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1 Abstract

The goal of this project is to develop a background in the study of Hensel’s p-adic numbers, including a dis-
cussion of non-Archimedean valuations, completion fields, Hensel’s lemma, the topology of the p-adic numbers
(and the Cantor set) and algebraic number theory. I intend to accurately convey the major ideas that I en-
counter in these fields in a readable way. The project also led me to develop two algorithms, implemented in
Perl for applying Hensel’s lemma to obtain sequences converging to the roots of arbitrary polynomials in the
p-adic completion of Q, the rational numbers, and Q(i), the Gaussian rationals. The content assumes a basic
background in topology, metric analysis, commutative algebra and elementary number theory.

2 Introduction
“God gave us the integers, all else is the work of man”
- Leopold Kronecker

Logically, the journey between N and C has its roots in two primary motivations, one of which is algebraic
and one of which is analytic or topological. These are:

n .
i) Finding a superset that contain the roots of polynomials Z aix'.
1=0
ii) Finding a superset that contains the limits of Cauchy sequences {c;}72; with respect to the usual metric
on
x ifx=0
N, Z and Q: d(x,y) = |x — y| where |x| = { —x ifx<0 }

Z is built from N by considering the roots of simple polynomials of the form x+a =0, a € N and Q is
obtained from Z by considering further roots of polynomials of the form ax = b, a # 0,b € Z. These steps are
both algebraic, dealing with the operations of + and x that we may define on real and complex numbers and
the roots of polynomials that can be built using both of these operations. We may travel further along the road
to R through closing Q algebraically by adding, say, v2 which is the root of the polynomial x? — 2 and others
like it. However, continuing in this manner still excludes transcendental numbers like 7 or e, for example,
and there is a quicker way to add all irrational numbers to our set in one fell swoop, by moving to the analytic
side of things. Using the notion of distance and convergence, we can add exotic, new elements to our set,
that cannot be obtained algebraically, but by including objects to which the numbers in our previous set could
become incredibly close. The superset of Q containing these elements happens to be the complete R (in fact, Q
is said to be dense in R). Finally, we may close R using the root of the polynomial x2 + 1 = 0, creating C, a set
that is perfect in both algebraic and analytic terms, something both algebraically closed and complete.

Returning to when we had Q, however, there is a subtle bifurcation in the journey from N to a complete,
algebraically closed set. This bifurcation (and it is strictly a bifurcation as will be shown by way of Ostrowski’s
theorem) stems from the consideration that the notion of distance is arbitrary. Distance, in fact, can be defined
in disparate ways. For example, the distance d'(x,y) = |x — y|2 satisfies the same essential axioms of the
previous one. This distance, however, differs from the original in such a trivial manner that completing Q with
this distance leads to the same general result in the above process.

Towards the end of the 19th century Kurt Hensel formulated the p-adic numbers, a completion of the
rational numbers with respect to a non-Euclidean metric, the topology of which departed from the previous in
a non-trivial way. His discovery led to the development of valuation theory for fields and the p-adic numbers
have become a tool for studying algebraic numbers over the rationals. This project is intended to provide a
linear, intuitive introduction to the p-adic numbers. It draws on four texts: Andrew Baker’s An Introduction
to p-adic Numbers and p-adic Analysis [1], Borevi¢ and Shafarevié’s Number Theory [2], Neal Koblitz’s p-adic



Numbers, p-adic Analysis and Zeta-Functions [3], Fernando Q. Gouvéa’s p-adic Numbers: An Introduction [4]
and William Stein’s Algebraic Number Theory, a Computational Approach [5] in no particular order, except
that which allowed me to develop my own thread of theory. The content is mostly expository insofar as that I
prove few things that have not been mentioned in one of the texts - however I ensured that I personalised all
the proofs of relevant theorems, for myself as much as for the sake of the project.

3 The p-adic Valuation and Metric

First, we recall some important definitions regarding analysis.

Definition: A nonempty set X together with a function d : X x X — R is called a metric space if the func-
tion d satisfies the following:

(1) dx,y)=0ox=y,Vx,yeX.
(i) d(x,y)=0,Vx,yeX.
(iii) d(x,y)=d(y,x),V x,yeX.
(iv) d(x,2)<d(x,y)+d(y,2),V x,y,ze X.

We refer to d as the metric or distance defined on the set X.

n
Example: The Euclidean metric, d(x,y) = 4| Z(xi - yi)2, x,y € R", is an example of a metric.
i=1

Definition: A valuation (sometimes called a norm) on a field % is a mapping v : 2 — R satisfying:
1) v(x)=0, Vxek.
(i) v(x)=0iff x=0.
(iii) v(xy)=v(x)v(y), Vx,y € k.
1v) v(x+y)<v(x)+v(y), Vx,y € k.

A direct consequence of (iii) is that v(1) =v(-1) =1.

Example: The trivial absolute value v on any field & is such that v1(0) =0 and vi(x)=1, Vx #0 € k.

Theorem: Let X be a field on which a valuation v is defined. Then v gives rise to a metric d(x,y) =v(x—y), V
x,yeX.

Proof: We must check each of the axioms of a metric. Firstly,

d(x,y)=0
= v(x—-y)=0
—x-y=0

—x=y



and so axiom (i) defining a metric is satisfied. Axiom (ii) defining a metric follows trivially from axiom (i) of a
valuation. The symmetry condition follows from property (iii) of valuations since v(-1) = 1.

Finally,

d(x,2) =v(x—2)
=vlx—-y+y—2)
<vlx-y)+uv(y—2z)
=d(x,y)+d(y,2)

showing that the triangle inequality is satisfied. [J

Definition: A Cauchy sequence in a metric space is a sequence (x,);~ ; such that, given any ¢ > 0 there exists
an N e N with d(xp,,%x,) <€ for all n1, ng > N. The limit of a Cauchy sequence (x,);> ; in a metric space is the
unique point L: given any ¢ > 0, there exists an N € N with d(x;,L) < ¢ for all i > N. Two Cauchy sequences,
(x5, and (y,)52, are said to be equivalent if nh—>r§o d(xy,yn)=0.

(0]
n

A complete metric space is one in which every Cauchy sequence of points in the space converges to a limit
in the space.

Definition: If (X,d) is a metric space and X’ is a complete (with respect d) space containing X, the completion
X¢ of X is the intersection of all complete subspaces of X’ containing X.

