Re-optimization of the Steiner Tree problem
The plan

- Some motivation
- Introducing the problem:
 - The Steiner Tree problem (STP)
 - The Concept of Re-optimization
- Some warm-up observations and tricks
- The state of the art
- The trick
- Adding a terminal and why it is simple
- Removing a terminal and why it is harder
- Future work
Some motivation
Some motivation
Some motivation
Some motivation
Some motivation
Some motivation
The plan

• Some motivation
• Introducing the problem:
 • The Steiner Tree problem (STP)
 • The Concept of Re-optimization
• Some warm-up observations and tricks
• The state of the art
• The trick
• Adding a terminal and why it is easy
• Removing a terminal and why it is harder
• Future work
The Steiner Tree Problem (STP)

Input:
Graph (Metric, Complete)
The Steiner Tree Problem (STP)

Input:
- Graph (Metric, Complete),
- Terminal Set of nodes
The Steiner Tree Problem (STP)

Input:
Graph, Metric, Complete,
Terminal Set of nodes

Output:
A tree spanning the terminal set
The Steiner Tree Problem (STP)

Input:
Graph, Metric, Complete,
Terminal Set of nodes

Output:
A tree spanning the terminal set
with a minimum weight
The Steiner Tree Problem (STP)

Input:
Graph, Metric, Complete,
Terminal Set of nodes

Output:
A tree spanning the terminal set
with a minimum weight

APX-hard
The plan

- Some motivation
- Introducing the problem:
 - The Steiner Tree problem (STP)
 - The Concept of Re-optimization
- Some warm-up observations and tricks
- The state of the art
- The trick
- Adding a terminal and why it is easy
- Removing a terminal and why it is harder
- Future work
Reoptimization

Input:
- Instance of a problem,
- a solution to it (preferably good)
- a modification, preferably local

Output:
- Solution of modified instance
The plan

• Some motivation ✔
• Introducing the problem:
 • The Steiner Tree problem (STP) ✔
 • The Concept of Re-optimization ✔
• Some warm-up observations and tricks
• The state of the art
• The trick
• Adding a terminal and why it is easy
• Removing a terminal and why it is harder
• Future work
Hardness of Reoptimization

To solve an instance of underlying NP-hard problem:

Start with a trivial instance:
Hardness of Reoptimization

To solve an instance of underlying NP-hard problem:

Start with a trivial instance

Continue modifying it locally:
Hardness of Reoptimization

To solve an instance of underlying NP-hard problem:

Start with a trivial instance

Continue modifying it locally:
Hardness of Reoptimization

To solve an instance of underlying NP-hard problem:

Start with a trivial instance

Continue modifying it locally:
Hardness of Reoptimization

To solve an instance of underlying NP-hard problem:

Start with a trivial instance
Continue modifying it locally
Until it is transformed into the instance we want to solve
Recipe for a PTAS

$\{1,2\}$-STP under edge weight increase
Recipe for a PTAS

\{1,2\}-STP under edge weight increase
Recipe for a PTAS

\{1,2\}-STP under edge weight increase

\[\text{OPT}_{\text{new}} \]

\[\text{OPT}_{\text{old}} + \Delta e \]
Recipe for a PTAS

\{1,2\}-STP under edge weight increase

\{1,2\}-STP: \(\Delta e = 1 \)
Recipe for a PTAS

{1,2}-STP under edge weight increase

\[\text{OPT}_{\text{old}} \leq \text{OPT}_{\text{new}} \leq \text{OPT}_{\text{old}} + \Delta e \]

{1,2}-STP: \[\Delta e = 1 \]
Recipe for a PTAS

\{1,2\}-STP under edge weight increase

\[\text{OPT}_{\text{old}} \leq \text{OPT}_{\text{new}} \leq \text{OPT}_{\text{old}} + \Delta e \]

\[\leq \text{OPT}_{\text{new}} + \Delta e \]

\{1,2\}-STP: \quad \Delta e = 1

feasible
Recipe for a PTAS

{1,2}-STP under edge weight increase

\[\text{OPT}_{\text{old}} \leq \text{OPT}_{\text{new}} \leq \text{OPT}_{\text{old}} + \Delta e \leq \text{OPT}_{\text{new}} + \Delta e \]

