermitian structure defines an isomorphism Vi = Li ⊕ Vi−1. (Note: This
isomorphism is not holomorphic.)

Topologically p∗E =
⊕rkE

i=1 Li. The Chern classes are topological invariants, hence

c•(p
∗E) =

rkE∏
i=1

(1 + c1(Li)) .

Each c1(Li) is of the type (1,1) thus ck(p
∗E) is of the type (k, k).

Fact: p∗ : H∗(X) ↪→ H∗(Fl(E)) is a monomorphism. Moreover it preserves types. Conclusion:
ck(E) is of the type (k, k).

12.7 Huybrechts 4.2.18: in general one can define Atiyah class A(E) ∈ H1(X; Ω1
X ⊗End(E)), which

agree with 1
2πiF∇ ∈ A2(X; End(E)).
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Other classes

12.8 Chern character. Let P ∈ C[[Mn×n]] be given by the formula:

P (B) =
∞∑
k=0

tr(Bk)

k!
,

where B = i
2πF∇. In terms of symmetric functions

P (t1, t2, . . . , tn) =

∞∑
k=0

n∑
i=1

tki
k!

=

∞∑
k=0

eti .

The resulting characteristic class is denoted by ch(E).

• Properties:
ch(E1 ⊕ E2) = ch(E1) + ch(E2)
ch(E1 ⊗ E2) = ch(E1) ∪ ch(E2)

The second identity follows from ea+b = ea eb.

12.9 In general having a formal power series f [[x]] we define an additive characteristic class satisfying:

• af (L) = f(c1(L)) for a line bundle L

• af (E1 ⊕ E2) = af (E1) + f(E2)

12.10 Example: if f [[x]] = ex, then af (E) = ch(E).

• To express the homogeneous components of ch(E) assume that E is a sum of line bundles Li, let
xi = c1(Li)

• ch(E)(0) = rkE

• ch(E)(1) = x1 + x2 + · · ·+ xn = c1(E)

• ch(E)(2) = 1
2(x21 + x22 + · · ·+ x2n) = 1

2(x1 + x2 + · · ·+ xn)2 −
∑
xixj = 1

2c
2
1(E)− c2(E)

12.11 For a formal power series f [[x]] we define a multiplicative characteristic class satisfying:

• mf (L) = f(c1(L)) for a line bundle L

• mf (E1 ⊕ E2) = mf (E1) ∪mf (E2)

• Example: if f [[x]] = 1 + x, then mf (E) = c•(E).

12.12 Todd class: Let

f [[x]] =
x

1− e−x
=

x

x− x2/2 + x3/6 . . .
= 1 +

x

2
+
x2

12
− x4

720
+

x6

30240
+ . . .

(the coefficients are ±Bernoulli number
n! )

• td(E)(0) = 1

• td(E)(1) = 1
2c1(E)

• td(E)(2) =
x21
12 + x1x2

4 +
x22
12 = 1

12(c21(E) + c2(E)) (for degrees ≤ 2 it is enough to perform computation
for rkE = 2)

• Alternative description: td(E) is associated to the function on matrices B 7→ det(B)
det(id−e−B)

.

12.13 Hirzebruch-Riemann-Roch (Huybrechts 5.1.1) Let E be a holomorphic vector bundle on a
compact manifold X. Then

χ(X;E) =

∫
X
td(TX) ∪ ch(E) .
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12.14 Essentially it is enough to check the equality for X = Pn, E = O(k).

LHS = dim(C[x0, x1, . . . , xn]k) =

(
n+ k

k

)
• Lemma: Euler exact sequence

0→ OPn → OPn(1)⊕n+1 → TPn → 0 .

Hence

td(TPn) =

(
h

1− e−h

)n+1

,

where h = [ωFS ] ∈ H2(Pn).

•

RHS =

∫
Pn

(
h

1− e−h
ekh
)n+1

=

=

[(
h

1− e−h

)n+1

ekh

]
coef of hn

= Resh=0

(
ekh

(1− e−h)
n+1

)
= Resh=0

e(k+n+1)h

(eh − 1)n+1
= . . .

Let u = eh − 1, du = ehdh

· · · = Resu=0
(u+ 1)n+k

un+1
= [(u+ 1)n+k]coef of un

12.15 Exercise: X = hypersurface of degree d in Pn, E = O(k):

td(TX) = td(TPn)/td(νX) =

(
h

1− e−h

)n+1 1− e−dh

dh
=
hn

d

1− e−dh

(1− e−h)
n+1

. . .

12.16 If dimX = 1, suppose L is of degree d, i.e. c1(L) = d[pt] then

χ(X;L) = [(1 + c1(TX)/2)(1 + c1(L))](1) = deg(c1(TX)/2 + c1(L)) =
1

2
χtop(X) + d = 1− genus+ d .