Example: Consider R\{0} with the standard Euclidean metric. The sequence (%)2":1 is a Cauchy sequence
that converges to a limit not contained in the space, namely 0. The completion of R\{0} is R.

Definition: Given any prime number p and integer z, let ord,(z) be the highest power of p such that p | z.
For any rational ¢ = 7, a,b € Z, let ord,(q) =ord,(a)—ord,(b).

Example: ord;(98) = 2 as 98 factors to 2.72.

Definition: The p-adic norm (or valuation) of a rational number x is

=4 VPOE ifx#0
P 0 ifx=0

This defines a valuation on the rational numbers as it clearly satisfies properties (i) and (ii) of valuations since
p is positive. To prove property (iii), suppose x, y € Q. Then we may express
pm  p°r

> Y
n s

a+b
for any prime p with p{r, s, m, n € Z (by the Fundamental Theorem of Arithmetic). Then xy = 2" and

p{mr, ns (by the definition of a prime) and |xy|, =plat+d) = |xlp1ylp. So the property holds.

Assuming, without loss of generality, a < b, then
p%sm+p®nr)

lx+ylp =
ns
p



(i+a)| | pUsm+pb~%nr)

and this must be less than |x|, as (sm+pP~?nr) factors as (p')(v) for some v € Z, i € N. Then p s

implying that

|x|p :p—a Ep_(Ha) — |x+y|p

SO
lx+ylp <max{lxlp,|ylpt < lxlp +1ylp

proving the property (iv) above.
Since every valuation induces an associated metric, the metric d,(x,y) = [x —y|, is well-defined and will be
referred to as the p-adic metric. This metric is also called non-Archimedean because is satisfies
lx + ylp < max{|x|p,|ylp}

as shown above. This condition is stronger than the Triangle Inequality and gives rise to several strange
phenomena.

3.1 Non-Archimedean Metric Spaces

An open ball with respect to a non-Archimedean metric has every point at its centre because

x,y€B(z,6) = d(x,2)<¢
= d(x,y) <max(d(x,z),d(z,y)) <€
= x € B(y,¢)

Every triangle in a metric space under a non-Archimedean metric is isoceles. Suppose we have a triangle
defined by points a,b and c. Then d(a,b) < max(d(a,c)+d(c,b)). Now suppose that d(a,c) < d(b,c). Then
d(a,b)<d(c,b). But d(c,b) <max{d(a,c),d(b,a)} and d(c,b) > d(a,c) so d(b,c) <d(b,a) = d(a,c)=d(b,a).

Corollary: Let |.|, be a non-Archimedean valuation on a field k. If x = y + z with |z|4 < |ylq, then |x|4 = |ylq-

Under the p-adic metric, open balls are vastly alien to the intuitive Euclidean open balls. The open ball of
radius 1 about 0 with respect to the p-adic metric is the set

B,(0,D)={xeQ:d,(x,00<1}={xeQ: x|, < 1}

which is precisely the set
n

{xe@:x:p

4 with pta,b and n > 0}

or the set of all x € Q such that p divides the numerator of x more times than the denominator. Unlike the
Euclidean metric, the p-adic metric does not respect the usual linear order on Q. For example, taking the
2-adic metric, we find that 2 € By(0,1) as |2l = 3 < 1 and 4 € B3(0,1) as |4] = < 1 but 3 ¢ B2(0,1), even though
2<3<4.



3.2 Examples:

We determine: |- 128|5, |- 13.23]3, [9!]3
(Andrew Baker[1] p. 56)

128 _ 27 _ 128y _o-7_ 1
T =TS0l k=27 =13

¢« 1323=13+ 23 = 1828 _ 3049 o |_1393;-33= L

* 91=9.8.7.6.5.4.3.2=328.7.3.2.543.2=348.754.2509!3=3"%= 3%

We show that for 0 # x € Q,
Tl = —
x|, = —
b L

where the product is taken over all primes p =2,3,5,7...
(Andrew Baker p. 56)

* Since 0 # x € Q then x = 7* with m,n € Z. Also, by the Fundamental Theorem of Arithmetic, |m| =

pi'py’ps..py and |n| = q{lq?qg‘...q? for some primes p;,q; and e;,f; € N (note that | — x|, = |x|, so

fi

e .
: i and |m|, = 1 for

multiplication by a unit is not important here). Then |m|,;, = p;
p€{p1,pe,...p,} and |11, =1 for p ¢ {g1,q2,....qs). But since [m 1|, =|ml,|L],, then

1
H|x|p =H|m|p|_|p
P p n

=pi*pr gl

1
and |:lg; = q

=]

m

1
||

as required.

If x € @ and |x|, =1 for every prime p, we show that x € Z.
(Andrew Baker p. 56)
e1 er
¢ Assume x € Q\Z. Then x can be expressed in the form p}I"'p;s
qy -G
p;Vi,j. Then for some prime po, we have pg =q;,1<i <s= |xl|p, =p'(;i. But since f; € N, then |x|,, =

with q;,p; prime, e;,f; € N and q; #
pgi > 1. So x € Q\Z cannot be true if |x|, < 1 for all primes p. Therefore |x|, < 1 for every prime p > x € Z.

4 Ostrowski’s Theorem

Definition: Two valuations (or absolute values), v, and vy, on a field k& are said to be equivalent if there exists
a real number ¢ > 0 such that v,(x) = (vy(x))¢ for all x € k.

It is clear that equivalent valuations induce the same metric topology. For instance, assume that two val-
uations v, and v, defined on a field £ are equivalent. Then for each x € &, v,(x) = vy (x)° for a positive c € R.
Any open ball d,(x,¢) in the “a-metric” is the same as the open ball dy(x,e7°) in the “b-metric”. As the metric
topology on a set X is generated by unions and intersections of open balls, we conclude that v, and v, yield
the same topology. The following important theorem by Ostrowski shows that there can only be two distinct



‘types’ of topologies on the rational numbers following from nontrivial valuations.

Theorem: (Ostrowski’s Theorem) Every nontrivial valuation on Q is equivalent to the p-adic valuation
or the usual absolute value.

Proof: It is sufficient to prove the result for each n € N as the rest follows by the third property of abso-
lute values. We also need not check n =1 as the absolute value of 1 is 1 by the third property of the absolute
value.

Lemma: (If v; : @ — R is an absolute value and v;(n) > 1 for some n € N,> 1, then v; is equivalent to the
usual absolute value |.|: Q — R).

