
Quick introduction to VIP

Overview and quickstart

VIP (Visual Interpreter of Pascal) is an interpreter of the core subset of Pascal
with some extensions, whose main feature is the graphical visualisation of the
program execution (memory, stack, control �ow). The user interface has the
following elements:

1) � the code of the interpreted program. The current line is highlighted.
Breakpoints can be set in the narrow strip on the left,

2),3) � the consoles where the program output and the other messages go,

4) � buttons that switch on/o� the visibility of respective variables in the
main window,

5) � the main window, where the contents of the program's memory is di-
splayed,

6) � the control panel: start, stop, pause buttons, also a speed control slider
and scaling buttons that increase/decrease the main panel contents.

VIP operates in edit, compile and run modes. The program code can only be
changed in the edit mode. After the compile button is pressed and any compile
errors are resolved the program execution starts and can be controlled with the
control panel in an intuitive way. The end button takes you back to edit mode
after the program has ended. Breakpoints can be set at any time of run mode.

1



Language extensions

Here is a list of the properties of the programming language that VIP interprets:

• the following elements of Pascal work in VIP: integers, reals and booleans,
arrays, records, user-de�ned record and array types, pointers, functions
(no nested declarations however) with parameters both by value and va-
riable, while/for/if constructions, Write/Writeln for output. Pascal syntax
is used.

• extra available functions are: change(a,b), sqrt(real):real, max(...),
min(...) with any number of parameters

• array bounds can be simple expressions (e.g. array[1..N] of integer),
they will be computed at run-time, when the array is created

• input to the program can be speci�ed as input parameters in the program
header as in any procedure declaration, for example:

program binSearch(x,N: integer; a: array[1..N] of integer);

The user will be prompted to provide values after compilation. Some
default initialization patterns are provided to choose from. The value
from the previous program run can be reused if possible too.

Only variables of simple types, one- or two-dimensional arrays of such
variables or pointers to special types (see below) can be used as input.
User-de�ned types declared later in the program may be used in the he-
ader.

• special types are lists, double lists and binary trees. There is a naming
convention that must be followed to allows such types to be recognized.
It is based on the names of the last �elds in the record description, as in
the example:

type Tree = record

... my fields ...;

left, right: �Tree;

end;

The last �eld for a list must be called next, for a double list they are prev
and next, for a binary tree left and right.

You may use lists and trees as input:

program BSTInsert(x: integer; t: �Tree);

provided the type Tree is de�ned later in the program.

• variables are uninitialized by default. Reading from such variable will
cause a run-time error.

• errors are also triggered by a null pointer reference and array index out of
bounds usage.

There is an attachment to this document that contains the syntax of VIP.

2



Visual features

• each variable corresponds to a box in the main panel. The general rule
is that there are no �nested boxes� on screen � for instance an array
inside a record will not be shown. Simple variables, pointers, one- and
two-dimensional arrays of these and records are displayed.

• pointers are arrows. Click on the pointer starting box to highlight the
arrow and see clearly where it points. If a variable value does not to �t in
its box click on the box to see the value in the output console.

• special data types (trees, lists) have special layout patterns, more sophi-
sticated that general record types. For instance a tree �looks like a tree�.
They also have dedicated visual input procedures that help create the
desired tree shape with a few mouse clicks.

• when an array reference to a static array occurs in the program, the cell
referred to will be pointed by an arrow with the indexing expression. These
indicies remain visible from the �rst use onwards and they are updated
after each instruction.

• when functions are called the stack (divided into successive frames) is
displayed. Due to space limitations only simple variables and pointers are
displayed on the stack. You may compress/expand any stack frame to
trace the previous calls. To see the function call in the code that created
some stack frame, click on that frame. A parameter passed by variable is
indicated by putting a name at the actual variable that was passed.

• there is a �garbage collector�: the dynamic variables that are no longer
referenced and have not been disposed are marked in gray

• the display may be rescaled and the execution speed of the program regu-
lated

3