12.17 If dimX = 2, L = O(D), then c1(L) = [D]. Let ci = ci(TX)

χ(X;L) = [(1 + c1/2 +
1

12
(c21 + c2)(1 +D +D2/2)](2) = deg(

1

12
(c21 + c2) +

c1 ∪D +D2

2

χ(X;OX) +
c1 ·D +D2

2
Using a common notation in algebraic geometry c1 = −KX

χ(X;L) = χ(X;OX) +
(D −KX) ·D

2
.

or with pa = −dimH1(X;OX) = χ(X;OX)− 1 (arithmetic genus)

χ(X;L) = 1 + pa +
(D −KX) ·D

2
.

12.18 Hirzebruch class: Let

fy(x) = x
1 + ye−x

1− e−x
= (1 + y)

x

1− e−x
− xy = (1 + y) +

1

2
(1− y)x+

1 + y

12
x2 − 1 + y

720
x4 +

1 + y

30240
x6 + . . .

Here y is a parameter or a free variable.

• Exercise by Hirzebruch-Riemann-Roch (Huybrechts Cor. 5.1.4)∫
X

Hirzebruch class =

n∑
p=0

χ(X,Ωp
X)yp =

∑
p,q

hp,qyp .

• For y = −1 we obtain χtop(X) the topological Euler characteristic,
For y = 0 we obtain Td(X) = χ(X,OX) Todd genus
For y = 1 we obtain the signature.
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13 Positive line bundles

13.1 Riemann-Roch

χ(X;E) =

∫
X
td(TX) ∪ ch(E) .

Holomorphic invariant = Topological data.

• Goal: compute dim Γ(X,E) = dimH0(X;E).

• In general it is not possible (by topological data).

• If Hk(X;E) = 0 for k > 0, then dim Γ(X,E) = χ(X;E).

• Hence importance of vanishing theorems.
We concentrate on linear bundles

13.2 Linear algebra:

{11
2 − linear forms on V } ↔ Λ2V ∗

R ∩ Λ1,1V ∗ ⊂ Λ2(V ∗ ⊗R C) .

13.3 We say that ω ∈ A1,1(X)∩A2(X;R) ⊂ A2(X;C) is positive, if there exists a hermitian product
such that ω is equal to minus its imaginary part ⟨⟨x, y⟩⟩ = ⟨x, y⟩−iω(x, y). If locally in some coordinates
the hermitian product is given by a matrix H = [hi,j ], then

ω =
i

2

∑
hijdzi ∧ d̄zj .

13.4 A linear bundle is positive if it admits a connection ∇ such that i
2π F∇ is a positive (1,1)-form.

13.5 Example of positive bundles: OPn(k), k > 0.

13.6 Denote ΩdimX
X by KX , call it the canonical bundle/divisor.

13.7 Kodaira(-Nakano) Vanishing theorem
[Huybrechts Proposition 5.2.2, Griffiths-Harris p 154.]
If L is positive, then H i(X;KX ⊗ L)) = 0 for i > 0.
(In algebraic geometry notation L = O(D). The vanishing theorem reads H i(X;KX +D) = 0.)
[Dowód na końcu w §14]

13.8 Corollary: Assume L is positive. For any line bundle L′ we have vanishing H i(X;Lν ⊗ L′) = 0
for i > 0, ν >> 0.

•
Lν ⊗ L′ = KX ⊗ (K−1

X ⊗ L
ν ⊗ L′) .

The bundle K−1
X ⊗ Lν ⊗ L′ has the connection form equal to

−F∇KX
+ νF∇L

+ F∇L′ .

For sufficiently large ν it is positive.

• If K−1
X is positive, then vanishing holds already for ν = 1. (Fano manifold, e.g. Pn, Grassmannians,

flag varieties.)

13.9 If L is generated by global holomorphic sections (we say ,,globally generated”) iff for each x ∈ X
there exists a section s ∈ H0(X;L), such that s(x) ̸= 0.

13.10 Let s0, s2, . . . , sr be the basis of H0(X;L). Define ϕ : X → Pr by

x 7→ [s0 : s1 : · · · : sr] .
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• Coordinate-free construction: If L is globally generated, then for x ∈ X define a function on the
space of the global sections H0(X;L)

Φ(x) ∈ Hom(H0(X;L), Lx)
up to a scalar
≃ H0(X;L)∗ ,

Φ(x) : s 7→ s(x) ∈ Lx ≃ C .

• We obtain a natural map
ϕ : X → P(H0(X;L)∗) .

• Then L = ϕ∗(O(1)) (by tautological identification H0(P(V ∗);O(1)) ≃ V ). Hence L is ,,nonnegative”,
i.e. L admits a connection such that the associated Hermitian form is nonnegative semi-definite.

• This property is preserved by pull-backs.