Proof: Let z > 1 be a positive integer with v;(z) > 1. Then

z=co+cin+can’+...+cpn™

log(z)
log(n)*

forsomeneN,>1, withO<c;<n-1,c, #Z0and m <
of absolute values,

By the Triangle Inequality and the third property
vr(2) < v(co) +... +v (™ (n™)
and so
v:(2) = (m +1(n - v (n)™
and also ' '
ve(2) = (mj+1)(n-1v(n)™

similarly. Taking the jth root of the above, one has
ve(2) < [(mj+D(n - Do (n)™

for all j and so letting j — oo gives
log(z)
v:(2) S v (n)™ < v (n)losw

1 1 1 1
implying that v;(z)ez < v, (n)lsn and v,(n)lsn <v;(z)lez and the two are equal (since v;(n) > 1). Since n was
1 1 1
chosen arbitrarily we, in fact, have v;(z)ez = v (a)lee, Va € N, with a > 1. Then v,(z)Psz = ¢ (with ¢ some

positive constant) = v;(z) = ¢!°8?). There exists an a € R with ¢® = e and so v;(2)* = ¢*1%8%) = ¢108(@) = |7 y_ s
equivalent to the usual absolute value on Q. This completes the lemma. [J

Lemma: (If v; : @ — R is an absolute value and v;(n) <1 for all n € N,> 1, then v; is equivalent to the p-
adic absolute value |.|, : Q — R).

Proof: Let z € N,> 1. We will assume that v;(z) < 1. We can always find such a z since v; is nontrivial. Then, by

r r
the Fundamental Theorem of Arithmetic, z = H pfi for distinct primes p; and e; € N. Also, v;(z) = H vr(pfi) <
i=1 i=1
1= 3;j such that v;(p;) < 1. Suppose p; # pr with v;(p;) < 1. Then 3¢ € N such that v.(p;),v:(pp)’ < % Since
gcd(p;., p%) =1, then the Euclidean algorithm ensures the existence of m,n€ Z:m pé. +np}, =1. Then

v:(m)+v.(n) - 1+1

2 2
which is impossible. So v;(p;) =1 when i # j = v;(2) = v,(p;)®/ < 1. The map f, :R* — (0,1) with f,(x) = ¢* for
some constant c € (0,1) is surjective. Therefore, Ja : (v;(p;)%/)% = lz|p; and so vy is equivalent to the p;-adic
absolute value. This completes the lemma. []

1< v,(pj)tvr(m) +v(pp)iv(n) <

It follows from the two lemmas that every nontrivial absolute value on the rational numbers is equivalent
to the p-adic absolute value or the usual absolute value. [J



5 Q,: The Completion of Q) with respect to |.|,

In the same way that R can be built from @ by adding to the former the limits of Cauchy sequences with
elements in the space with respect to the standard metric, the p-adic metric has its own unique completion:
Qp-

In concrete terms, sequences in Q that are Cauchy with respect to |.|, are ones that eventually have suc-
cessive terms such that the last term is lesser than the next term by a large power of p.

Example: For some prime, p, take the simple sequence (p")}2,. The distance d,(p", p°®) between two ele-
ments p” and p® of this sequence (with r < s) is [p"(1 - p*")|, = p~". This sequence is Cauchy, since, given
any € >0, we can find an N € N such that n, ng > N = d,(p"?, p"?) < . Certainly, we can find an N such that
0< % <ée.Thenny, ng>N=dy(p"t,p"?) <e.

Example: Let p be any prime and (x,);_, be the sequence such that x, = n! for all n € N. Now, if m = n,
then
[Xm —%nlp = [nlm(m - 1)(m - 2)..(n +1)-1]|,,

and for any prime p and any k € N, p*|n![m(m - 1)(m —2)...(n+1)— 1] for all n = p*. Therefore |x, — x», Ip < pk
for large enough m,n € N regardless of our choice of k. (x,)5~, is Cauchy.

Representing irrational elements of Q,, in a lucid way is extremely challenging, as the elements themselves
are not ‘numbers’ in the traditional sense, but limits of p-convergent rational sequences that diverge to infinity
in the ‘Euclidean’ sense. Because of this, we can refer to the new elements appended to @ not in and of
themselves, but equivalently by the sequences that converge to them. We may also say that two sequences,
and thus, two elements of Q,, are equivalent and write {x,} ~ {,} if they both approach the same limit, (i.e
|%n — ¥nlp — 0 as n — o0o). This method of representation is consistent when applied to Q itself as, given any
x € Q, we can let the sequence (x,)., = x, ¥ n € N refer to x, as this is Cauchy with x as its limit. More
concretely, by way of the following theorem, we can describe each element of @, in a standard way.

5.1 The p-adic Integers: Z,

Theorem: (Canonical representation) For each equivalence class {a} € Q,, with |a|, <1 we can find a
unique representative Cauchy sequence composed of integers, (x,), satisfying:

1. 0<sx;<pi fori=1,2...
2. xj11=x; (mod p*) fori=1,2...

Proof: First note that any such sequence must be unique. Assume not. Then there are two different Cauchy
sequences {a;} and {b;} satisfying the above criteria. For some j, a; # b; and then a; # b; (mod p’) as each
is less than p/. By the second property, then, given any % = j, we have a;, = a j #bj = by (mod) p’. But then
r}irgoan # I}ngobn as |a, —bylp > p’ for all n € N. Therefore {a,} must not be equivalent to {b,}.

The proof of existence of a representative of the form stated in the theorem requires the use of the following
lemma.

Lemma: Given any x € Q with |x[, <1 we can find an integer y € [0, p” — 1] such that |x—y|, < p™™" for
anyneZ.

