Hybrid of Mean Payoff and Total Payoff

Andrzej Pacuk

Warsaw Univerisity

GAMES 2010

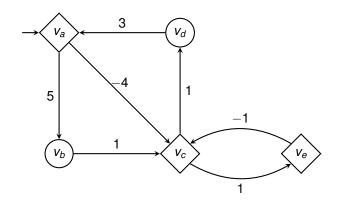
Outline

- Definitions and Concepts
 - Total Payoff
 - Mean Payoff
 - Motivation
- 2 Properties
 - Determinacy
 - Counterexamples
- Algorithm
 - Algorithm steps for minimizing player
 - Algorithm for maximising player
 - Limitations and properties

Outline

- Definitions and Concepts
 - Total Payoff
 - Mean Payoff
 - Motivation
- Properties
 - Determinacy
 - Counterexamples
- Algorithm
 - Algorithm steps for minimizing player
 - Algorithm for maximising player
 - Limitations and properties

2-Player-Zero-Sum Infinite Games



Edge cost function $c \colon E \to \mathbb{Z}$

Total Payoff

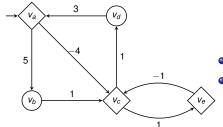
Definition

$$tp(\pi) = \liminf_{n \to \infty} \sum_{i=0}^{n-1} c(v_i, v_{i+1})$$

Total Payoff

Definition

$$tp(\pi) = \liminf_{n \to \infty} \sum_{i=0}^{n-1} c(v_i, v_{i+1})$$



•
$$tp((v_av_bv_cv_d)^{\omega}) = +\infty$$

•
$$tp(v_a(v_cv_e)^{\omega}) = -4$$

Mean Payoff

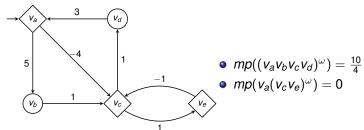
Definition

$$mp(\pi) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} c(v_i, v_{i+1})$$

Mean Payoff

Definition

$$mp(\pi) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} c(v_i, v_{i+1})$$



Properties

Fact

Both Mean Payoff and Total Payoff Games are positionally determined. (Ehrenfeucht, Mycielski, Zielonka, Gimbert)

Lemma

For any initial position v, let.

 $\mu(v)$:= optimal play value in Mean Payoff Game starting at v

 $\tau(v)$:= optimal play value in Total Payoff Game starting at v

It holds (Seidl).

$$\mu(v) < 0$$
 iff $\tau(v) = -\infty$

$$\mu(v) = 0$$
 iff $\tau(v)$ finite

$$\mu(v) > 0$$
 iff $\tau(v) = +\infty$

Properties

Fact

Both Mean Payoff and Total Payoff Games are positionally determined. (Ehrenfeucht, Mycielski, Zielonka, Gimbert)

Lemma

For any initial position v, let:

 $\mu(v)$:= optimal play value in Mean Payoff Game starting at v

 $\tau(v)$:= optimal play value in Total Payoff Game starting at v

It holds (Seidl):

$$\mu(\mathbf{v}) < 0$$
 iff $\tau(\mathbf{v}) = -\infty$

$$\mu(\mathbf{v}) = \mathbf{0}$$
 iff $\tau(\mathbf{v})$ finite

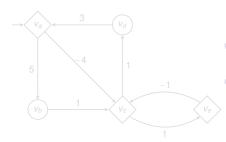
$$\mu(\mathbf{v}) > 0$$
 iff $\tau(\mathbf{v}) = +\infty$

Hybrid Payoff

Definition

Hybrid Payoff games use the payoff mapping hp defined as follows:

$$hp(\pi) = \begin{cases} tp(\pi) & if mp(\pi) = 0\\ mp(\pi) & otherwise \end{cases}$$



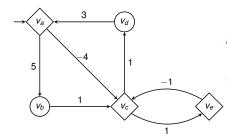
- for play $\pi_1 = (V_a V_b V_c V_d)^{\omega}$: $hp(\pi_1) = mp(\pi_1) = \frac{10}{10}$
- for play $\pi_2 = v_a (v_c v_e)^{\omega}$: $mp(\pi_2) = 0$, so $hp(\pi_2) = tp(\pi_2) = -4$