13.11 Kodaira embedding theorem.
[Huybrechts Proposition §5.3, Griffiths-Harris p 176.]
If a bundle L is positive, then for ν >> 0 the tensor power Lν is generated by global sections and the
natural map X → P(H0(X;Lν)∗) is an embedding. (We only assume that, X is a compact analytic
complex manifold, and as a corollary from GAGA we obtain that X is algebraic.)

• Steps of the proof:
a) assume that ϕLν is well defined, i.e. the base locus of Lν is empty:

∀x ∈ X H0(X;Lν) ↠ Lνx = H0(X;Lb ⊗OX/mx)

b) ϕLν separates the points: suppose for x ∈ X the restriction H0(X;Lν)→ Lνx ⊕ Lνy is surjective.

(note b) ⇒ a) )

b’) Equivalently: the restriction

H0(X̃; L̃ν)→ H0(E; L̃ν|E) = H0(X̃; L̃ν ⊗OX̃/IE)

is surjective, where X̃ = BlxBlyX, L̃ is the pull-back of L to X̃, E the sum of the exceptional divisors,
IE ≃ O(−E) the ideal sheaf of E. The restriction map is a part of an exact sequence

→ H0(X̃; L̃ν)→ H0(X̃; L̃ν ⊗OX̃/IE)→ H1(X̃; L̃ν ⊗O(−E))→

obtained from
0→ OX̃(−E)→ OX̃ → OE → 0 .

By vanishing theorem H1(X̃; L̃ν ⊗O(−E)) = 0 for ν >> 0.

Similarly:
c) ϕLν has nondegenerate differential at x. Equivalently

H0(X;Lν ⊗mx)→ Lνx ⊗ T ∗
xX = H0(X;Lν ⊗ Ω1

X ⊗OX/mx)

is surjective.
c’) the restriction

H0(X̃; L̃ν ⊗ IE)→ H0(E; L̃ν|E ⊗ IE) = H0(X̃; L̃ν ⊗OX̃/IE ⊗ IE)

is surjective, where X̃ = BlxX, L̃ where X̃ is the pull-back of L, E is the exceptional divisor, IE is the
ideal sheaf of E. Note that IE restricted to E = P(TxX) is isomorphic to O(1), hence

H0(E; L̃ν|E ⊗ IE) = Lνx ⊗ T ∗
xX .

The restriction map is a part of an exact sequence

→ H0(X̃; L̃ν ⊗ IE)→ H0(X̃; L̃ν ⊗OX̃/IE ⊗ IE)→ H1(X̃; L̃ν)→
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13.12 Kähler manifolds with integral (up to a scalar) Kähler form are projective. If
(X,ω) is a Kähler manifold and [ω] is of the form λ[ω′] for λ ∈ R+, [ω′] ∈ H∗(X;Z), then X embeds
into a projective space.

• Proof. It is enough to show that: if [ω] is integral, then there exist a holomorphic line bundle L with
a curvature form equal to 2π

i c1(L).

• The short exact sequence
Z→ C→ OX

of sheaves induces a long exact sequence

→ Pic(X) = H1(X,O∗
X)

c1→ H2(X;Z)
ι→ H2(X;OX)→ .

Assume that [ω′] is integral. We will show that [ω′] lies in the image of c1, or equivalently it belongs to
the kernel of the map ι. The map ι factors as follows

H2(X;Z)→ H2(X;C) = H2,0(X)⊕H1,1(X)⊕H0,2(X) ↠ H0,2(X) = H2(X;OX) .

The second map is induced by the map of shaves C→ OX .The classes of the type (1, 1) lie in the kernel.

• It remains to show, that if c1(L) = [ω] then L admits a connection ∇ with

i

2π
F∇ = ω .

13.13 adjusting the connection. Suppose [ω] = c1(L) ∈ H2(X), where ω is a real (1,1)-form.
Then there exists a connection ∇ such that ω = i

2π F∇.

• Proof: locally in a trivialization F∇ = ∂̄∂ log(h(z)). For a different choice of a metric h′ = eρh.
Hence

F∇′ = ∂̄∂ log(eρh(z)) = F∇ + ∂̄∂ρ.

We want to find
F∇′ = −2πiω = F∇ + dβ

for a given β ∈ A1(X). It remains to solve an equation

∂̄∂ρ = dβ .

Then h′ = eρh and ∇′ is the required connection.

• We apply ∂∂̄-lemma [Huy, Cor 3.2.10]: for a given exact form dβ of the type (1,1), there exists ρ
such that dβ = ∂̄∂ρ.