Proof: Let x = %pj with ged(p,ab) =1 and a,b € Z. Certainly, j =0 as |x|, < 1. Now, b and p* are coprime for
every natural number %, so we can use Bézout’s identity to express:

rp"+sb=1= sb-1=rp”"



for some integers r and s. Now sb ~ 1 in a p-adic sense and s = %. So as = x as

las—xlp, = las—%lp
lalpls = 3,
|%|p|b3—1|p
151plrp™p

7

< o

as |x|, =1 and |r|, < 1. We can find such r, s for each n. By adding a suitable multiple of p” to as. we can find
a y € Z of the required form. [J

Let (a,)2, be a representative Cauchy sequence corresponding to our equivalence class {a}. As this sequence
is Cauchy, let (IV})};, denote the monotone increasing sequence of natural numbers satisfying i, j = N}, =
la; —ajlp < p~%. By our lemma, for each % € N, we have an integer z;, satisfying |z}, —an,lp = p~* as long as
lan,|p < 1. To show this consider N;. Given any n1, ng = N1, we find

|an1 +tQpy —Apy |p
1
max{y,|an,|p}

l@n;lp

INIA

for all ng = N1. But |a,l, — lalp, =1 asn — o0, s0 [ag,lp Smax{l,%} =1.
We can now apply the lemma for each N}, to give integers x;, satisfying lay, —xzlp < p~%. Moreover xj,1 =
x, (mod p) as

[Xp+1—%klp = |Xp+1—aN,, TAN,,, — Xk —an, tan,lp
< max{lxgi1—an,,, lp, 1%k —an, |p,lan, ., —an,|p}
max{p~**D p~k p~k}
= p7
and |x; —ap| — 0 as & — oo, since
lxp —arl = |xp—ap+an; —an;+x;-xjlp

IA

max{lxg —x;lp,lar —an;lp,|xj —an;|p}
p*j

so long as & = N;. Therefore (x,)2, and (@)}, are equivalent. [
This canonical representation can be extended intuitively to x € Qp with |x|, = pt % 1 since we can repre-
sent xp' using the canonical representation to get a sequence (x,,);2, determining xp’ and divide each term

by p*.
Definition: Let p be a prime number. A sequence of integers (x,,)72, satisfying

Xp = xp—1 (mod p™)
for each n = 1 determines an object called a p-adic integer. Moreover, two sequences (x,)}, and (y,)72,
determine the same p-adic integer iff

Xn = yn (mod p"*1)
for all n = 0. The set of p-adic integers coincides with B_p(O, 1).

The sequence (x,);~, is clearly Cauchy as x, = x,-1 +2zp", (z € Z), and so nlim |€n —%p-1lp = 0. Moreover,
—00

the sequence’s limit is clearly not in @, unless it is eventually constant, thus in Z, as it is not bounded in the
usual analytic sense. The set of these p-adic integers will be called Z,. Z, is a (commutative unital) ring
with addition and multiplication defined pointwise on sequences in the set. This follows in a straightforward
manner since each ‘point’ a sequence defining a p-adic integer is itself a rational number.



5.2 Hensel’s Lemma

For specific examples of elements in Z,, that are not in @, we can ask ourselves the question: given a polynomial
the coefficients of which are rational integers, but the roots of which are not, do the roots of this polynomial
fall in Z,? As a simple analogy, take V2 € R. This is one of the two roots of the quadratic polynomial x? -2 = 0.
A suitable Cauchy sequence whose elements are rational numbers which defines v/2 can be obtained using the
Newton-Raphson method to approximate v/2. A similar iterative process can be done in the p-adic integers,
utilising a result known as Hensel’s lemma.

k )
Theorem: (Hensel’s Lemma) Suppose f(x) = Z cjx’ is a polynomial whose coefficients are p-adic inte-
Jj=0
gers and there exists a p-adic integer a( such that f(ag) =0 (mod p) and f'(a() # 0 (mod p). Then there exists
a unique p-adic integer, a such that f(a) =0 and a = a¢ (mod p).

Proof: We will aim to prove that there exists a sequence {a,}7> ; with each a, € Z satisfying the following:
1. f(an)=0 (mod p™*1)
2. a, =a,-1 (mod p")
3. 0<a,<p"!vn

One element of {1,2,...,p — 1} is congruent to ap modulo p. Call this a. A suitable a; which satisfies the above
three properties must be equivalent to ag (mod p) and exist in [0, p”*1). Therefore, this a; must be of the form
a+b1p where b €[0,p). Also, it must be so that f(a1) =0 (mod p?) satisfying property 1, above.

f(a+bip) ch(a+b1p)1
=
k
=Y (c;a +(i)c al” 1<b1p)+(2)c]af 2(b1p) +..)
0

(c;a/ + jeja’L(b1p)) (mod p?)

1l
Mw

J

1l
[=)

Il
M=

(cjal)+ Z(JCJO!J Yb1p))
0 j=0
a)+f()bip

\"T

Now, f(a) is divisible by p as f(a) = f(ag) = 0 (mod p) as assumed. So to check that f(a)+f'(a)b1p =0 (mod p?)
equates to checking if z+f'(a)b1 = 0 (mod p) for some z € {0,1,2,..., p—1}. Since f'(a) # 0 by assumption and all
nonzero elements of (Z/p)* are invertible, we can find a suitable b7 such that z + f'(a)b1 = 0 (mod p), namely
such that b1 = (—2)(f'(@)™1) (mod p). So we can set a1 = a + b1 p, satisfying the 3 conditions above.

Proceeding by induction, assume that there is a sequence {a1,a9,as,...,a,—1} satisfying the three conditions
above. We wish to find an @, = a,—1 (mod p") satisfying 0 < a,, < p”*! Vr and such that f(a,) =0 (mod p™*1).
Now,

f(@n) = f(@n-1+bnpn) = f(@n-1)+f'@n-1)b,p" =0 (mod p™*)

and since p" | f(a,_1) by assumption, any b,, satisfying the above must also satisfy w + f'(a,,_1)b, =0 (mod p)
for some w €1{0,1,2,...,p —1}. Also, f(a,-1) #0 and so we can find a b,, satisfying this equation. By the induc-
tion principle, we can find the sequence {a,}}2, for all n €N. a is the limit of this sequence and must therefore
satisfy f(a) = 0 since it satisfies f(a) =0 (mod p”) for all n e N. (I

Hensel’s lemma is constructive insofar as that it allows us not only to know whether the root of a specific

polynomial falls in Q, but it also gives us a way to construct an ongoing sequence of terms that converges to
that root.