Hybrid Payoff

Definition

Hybrid Payoff games use the payoff mapping hp defined as follows:

$$hp(\pi) = \begin{cases} tp(\pi) & if mp(\pi) = 0\\ mp(\pi) & otherwise \end{cases}$$



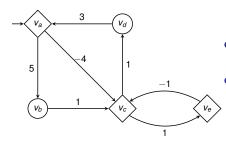
- for play $\pi_1 = (v_a v_b v_c v_d)^{\omega}$: $hp(\pi_1) = mp(\pi_1) = \frac{10}{4}$
- for play $\pi_2 = v_a (v_c v_e)^{\omega}$: $mp(\pi_2) = 0$, so $hp(\pi_2) = tp(\pi_2) = -4$

Hybrid Payoff

Definition

Hybrid Payoff games use the payoff mapping hp defined as follows:

$$hp(\pi) = \begin{cases} tp(\pi) & if mp(\pi) = 0\\ mp(\pi) & otherwise \end{cases}$$



- for play $\pi_1 = (v_a v_b v_c v_d)^{\omega}$: $hp(\pi_1) = mp(\pi_1) = \frac{10}{4}$
- for play $\pi_2 = \frac{v_a(v_c v_e)^{\omega}}{mp(\pi_2)}$: $mp(\pi_2) = 0$, so $hp(\pi_2) = tp(\pi_2) = -4$

Outline

- Definitions and Concepts
 - Total Payoff
 - Mean Payoff
 - Motivation
- Properties
 - Determinacy
 - Counterexamples
- Algorithm
 - Algorithm steps for minimizing player
 - Algorithm for maximising player
 - Limitations and properties

Theorem

(Determinacy) Hybrid Payoff Games are determined.

Proof

It follows from the determinacy of Borel games, because function hp is Borel measurable (as a combination of Borel measurable functions tp and mp).

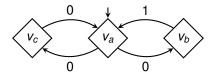
Theorem

(Determinacy) Hybrid Payoff Games are determined.

Proof.

It follows from the determinacy of Borel games, because function hp is Borel measurable (as a combination of Borel measurable functions tp and mp).

The lack of positional determinacy



We have two positional plays starting from v_a :

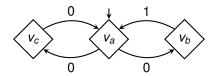
- $\pi_1 = (v_a v_b)^{\omega}$ assuring $hp(\pi_1) = 1/2$
- $\pi_2 = (v_a v_c)^{\omega}$ assuring $hp(\pi_1) = 0$

However, non-positional play:

$$\pi = (v_a v_b)(v_a v_c)^{1}(v_a v_b)(v_a v_c)^{2}(v_a v_b)(v_a v_c)^{3} \dots$$

gives optimal payoff $hp(\pi) = \infty$

The lack of positional determinacy



We have two positional plays starting from v_a :

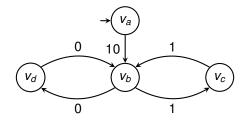
- $\pi_1 = (v_a v_b)^{\omega}$ assuring $hp(\pi_1) = 1/2$
- $\pi_2 = (v_a v_c)^{\omega}$ assuring $hp(\pi_1) = 0$

However, non-positional play:

$$\pi = (v_a v_b)(v_a v_c)^{1}(v_a v_b)(v_a v_c)^{2}(v_a v_b)(v_a v_c)^{3} \dots$$

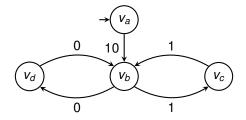
gives optimal payoff $hp(\pi) = \infty$.

The lack of optimal strategies



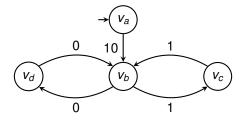
- There is no strategy assuring payoff = 0.
- For every positive $k \in \mathbb{N}$, a play $v_a \left((v_b v_d)^{k-1} v_b v_c \right)^{\omega}$ assures hybrid payoff (=mean payoff) = $\frac{1}{k}$.
- The optimal value of game = 0.

The lack of optimal strategies



- There is no strategy assuring payoff = 0.
- For every positive $k \in \mathbb{N}$, a play $v_a \left((v_b v_d)^{k-1} v_b v_c \right)^{\omega}$ assures hybrid payoff (=mean payoff) = $\frac{1}{k}$.
- The optimal value of game = 0.

The lack of optimal strategies



- There is no strategy assuring payoff = 0.
- For every positive $k \in \mathbb{N}$, a play $v_a \left((v_b v_d)^{k-1} v_b v_c \right)^{\omega}$ assures hybrid payoff (=mean payoff) = $\frac{1}{k}$.
- The optimal value of game = 0.