\(\Delta e \leq \varepsilon \text{OPT}_{\text{new}} \)

{1,2}-STP: \(\Delta e = 1 \)
Recipe for a PTAS

{1,2}-STP under edge weight increase

\[OPT_{old} \leq OPT_{new} \leq OPT_{old} + \Delta e \leq OPT_{new} + \Delta e \]

\[\Delta e \leq \varepsilon OPT_{new} \]

\[\frac{\Delta e}{\varepsilon} \geq OPT_{new} \geq |E(OPT_{new})| \]

then we can find optimum using exhaustive search

{1,2}-STP: \(\Delta e = 1 \)
Recipe for a PTAS

{1,2}-STP under edge weight increase

\[\text{OPT}_{\text{old}} \leq \text{OPT}_{\text{new}} \leq \text{OPT}_{\text{old}} + \Delta e \leq \text{OPT}_{\text{new}} + \Delta e \]

\[\Delta e \leq \varepsilon \text{OPT}_{\text{new}} \]

\[\frac{\Delta e}{\varepsilon} \geq \text{OPT}_{\text{new}} \geq |E(\text{OPT}_{\text{new}})| \]

then we can find optimum using exhaustive search

This idea carries on to sharpened triangle inequality and many other Reoptimization problems with weights bounded by a constant

\[\text{OPT}_{\text{old}} + \Delta e \]

\[\text{OPT}_{\text{old}} \]

\[\text{OPT}_{\text{new}} \]

\[\Delta e \]

\[\varepsilon \]
The plan

- Some motivation
- Introducing the problem:
 - The Steiner Tree problem (STP)
 - The Concept of Re-optimization
- Some warm-up observations and tricks
- The state of the art
- The trick
- Adding a terminal and why it is easy
- Removing a terminal and why it is harder
- Future work
The road map of the relevant results

STP approximation algorithms:

<table>
<thead>
<tr>
<th>Re-optimization approx. ratios</th>
<th>STP</th>
<th>β- STP, $\beta < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge weight increase</td>
<td>1.334</td>
<td>(1.28) PTAS</td>
</tr>
<tr>
<td>Edge weight decrease</td>
<td>1.25</td>
<td>PTAS</td>
</tr>
<tr>
<td>Steiner point turns into a terminal</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Terminal turns into a Steiner point</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Adding a Steiner point</td>
<td>1.39 (from scratch), APX hard</td>
<td>$\min{\frac{1}{2} + \beta, 1.39}$, APX hard</td>
</tr>
<tr>
<td>Removing a Steiner point</td>
<td>As hard as STP</td>
<td>As hard as β- STP</td>
</tr>
</tbody>
</table>

Bilò, Böckenhauer, Hromkovič, Královič, Mömke, Widmayer, Zych, SWAT 2008
Bilò, Zych, ENDM 2011
Böckenhauer, Freiermuth, Hromkovič, Mömke, Sprock, Steffen, CIAC 2010
The road map of the relevant results

STP approximation algorithms:

<table>
<thead>
<tr>
<th>Re-optimization approx. ratios</th>
<th>STP</th>
<th>(\beta)-STP, (\beta < 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge weight increase</td>
<td>1.334</td>
<td>(1.28) PTAS</td>
</tr>
<tr>
<td>Edge weight decrease</td>
<td>1.302</td>
<td>PTAS</td>
</tr>
<tr>
<td>Steiner point turns into a terminal</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Terminal turns into a Steiner point</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Adding a Steiner point</td>
<td>1.39 (from scratch), APX hard</td>
<td>min{(\frac{1}{2} + \beta), 1.39}, APX hard</td>
</tr>
<tr>
<td>Removing a Steiner point</td>
<td>As hard as STP</td>
<td>As hard as (\beta)-STP</td>
</tr>
</tbody>
</table>

Bilò, Böckenhauer, Hromkovič, Královič, Mömke, Widmayer, Zych, SWAT 2008
Bilò, Zych, ENDM 2011
Böckenhauer, Freiermuth, Hromkovič, Mömke, Sprock, Steffen, CIAC 2010
The plan