10



One can use Hensel’s lemma to check, for example, if the polynomial x2 —5 = 0 has a solution in Qgg. If
there an ag can be found satisfying f(a¢) =0 (mod 29) and f’(ag) Z 0 (mod 29), then a solution exists. The first
condition can be checked here by verifying whether 5 is a quadratic residue modulo 29. Letting x = 11 gives
121 -5 =0 (mod 29) which is true, so ag is 11. Also, 2(11) # 0 (mod 29), so the root of x2—5 can be found in Qgg.
Continuing with the algorithm, we must now solve the congruence

(11 +29¢)2 = 5 (mod 292)
= 121+22.29t+29%t2 = 5 (mod 29%)
= 4.29+22.29¢ = 0 (mod 29%)
= 4+22¢ = 0 (mod 29)
=> 22t = 25 (mod 29)
= 4(22¢t) = 4(25) (mod 29)
=> t = 13 (mod 29)

to get £ =13 and a; =11+ 13.29 = 388, the second term in our Cauchy sequence (and second approximation in
the p-adic analogue to the Newton-Raphson method).
The next congruence should now be

(11+29.13+292¢)2 = 5 (mod 29%)
= (388 +292%)2 = 5 (mod 29%)
= 179+776¢ = 0 (mod 29)
= 5+22¢ = 0 (mod 29)
=> 22t = 24 (mod 29)
=> ¢ = 9 (mod 29)

giving t =9 and ag = 11+ 13.29 + 9.292 = 7957. The next step involves the equation

(7957 +293t)2 = 5 (mod 29%)
= 63,313,849 +15914¢.29° = 5 (mod 29%)
= 2596+ 15914¢ = 0 (mod 29)
= 15+22¢ = 0 (mod 29)
=> 22t = 14 (mod 29)
=> ¢ = 27 (mod 29)

so t =27 and a3 = 11 +13.29 + 9.29% + 27.293 = 666,460. One can continue indefinitely in this manner to
approximate the p-adic v/5 to an arbitrary accuracy.

Note that when considering the initial congruence (x? —5 = 0 (mod p)) there are two choices for x, namely
11 and 18. Indeed 182 —5 =319 = 0 (mod p). This is reflective of the fact that an nonzero element in Z/pZ will
have exactly two square roots if it has one. For assume 0 <x < p —1 is a root. Then —x = p —x (mod p) is also
a root. Using 18 in the place of 11 to generate a sequence approaching the p-adic v/5 will generate an answer
different to that above that also satisfies the polynomial:

(18+298)% = 5 (mod 292)
= 319+36.29¢t = 0 (mod 29?%)
= 11+7¢ = 0 (mod 29)
> ¢ = 25(18) (mod 29)
=> = 15 (mod 29)

and so on as before.
The above calculation becomes quite time-consuming in even the first few steps, since the integers involved

grow quickly. The Perl script in Appendix A automatically generates such a sequence of terms derived using
the algorithm of Hensel’s lemma.
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The script takes a sequence of integers ag...a,, from the command line which define a polynomial f(x) =
m

Z a;x; and requires two arguments, passed through the standard input when the user is prompted. The first
=0
grgument is the number of iterations of the algorithm (i.e. the number of terms in the Cauchy sequence to be
generated). The second is the relevant prime p whose completion we wish to check. The powerhouse behind
this script is the subroutine “cauchy_ sequence” that generates the successive b, of Hensel’s lemma. It does so
in precisely the same manner as the original calculations above and takes only the successively decrementing
scalar $iterations of the sequence as an argument. Each other variable external to the subroutine is passed
automatically by Perl and stays constant. The subroutine begins with a recursive call, checking if b,, is defined
and n # 0. If not, the argument n —1 is passed back into the function and this continues until n = 0. The scalar
$sum is unchanged in the first step and the following ‘for’ loop identifies an integer 0 < k£ < p — 1 that satisfies
f (k) =0 (mod p) and stores this integer in the first entry of the array @a. The next step is only executed once,
on the first iteration of the algorithm. It checks whether the formal criteria for Hensel’s lemma is satisfied (i.e.
f (k) is soluble mod p and the solution ag does not also satisfy the derivative of the polynomial). In the event
that these criteria are not satisfied, the script exits and returns that a root cannot be found in Q.

On successive iterations of “cauchy_ sequence”, the scalar $sum is incremented by b,_1p""! and the ‘for’
loop following this assignment checks for any b, that satisfies the equation

n-1 .
f(Y bip'+b,p™) =0 (mod p"*')
i=0
and we are guaranteed to find such a b, by the lemma. This b, is placed in the nth entry of @a. After @a
contains as many entries as the number of iterations required, the array is printed to the terminal screen.
The following is a sample output that appears on the screen:

> ./p_adic_hensel.pl -50 1

Please enter the number of iterations:

25

Please enter your prime:

29

{11, 13*2971, 9*29°2, 27%29"3, 0¥2974, 3*29°5, 27*29°6, 28%29"7, 13*29°8, 18*29"9, 8%29°10, 17*29"11,
16*29°12, 25%29°13, 0¥29°14, 20%29°15, 24%29°16, 27+29°17, 20%29°18, 26%29"19, 1¥29°20, 2*29°21, 8*+29°22,
6%29°23, 26%29°24...}

This output corroborates the sequence obtained from the workings out before the script was introduced. Note
n

that the format of the output is {ag,a1,a2...a,} where these refer to the terms of the series Z a; such that this
i=0

series, rather than printed sequence is the Cauchy sequence approaching v/5. To check the second root of the

polynomial, one can ‘comment out’ the command ‘last;’ in the 79th line of the script. Using the same input

as before, the modified script gives the following output:

{18, 15%2971, 19*29"2, 1*29°3, 28%29°4, 25*29"5, 1*2976, 0*29™7, 15*29°8, 10%29"9, 20¥29"10, 11*29"11,
12%29712, 3*29°13, 28*29°14, 8*29°15, 4*29°16, 1*29°17, 8*29"18, 2*29"19, 27%29"20, 26%29°21, 20%29°22,
22*%2923, 2%29"24...}

which was verified to the second term above. Now let’s check a more complex polynomial, f(x) = 32x7 + 3x5 +
7x2 — 1. This has a root in Q17, approximated by the output:

{13, 10%17°1, 16*17°2, 11*17°3, 11*17°4, 3*17°5, 1017°6, 7*17°7, 10*17°8, 8*17°9, 10%17°10, 8*17"11,
10¥17°12, 9%17°18, 5+17°14, 16*17°15, 151716, 12¥17°17, 1¥17°18, 16*17°19, 6*17°20, 3*17°21, 6*17°22,
16%17°23, 14*17°24, 1¥17°25, 12+17°26, 11*17°27, 8*17°28, 11¥17°29, 7¥17°30, 11*17°31, 8*17°32, 15%17°33,
13%17°34, 017°35, 01736, 1*17°37, 13*17°38, 14*17°39, 6*17°40, 6*17°41, 5*17°42, 16*17°43, 15*17°44,
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10¥17°45, 11*17°46, 16%17°47, 10¥17°48, 6*17°49...}

up to the first 50 terms obtained from Hensel’s lemma.