Outline

- Definitions and Concepts
 - Total Payoff
 - Mean Payoff
 - Motivation
- Properties
 - Determinacy
 - Counterexamples
- Algorithm
 - Algorithm steps for minimizing player
 - Algorithm for maximising player
 - Limitations and properties

Algorithm

- The algorithm computes game values for instances of Hybrid Payoff games.
- But only for single player arenas.
- Cases of 0 and 1 player have to be treated separatedly.

- Divide an arena into strongly connected components (SCC).
- For each SCC, compute maximum (A) and minimum (B) mean of the cycle in that SCC.
- For each SCC, depending on values (A, B) we compute game values for plays ending in that SCC (and finally game value := the lowest one):
 - If A > 0 and B > 0, then every cycle's mean is positive, so for every play π we have $hp(\pi) = mp(\pi)$. We return B.
 - If A < 0 and B < 0, then we symmetrically return B.

- Divide an arena into strongly connected components (SCC).
- For each SCC, compute maximum (A) and minimum (B) mean of the cycle in that SCC.
- For each SCC, depending on values (A, B) we compute game values for plays ending in that SCC (and finally game value := the lowest one):
 - If A > 0 and B > 0, then every cycle's mean is positive, so for every play π we have $hp(\pi) = mp(\pi)$. We return B.
 - If A < 0 and B < 0, then we symmetrically return B.

- Divide an arena into strongly connected components (SCC).
- For each SCC, compute maximum (A) and minimum (B) mean of the cycle in that SCC.
- For each SCC, depending on values (A, B) we compute game values for plays ending in that SCC (and finally game value := the lowest one):
 - If A>0 and B>0, then every cycle's mean is positive, so for every play π we have $hp(\pi)=mp(\pi)$. We return B.
 - If A < 0 and B < 0, then we symmetrically return B.

- Divide an arena into strongly connected components (SCC).
- For each SCC, compute maximum (A) and minimum (B) mean of the cycle in that SCC.
- For each SCC, depending on values (A, B) we compute game values for plays ending in that SCC (and finally game value := the lowest one):
 - If A > 0 and B > 0, then every cycle's mean is positive, so for every play π we have hp(π) = mp(π). We return B.
 - If A < 0 and B < 0, then we symmetrically return B.

- Divide an arena into strongly connected components (SCC).
- For each SCC, compute maximum (A) and minimum (B) mean of the cycle in that SCC.
- For each SCC, depending on values (A, B) we compute game values for plays ending in that SCC (and finally game value := the lowest one):
 - If A > 0 and B > 0, then every cycle's mean is positive, so for every play π we have hp(π) = mp(π). We return B.
 - If A < 0 and B < 0, then we symmetrically return B.

$$\pi_1 \left\{ \begin{array}{c} & & & & \\ \geq 0 \\ & & & \\ & & & \\ \end{array} \right\} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c} & & \\ & \\ \end{array} \begin{array}{c} & & \\ \end{array} \begin{array}{c}$$

$$\pi_{1} = \underbrace{\begin{array}{c} \\ \geq 0 \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \\ v_{5} \\ v_{5} \\ v_{6} \\ v_{7} \\ v_{8} \\ v_{8}$$

• If $A \ge 0$ and B < 0, then:

$$\pi_{1} \ge 0$$
 v_{1}
 v_{2}
 v_{2}
 v_{3}
 v_{2}
 v_{2}
 v_{3}
 v_{4}
 v_{2}
 v_{3}
 v_{4}
 v_{5}
 v_{7}
 v_{8}
 v_{8}

so one can generate strategy assuring payoff $= -\infty$.

- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them *critical*) and compute the shortest paths from the initial vertex to critical vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - Otherwise, let C be the cost of the shortest path
 - If A > 0, we return min(C, 0), because we can approach to 0:
 - Otherwise, we return C.

- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them *critical*) and compute the shortest paths from the initial vertex to critical vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - Otherwise, let C be the cost of the shortest path
 - If A > 0, we return min(C, 0), because we can approach to 0:
 - Otherwise, we return C.

- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them critical) and compute the shortest paths from the initial vertex to critical vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - Otherwise, let *C* be the cost of the shortest path.
 - If A > 0, we return min(C, 0), because we can approach to 0:
 - Otherwise, we return C.