• Some motivation
• Introducing the problem:
 • The Steiner Tree problem (STP)
 • The Concept of Re-optimization
• Some warm-up observations and tricks
• The state of the art
• The trick
• Adding a terminal and why it is easy
• Removing a terminal and why it is harder
• Future work
The trick
The trick

\[\text{SOL} \leq \text{OPT} - f_1 - f_2 \]
The trick

\[\text{SOL} \leq \sigma (\text{OPT} - f_1 - f_2) + \ldots \]

* \(\sigma \) is the approximation ratio
The trick

\[SOL \leq \sigma (OPT - f_1 - f_2) + f_1 + f_2 \leq \sigma OPT - (\sigma - 1)(f_1 + f_2) \]

* \(\sigma\) is the approximation ratio
The plan

• Some motivation
• Introducing the problem:
 • The Steiner Tree problem (STP)
 • The Concept of Re-optimization
• Some warm-up observations and tricks
• The state of the art
• The trick
• Adding a terminal and why it is easy
• Removing a terminal and why it is harder
• Future work
How to add a terminal

\[\text{OPT}_{\text{new}} \]

\[\text{OPT}_{\text{old}} \]
How to add a terminal

P is a path in OPT_{new} from t to another terminal.

If we could guess such a path...

$$\text{Sol}_1 \leq \text{OPT}_{\text{new}} + P$$

$$\text{Sol}_2 \leq \sigma \text{OPT}_{\text{new}} - (\sigma - 1)P$$
How to add a terminal

\(P \) is a path in \(\text{OPT}_{\text{new}} \) from \(t \) to another terminal.

If we could guess such a path...

\[
Sol_1 \leq \text{OPT}_{\text{new}} + P \\
Sol_2 \leq \sigma \text{OPT}_{\text{new}} - (\sigma - 1)P
\]

Unfortunately we can’t.
How to add a terminal

P is a **cheapest** path in OPT_{new} from t to another terminal.

We would like to guess most of it:

$$P = P_k + P'$$
How to add a terminal

P is a *cheapest* path in OPT_{new} from t to another terminal.

We would like to guess most of it:

$$P = P_k + P'$$

$$R_1, ..., R_k \geq P'$$

$$P' \leq \frac{\text{OPT}_{\text{new}}}{k}$$
How to add a terminal

P is a **cheapest** path in OPT_{new} from t to another terminal.

We would like to guess most of it:

\[
P = P_k + P' \quad \text{with} \quad P' \leq \frac{\text{OPT}_{\text{new}}}{k}
\]

\[
R_1, \ldots, R_k \geq P'
\]

\[
\text{Sol}_1 \leq \text{OPT}_{\text{new}} + P_k + P'
\]

\[
\text{Sol}_2 \leq \sigma \text{OPT}_{\text{new}} - (\sigma - 1)P_k
\]

\[
\frac{2\sigma - 1 + \frac{\sigma - 1}{k}}{\sigma} \xrightarrow{k \to \infty} \frac{2\sigma - 1}{\sigma}
\]
How to add a terminal

P is a **cheapest** path in **OPT**$_{\text{new}}$ from *t* to another terminal.

We would like to guess most of it:

\[
\begin{align*}
P &= P_k + P' \\
R_1, \ldots, R_k &\geq P' \\
P' &\leq \frac{\text{OPT}_{\text{new}}}{k}
\end{align*}
\]

Sol$_1 \leq \text{OPT}_{\text{new}} + P_k + P'$

Sol$_2 \leq \sigma\text{OPT}_{\text{new}} - (\sigma - 1)P_k$

Not yet exactly what we want, but ! ...
How to add a terminal

We can assume t has degree at least 2 in OPT_{new}

...and contract two paths!