By entering ‘0’ when prompted to input the number of desired iterations, one can quickly check whether
a p-adic square root is contained in Q,. For example, one can check whether f(x) = x2 — 7 has roots in each
{Qp :p €{2,3,5...,97}}, to find out that

V7e Qp when p €{2,3,7,19,29,31,37,47,53,59, 83}

and not in Q, for any other prime less than 100.

5.3 The Induced Metric on Q,

Proposition: There is a natural extension of |.|, to Q, given by x € Q, = |x|p) = lim |x,|, where (xn)‘,’;’_0 is
n—oo -

a Cauchy sequence converging to x.

Proof: We need to check that this makes sense, is invariant under replacement of (x,)7., with (y,)7, where
()02 ~ (yn)7L, and that it is an extension of the previous valuation. Firstly, it must make sense since the
nlggo lxn|p exists as (x,)77 is Cauchy. Suppose that (x,)” ) 7 0 (otherwise x is 0 € Q, and this case will follow
when we prove the the other parts of the proposition). In particular, we can find £ > 0 so that |x, —0| = ¢
for all n, because otherwise 0 would be the limit of the sequence. Since (x,)7., is Cauchy, for the same
€ >0 we can find n and m sufficiently large to satisfy |x, —x,,|, < €. By the non-Archimedean property, then
|%n —%m|p < max{|x,l,|xp,|} for large enough m,n to satisfy |x;| = ¢, i = m,n. Then |x,|, = x|, for all m, n large
enough and |x,|, becomes constant. We can find the limit of an evenutally constant sequence, so the formula-

tion makes sense. Also, if x € Q, then x can be represented by the constant sequence (x)"’;’_0 and lim |x[, = [x]p,
- n—oo

so this valuation is strictly an extension (once we can prove the next aspect).
Next, suppose (x,)2, and (£,);~, are equivalent sequences. Then nlim l%n —&n|p — 0. By the reverse tri-
—00

angle inequality, lim |x, —&nlp = lim ||x,|p — |Z,],|. Then, by the Squeeze law, we get lim |x,|, = lim |&,p,
A n—oo n—oo n—oo n—oo
as required. [

This new |.|(p) (or just |.|, from now on) remains non-Archimedean. Let (x,)}2,, (y»)2, be representatives
of classes of Cauchy sequences in Q. Then,

,}Lngon”)ZO:O +(yn);o:0|p = nh—>nolo|(xn +yn)(,)lo:()|p

lim max{|(xn);Z0lp: [(yn)3Z0lp}

IA

Proposition: (Q,,d,) is a complete metric space.

Proof: Let (x,);, be a Cauchy sequence in Q,. Then, each x, = (x, ;)72 is itself a Cauchy sequence. We
need to check that for each Cauchy sequence (x,)7> , that its limit (y,)>; can be found in Q,. Since Q is dense
in Qp (by our formulation of Q, using Cauchy sequences in Q), we can find a rational number as close as we
like to the limit of any element in Q,. In particular, for each Cauchy sequence (x,,i)72, < Q, we can find a

rational number yj :| lim (x, ;) — yx|p < € for any £ > 0. For each n, then, we can let £ = % to get
1—00

1
lim | 1im (x,,;) = ynlp < lim = =0
n—oo j—oo n—oon

so that we get nlim | lim (xp,,;) = ynlp — O by the Squeeze Law. Then (y,)}2, = r}im x,. It remains to prove that
—00 1 —00 —00
(yn)32, itself is Cauchy in Q. But

7% _ymlp < max{|y, —Xn,i |p, |xn,i _xm,i|p, |xm,i _ymlp}
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and we can find N e N :
m,n>N = |yn_xn,i|p,|xn,i _xm,i|p,|xm,i_ym|p <¢

and so |y, — ymlp <€. (¥n)2, € Qp is Cauchy and Q, is complete. [

However, as Hensel’s lemma demonstrates, Q, is not algebraically closed. For any p > 2, we can take the
polynomial f(x) = x2—m and choose m to be a quadratic nonresidue modulo p. Then we can never find a y € Q »
satisfying f(y) = 0 because |f(y)l, > ’% always. Accordingly, one needs to construct a superset @p > Qp to be
able to solve arbitrary polynomials.

6 Topology of Q,

Let 7, refer to the topology induced by the p-adic metric on the space Q.

As a topological space, Q, is Hausdorff, as any metric-induced topology on a space must be Hausdorff. It
is also completely metrisable, as a the complete metric space. Since the rational numbers are both countable
and dense in the space, Q) is separable.

However Q,, is not compact which can be proven by contradiction. Fix some x € Q,. Let % = {B,(x,n) :n e N}
be an open cover for Q,. Suppose that this open cover has a finite subcover, say

{Bp(x,n1),Bp(x,n2),...,Bp(x,ns)}

Let N =max{ni,...,ns}. Now, By(x,n;) S Bp(x,N), V 0 <i <s. There exists a y € Q, such that y ¢ B,(x,N) =
d(x,y)p >N = |x—ylp, > N. Letting y =x+ 1% for j large enough that pj > N gives such a y. Thus, this y isin
none of the open sets in the finite subcover. Hence, % cannot have a finite subcover. Therefore Q, cannot be
compact and since the conditions of compactness and sequential compactness are equivalent in a space with
a metric-induced topology, Q, is not sequentially compact. It is, however, locally compact, and we will prove
that Z, is compact at the end of this chapter.

As a metric space, Q, is first countable since at any point x € Q, the neighbourhood base {B(x, %)}nel\l is
countable. Q, is also second countable using the base % = {B,(q, %) :q € Q,n eN}. However, Q, does not have
a countable number of elements. We will discuss this in relation to the Cantor set, €, later.

(Qp,7p) is disconnected. One may show this by proving that there exists a set that is both open and closed
in the metric topology. Let B, (x,¢) be an open ball. Choose some y € Q,\B,(x,¢) such that d,(x, y) = €. Choose
some § < £. We need to prove that B,(y,5) NB,(x,£) = @. Now choose some z € B,(y,0):

£ = dplx,y)

= |lx—-z+z-ylp
max{d(x - z),dp(z - y)}
max{dp(x - 2),6}
dpx—2)
= Qp\Bp(x,¢) is open = B(x,¢) is closed and thus clopen in (Q,,7,). So Q,\Bp(x,e) UBp(x,€) = Q, with
both open = @, is not connected. This also works for any subspace X of (Q,,7,) with the subspace topology,
as we can replace Q by X (or, indeed, any space with a topology induced from an Archimedean metric) in the
above argument so long as our subspace has at least three elements. Moreover, since Q, is Hausdorff, its
subspaces must be Hausdorff, so a two-point subspace must also be disconnected, following from the definition
of a Hausdorff topological space. Therefore, only the singleton sets and the empty set are connected in the
p-adic numbers. Spaces satisfying this condition are known as totally disconnected.