• Existence of ρ is the conclusion of ∂∂̄-lemma For ϕ ∈ Ap,q

ϕ = dβ ⇒ ∃γ ϕ = ∂∂̄γ

13.14 Numerical criteria for admitting a positive connection, i.e. ampleness

• Nakai-Moishezon criterion

• Kleiman criterion
[Ten temat już należy do innego przedmiotu.]
————————————————

14 Dowód twierdzenia Kodairy-Nakano o znikaniu

14.1 Jeśli L i K dodatnie, to L⊗K też. Jeśli K = L⊗n jest dodatnie, to L też. Obcie
↪
cie zachowuje

dodatniość.

Poniżej używamy E jako oznaczenie wia
↪
zki, bo L jest zarezerwowane na operator Lefschetza. Zak ladamy,

że X jest warta
↪

rozmairościa
↪

analityczna
↪
.
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14.2 Ustalamy metryke
↪
hermitowska

↪
na X i E. Definiujemy skre

↪
cone harmoniczne

Hp,q(E) := ker(∆E) ⊂ Ap,q(E) , ∆E = ∂̄E ∂̄
∗
E + ∂̄∗E ∂̄E

14.3 Jeśli X jest zwarta to

Ap,q(E) = Hp,q(E)⊕ im(∂̄E) + im(∂̄∗E)

14.4 Z rozk ladu Hodge’a dla ∂̄

Hp,q(X;E) = Hp,q(E) = ker(∆E) .

14.5 Mamy
– Operator L : Ap,q(X;E)→ Ap+1,q+1(X;E) i sprze

↪
żony L∗

– ∇ = ∇1,0 + ∂̄E oraz tożsamość (u Huybrechtsa nazwana tożsamościa
↪
Nakano)

[L∗, ∂̄E ] = −i(∇1,0)∗,

która jest uogólnieniem tożsamości Kählera [L∗, ∂̄] = −i∂∗.

14.6 (Znikanie Kodairy-Nakano) Jeśli E jest dodatnia, to Hp,q(X;E) = Hq(X; Ωp
X ⊗ E) = 0 dla

p+ q > dimX.
Forma krzywizny F∇ jest typu (1,1), lokalnie

F∇ = dA = ∂̄∂(log h) .

Lokalnie dla przekroju η
∇1,0η = ∂η + ∂(log h) ∧ η

∂̄E(∇1,0η) = (−∂∂̄η + ∂̄(∂(log h) ∧ η)) = −∂∂̄η − ∂(log h) ∧ ∂̄η + ∂̄∂(log h) ∧ η

∇1,0(∂̄Eη) = ∂∂̄η + ∂(log h) ∧ ∂̄η

F∇ ∧ η = ∂̄E∇1,0η +∇1,0∂̄Eη

Niech η ∈ Hp,q(E),
∂̄Eη = 0, ∂̄∗Eη = 0

Wtedy

F∇ ∧ η = ∂̄E∇1,0η

Sta
↪
d

i⟨L∗F∇η, η⟩ = i⟨L∗∂̄E∇1,0η, η⟩ Nakano= i⟨(∂̄EL∗ − i(∇1,0)∗)∇1,0η, η⟩ =

= i⟨(∂̄EL∗, η⟩+ ⟨(∇1,0)∗∇1,0η, η⟩ = i⟨(L∗, ∂∗Eη⟩+ ⟨∇1,0η,∇1,0η⟩ = ⟨∇1,0η,∇1,0η⟩ ≥ 0

Podobnie

i⟨F∇L
∗η, η⟩ = i⟨(∂̄E∇1,0 +∇1,0∂̄E)L∗η, η⟩ = i⟨(∇1,0∂̄E)L∗η, η⟩ = i⟨∇1,0(L∗∂̄E + i(∇1,0)∗)η, η⟩ =

−⟨∇1,0(∇1,0)∗η, η⟩ = −⟨(∇1,0)∗η, (∇1,0)∗η⟩ ≤ 0

Sta
↪
d

i⟨[L∗, F∇]η, η⟩ = ||(∇1,0)∗η||2 + ||∇1,0η||2 ≥ 0

Ale
iF∇ ∧ − = 2πL

bo L jest dodatnia, wie
↪
c i

2πF∇ jest forma
↪
Kählera. Sta

↪
d

i⟨[L∗, F∇]η, η⟩ = 2π⟨[L∗, L]η, η⟩ = −2π⟨Hη, η⟩ = 2π(n− (p+ q))||η||2.

Jeśli n− (p+ q) ≤ 0, to i⟨[L∗, F∇]η, η⟩ ≤ 0. Zatem ||η||2 = 0.
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14.7 Wniosek: jeśli E⊗n = O(1)X dla pewnego zanurzenia X ⊂ PN , to Hk(X,Ωn
X ⊗ E) = 0 dla

k > 0.

14.8 Poprzez dualność Serre’a (lub bezpośrednio, korzystaja
↪
c z tego, że i

2πF∇E∗ = −ω):

Hk(X,E∗) = 0

dla k < n.
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