Remark:
Two paths are the reason why we have better ratios for terminal modifications than for edge cost modifications
The plan

- Some motivation
- Introducing the problem:
 - The Steiner Tree problem (STP)
 - The Concept of Re-optimization
- Some warm-up observations and tricks
- The state of the art
- The trick
- Adding a terminal and why it is easy
- Removing a terminal and why it is harder
- Future work
Why removing a terminal is harder

$$\text{OPT}_{\text{old}} \geq \text{OPT}_{\text{new}}$$

feasible
Why removing a terminal is harder

$$\text{OPT}_{\text{old}} \geq \text{OPT}_{\text{new}}$$

feasible

$$\text{OPT}_{\text{old}} - P \leq \text{OPT}_{\text{new}}$$

not feasible
Why removing a terminal is harder

\[\text{OPT}_{\text{old}} \leq \text{OPT}_{\text{new}} \]

feasible

\[\text{OPT}_{\text{old}} - P \leq \text{OPT}_{\text{new}} \]

not feasible

\[\text{OPT}_{\text{old}} - P + T \leq \text{OPT}_{\text{new}} + T \]

feasible

\[\text{Sol}_2 \leq \sigma \text{OPT}_{\text{new}} - (\sigma - 1)T \]
Why removing a terminal is harder

\[\text{OPT}_{\text{old}} \leq \text{OPT}_{\text{new}} \]
feasible

\[\text{OPT}_{\text{old}} - P - \text{OPT}_{\text{new}} \]
not feasible

\[\text{OPT}_{\text{old}} - P + T \leq \text{OPT}_{\text{new}} + T \]
feasible

\[\text{Sol}_2 \leq \sigma \text{OPT}_{\text{new}} - (\sigma - 1)T \]

How to guess T in polynomial time?
The plan

• Some motivation
• Introducing the problem:
 • The Steiner Tree problem (STP)
 • The Concept of Re-optimization
• Some warm-up observations and tricks
• The state of the art
• The trick
• Adding a terminal and why it is easy
• Removing a terminal and why it is harder
• Future work
Future work

<table>
<thead>
<tr>
<th>Re-optimization approx. ratios</th>
<th>STP</th>
<th>β STP, $\beta < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge weight increase</td>
<td>1.334</td>
<td>PTAS</td>
</tr>
<tr>
<td>Edge weight decrease</td>
<td>1.25</td>
<td>PTAS</td>
</tr>
<tr>
<td>Steiner point turns into a terminal</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Terminal turns into a Steiner point</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Adding a Steiner point</td>
<td>1.39 (from scratch), APX hard</td>
<td>$\min{\frac{1}{2} + \beta, 1.39}$, APX hard</td>
</tr>
<tr>
<td>Removing a Steiner point</td>
<td>As hard as STP</td>
<td>As hard as beta STP</td>
</tr>
</tbody>
</table>
Future work

<table>
<thead>
<tr>
<th>Re-optimization approx. ratios</th>
<th>STP</th>
<th>β STP, $\beta < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge weight increase</td>
<td>1.334</td>
<td>PTAS</td>
</tr>
<tr>
<td>Edge weight decrease</td>
<td>1.302</td>
<td>PTAS</td>
</tr>
<tr>
<td>Steiner point turns into a terminal</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Terminal turns into a Steiner point</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Adding a Steiner point</td>
<td>1.39 (from scratch), APX hard</td>
<td>min{$\frac{1}{2} + \beta$, 1.39}, APX hard</td>
</tr>
<tr>
<td>Removing a Steiner point</td>
<td>As hard as STP</td>
<td>As hard as beta STP</td>
</tr>
</tbody>
</table>
Future work

<table>
<thead>
<tr>
<th>Re-optimization approx. ratios</th>
<th>STP</th>
<th>β STP, $\beta < 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge weight increase</td>
<td>1.334</td>
<td>PTAS</td>
</tr>
<tr>
<td>Edge weight decrease</td>
<td>1.302</td>
<td>PTAS</td>
</tr>
<tr>
<td>Steiner point turns into a terminal</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Terminal turns into a Steiner point</td>
<td>1.2</td>
<td>PTAS</td>
</tr>
<tr>
<td>Adding a Steiner point</td>
<td>1.39 (from scratch), APX hard</td>
<td>min{$\frac{1}{2} + \beta, 1.39$}, APX hard</td>
</tr>
<tr>
<td>Removing a Steiner point</td>
<td>As hard as STP</td>
<td>As hard as beta STP</td>
</tr>
</tbody>
</table>