We deduce the cardinality of Z, by using the canonical representation of each x € Z, described prior to
Hensel’s lemma. Each sequence of natural numbers (ac,L)9Z0 with x; € [0, p) determines a p-adic integer, and,

1
moreover, all p-adic integers are of this form. Therefore, Z, has cardinality

I 1A

card(Z,) = H card([0,1,...,p))
n=0
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and to this we can juxtapose the Cantor set, 6.

To construct the (ternary) Cantor set, take the interval [0,1]. In the first step, remove (%, %) to get the
union of two disjoint intervals [0, 11U[2,1]. From each of these sets, remove the middle third as in the first
step (leaving the union of four disjoint sets [0, 21U [%, %] U [%, %] ul8,1]) and continue this process over infinitely
many steps. The Cantor set is the set of points that are not omitted in this iterative process. Intuitively, in the
first step we may choose a point in the first third or the last third of [0, 1] (call these Iy and I; respectively). If
we choose I, say, then in the second step we must choose from the first or last third of that interval (call these
Igo and Iy, respectively). Continuing this process, we see that the Cantor set may be formed from the set of
all sequences (x,,);2, with each x; € {0,1} (i.e. the set of all right-infinite binary expansions). Its cardinality
therefore is given by

(e 0]

card(€) = [ card({0,1}) = 2¢ard™ — 9%

n=1
since card(N) = X, the cardinality of countably infinite sets. Using Cantor’s diagonal argument on the set of
real numbers expressed in binary, rather than decimal, terms, we find that card(R) = 2% =card(%) and that
the Cantor set has the cardinality of the continuum. Returning to the p-adic integers, we have from above that
each p-adic integer is determined by a sequence (x,);_; with each x; € [0, p) and so card(Z,) = PN =Ry, again
by Cantor’s diagonal argument applied to the real numbers represented by their p-nary expansion. Thus, the
Cantor set €, the reals R and the p-adic integers Z,, are equinumerous. As discussed briefly after the theorem
regarding canonical representation of the p-adic integers, we can express any x € Q,\Z,, in canonical form by
representing xp’ € Z p and then dividing each term by p' to get a number in the form

(o]
Z anp"
n=-i
where the a, are chosen from [0, p) for n € [-i,00). Using this construction, it is clear the cardinality of Q, is
also that of the continuum, as we have a countable number of choices for .
In fact, the p-adic integers are homeomorphic to the Cantor set as, if they are compactified by the addition

of a single point (through Alexandroff compactification), are the p-adic numbers. The following proposition
shows this explicitly for p = 2.

Proposition: Let (Z2,d2) be the set {x € Qg : |x]|g < 1} of 2-adic integers with the metric topology induced
from the 2-adic valuation and let (¥¢,d,) be the Cantor set with the metric topology induced from the Eu-
clidean norm. These two topological spaces are homeomorphic.

Proof: The elements of each of these sets can be denoted by sequences (x,);_, with each x; € {0, 1}. In particu-

(o]
lar, each 2-adic integer can be represented in canonical form as Z x,2" with x; € {0,1} so this sequence is well

n
defined. If two sequences in this representation, (x,)7_, and (y,);_,, differ in the jth term and no other term
before j, the distance between them is

=9/
2

[e.]
Y G —yp)2"
k=)

d2((60)2 0, (n)220) =

since the difference of the two numbers is divisible by 2/ and not divisible by any higher power of 2.
If two elements of the Cantor set under this representation differ in the jth term but no earlier term, then
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the distance between them

S 2(xr — yr)
R T
i 2(xp — yr)
= T
o0
2
= ) —
Az 10
i 2 X 2
im0 10% 557,10
- z(L)J‘l
9 \10

is bounded above.

We can define a bijection ¢ : € — Z3 such that ¢ sends an element determined by the sequence (x,)}2,
in the Cantor set to the element determined by the same sequence in Zy. Since each element of each set
is uniquely expressible in this way, this mapping is clearly a bijection. We prove that it is also continuous
using the metric definition of continuity. Fix some x € €. Given an ¢ > 0, we can find a j € N such that

2-U+D « ¢ <277, We can choose 6 = % (1—10)1 so that

[ = Y]oo <6 = |p(x)—p(y)l2 <€

for any y € €. In particular, this § implies that x and y have at least the first j+1 terms of their representative
sequences in common, forcing da(x,y) < 27U*D < ¢. Since this holds for any £ >0 and y € €, ¢ is continuous.
To prove o179 — %, the inverse of ¢ is continuous, fix some x € Z. Given any ¢, we can find a j € N such
that 2 (1—10)1 <e<i (1_10)1—1_ We can choose 6 = 27U*D g0 that
=yl2 <6 = o7 @ -9 " Wlo <

is true. So (p_l is continuous and, thus ¢ is a continuous, bijective map from (€, d) to (Zg,d2), with a contin-
uous inverse. Therefore ¢ is a homeomorphism. []

Corollary: 7, is compact and Q,, is locally compact.

Proof: Z, is homeomorphic to 6. Since € is a bounded, closed subset of Euclidean space, it is compact
(by the Heine-Borel theorem). Therefore Z, is compact and, as Z, is a compact neighbourhood of 0, @, is
locally compact. [

7 Generalisations of the p-adic Valuation to Principal Ideal Do-
mains

Definition: A principal ideal domain (PID) is an integral domain in which every ideal has a single generating
element.

Definition:A unique factorisation domain (UFD) is an integral domain in which every ideal can be factorised
as the product of prime ideals. Recall that a prime ideal of a ring R is an ideal p # R such thatabep = aep
or b ep for a,b € R. Every principal ideal domain is a unique factorisation domain.