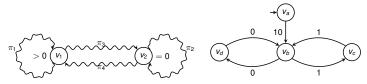
- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them critical) and compute the shortest paths from the initial vertex to critical vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - 3 Otherwise, let *C* be the cost of the shortest path.
 - If A > 0, we return min(C, 0), because we can approach to 0:
 - Otherwise, we return C.

- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them *critical*) and compute the shortest paths from the initial vertex to critical vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - Otherwise, let *C* be the cost of the shortest path.
 - If A > 0, we return min(C, 0), because we can approach to 0:

$$\pi_1 \begin{cases} > 0 \\ v_1 \\ v_2 \end{cases} = 0 \end{cases} \pi_2$$

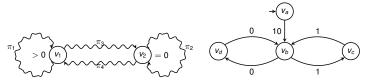
Otherwise, we return C.

- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them *critical*) and compute the shortest paths from the initial vertex to critical vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - 3 Otherwise, let *C* be the cost of the shortest path.
 - \bullet If A > 0, we return min(C, 0), because we can approach to 0:



Otherwise, we return C.

- If $A \ge 0$ and B = 0, then:
 - We detect all vertices laying on any 0-sum cycle in our SCC (call them *critical*) and compute the shortest paths from the initial vertex to <u>critical</u> vertices (using Bellman-Ford algorithm).
 - ② If computing of shortest paths failed, this implies we have a path from initial vertex to our SCC accessing a negative cycle (in any previous SCC), so we can return $-\infty$.
 - 3 Otherwise, let *C* be the cost of the shortest path.
 - \bullet If A > 0, we return min(C, 0), because we can approach to 0:



Otherwise, we return C.

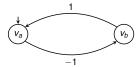
 Simple approach to reverse positions and edge weights, launch an algorithm for the other player and finally revert the returned value, may fail.

It happens because:

$$\lim \inf -a_n = -\lim \sup a_n \neq -\lim \inf a_n$$

for divergent sequences.

 Simple approach to reverse positions and edge weights, launch an algorithm for the other player and finally revert the returned value, may fail.

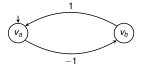


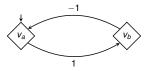
It happens because:

$$\lim \inf -a_n = -\lim \sup a_n \neq -\lim \inf a_n$$

for divergent sequences.

 Simple approach to reverse positions and edge weights, launch an algorithm for the other player and finally revert the returned value, may fail.



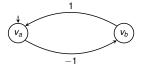


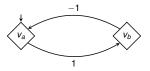
It happens because:

$$\lim \inf -a_n = -\lim \sup a_n \neq -\lim \inf a_n$$

for divergent sequences

 Simple approach to reverse positions and edge weights, launch an algorithm for the other player and finally revert the returned value, may fail.



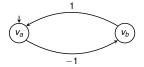


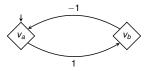
It happens because:

$$\liminf -a_n = -\limsup a_n \neq -\liminf a_n$$

for divergent sequences.

 Simple approach to reverse positions and edge weights, launch an algorithm for the other player and finally revert the returned value, may fail.





It happens because:

$$\liminf -a_n = -\limsup a_n \neq -\liminf a_n$$

for divergent sequences.

The Algorithm:

- is efficient. Its time complexity is $O(V^3)$.
- computes games values, but not strategies.
- works only for single player arenas. The case of 2-player arenas remains open and seems to be hard.

The Algorithm:

- is efficient. Its time complexity is $O(V^3)$.
- computes games values, but not strategies.
- works only for single player arenas. The case of 2-player arenas remains open and seems to be hard.

The Algorithm:

- is efficient. Its time complexity is $O(V^3)$.
- computes games values, but not strategies.
- works only for single player arenas. The case of 2-player arenas remains open and seems to be hard.

Related works:

- H. Seidl, Precise Program Analysis, Strategy Iteration and Games, tutorial slides, Warsaw (Games 2008)
- K. Chatterjee, T.A. Henzinger, M. Jurdziński, Mean-payoff parity games
- D. Fischer, E. Grädel, Ł. Kaiser, *Model Checking Games for the Quantitative* μ -Calculus
- H. Gimbert, W. Zielonka, Deterministic priority mean-payoff games as limits of discounted games