Example: The Fundamental Theorem of Arithmetic is a symptom of the integers forming a principal ideal
domain as every integer can be uniquely factorised, up to multiplication by a unit, as the product of primes,

each of which generates an ideal. Given an integer u pil pgz pg?’ ...p3" where (p; are distinct primes, u € {+1} is
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n
a unit and e; € N), we can uniquely identify the integer as the element of ﬂ (p;)¢" (where (pp) is the prime
i=1
ideal generated by p;) that is not in any other prime ideals but those in this intersection.

Definition: Given an integral domain D, one can construct a field
K={"L.r,ra#0eD)
ry

called the field of fractions of D. More strictly, we should talk about equivalence classes of such elements and

set ,
r r
—1 ~ —,1 @7‘17"2 =r'1r2
ro 7‘2
to avoid repetitively adding equivalent elements to the field. This is the smallest field containing D, as it is

generated by adding the set {r~! : r € D} of multiplicative inverses of elements in D.

The construction of a field of fractions gives rise to algebraic structures called fractional ideals of D. Consid-
ering K as a module over D, we can choose a nonzero submodule M < K such that for some D>r#0,rM < D.
Then M is called a fractional ideal of D. A fractional ideal M is called invertible if there exists another frac-
tional ideal M ! such that MM~ = D where the product MM ! is understood to be {mim | +momy+...mom),
m;eM ,m; e M1}, M1 is called the inverse of M. Trivially, every ideal is also a fractional ideal and every
fractional ideal is finitely generated over D as

rM=R = r’''rM=r"'R = M=r"'R
and so M is generated by 1.

Example: The rationals are the field of fractions obtained from the integers. Let % be the generator of a
submodule M, of @ over Z. This submodule consists of elements of the form % where z is any integer. This
submodule is a fractional ideal of Z since ¢M, < Z.

Proposition: The set of fractional ideals, &, of a principal ideal domain D forms an Abelian group under
multiplication. In particular, for each fractional ideal M c K, 3 M~! c K, the inverse of M in this group.

Proof: Firstly, we have D as the identity element of the group & of fractional ideals, as MD = M for any
M € & since M as a module over D consists of linear combinations of elements in D and thus remains un-
changed under multiplication. The proof of existence of inverses follows from the proof that each prime ideal
p has an inverse because any principal ideal domain is also a unique factorisation domain. We need to find
a fractional ideal p~! : pp~!1 =D. Let I = {r € K : rp < D}. Since p € p implies that pI < D, I is certainly a
fractional ideal and p € I. But pI <D and since D is a UFD, p is a maximal ideal of D (since it is prime), either
p=TIorpl =D. Suppose p =1I. Then since 1€ 1,1 =p =D, the identity. So pI =D and I = p~! and, by extension,
every non-zero ideal, .# of D has an inverse, composed of the inverses of the prime ideals whose product is .#.
If M is a fractional ideal over D, then 3anr €D :rM < D. But since M is a module rM is closed under addition
and multiplication by elements of D. Therefore rM is an ideal. 3 a fractional ideal I : I(rM)=D. But Ir =1 as
I'is a D-module. So IM =D and I = M 1. Finally, & is closed as the product of any finitely generated modules
is finitely generated. & is an Abelian group. [

Lemma: (Unique Factorisation of Fractional Ideals) If D is a principal ideal domain and M a frac-
tional ideal over D, then M is uniquely expressible as the product of positive and negative powers of prime
ideals of D.

k n

Proof: Let M be a fractional ideal of D. Then rM < D is an ideal of D and we can say rM = H QM = H p; for
i=0 i=0
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p; and q; prime ideals and unique up to order (by unique factorisation) with latter determined by r. Multiply-

n k
ing across by 71, we get M = [ p; [ q; %, as required. O

i=0 =0
We can use this factorisation of fractional ideals to extend the theory of p-adic analysis on the rationals to
p-adic analysis on any principal ideal domain, D, where p is a non-zero prime ideal of D. Given a principal
ideal domain D, with its field of fractions denoted by K, and a prime ideal p of D, we can establish a p-adic
metric on D as follows: for each 0 # x € K, xD is a fractional ideal of D and so is uniquely expressible as a
product of powers of prime ideals l_[ p‘zi with pg # pp, if m #k and e; € Z. For our chosen prime ideal p, we

lesd
define

|x|p — k—Ordp(x)

where 1 < k € Ris a real number and ordy(x) is the power of p in the product above. For x = 0, we let ord,(x) = co
so that |x|, = 0. If D is a domain of real numbers, we may choose k£ = p where p = (p) for clarity, but this is not
necessary. Moreover, the same principle applies to the case of the rationals, but only the case where & = p was
discussed in the opening chapters of this project.

Proposition: |.|, determines a non-Archimedean valuation on the field K.

Proof: The first property of a valuation follows from our choice of £ > 1 and the definition of ord,(x) and
the second follows from defining ord;(0) = oco.

To prove Ehe third property, choose x and y € K. Now, xD as a fractional ideal can be represented as the
product H pixi of integral powers of prime ideals indexed by a set &/ and yD can be represented similarly as

e
I1 pfyi. Now,
ied +
xyD =xDyD = H pfi?xi pr’i — l—[ pjxi ey;
€A i€sd

and so, for a fixed prime ideal p;,

— k—ordpi(xy) — k_(exi +ey;

lxylp, )= |2y, 1¥]p;

proving the third property.

The non-Archimedean property, and by extension, the triangle inequality holds for |.|, for if x,y € K with
lxlp < |ylp, then ordy(x) = ordy(y). So, for some integers m = n, x € p™ and y € p”. Now, x € p™ also and therefore
(x+y)ep™. Soordy(x+y)=n = |x+ylp, k™" =|yly = max{|x|y,|ylp} and |.| : K — [0,00) is a non-Archimedean
valuation. [

As (K, |.|p) is a field imbued with a non-Archimedean valuation, it is known as a non-Archimedean field.
For x,y € K, we can induce ametric from the above valuation, such that the distance, dy(x,y), between them is
said to be small if (x—y) € p’ for a large j. This metric yields a completion K, of K. The set R ={x € K, : |x|, =1}
is known as the valuation ring of (K,|.|p).

7.1 Hensel’s Lemma in the General Case

Definition: Let D[x]> f(x) = Z a;x' be a polynomial with coefficients in D. Then the formal derivative f'(x)
i=0

n .
is defined as Z iaix’_l where ir=(G—1)r+rforreD and 1<ieN.

i=1
Theorem: (Extending Hensel’s Lemma) Let K, be a non-Archimedean field complete with respect to p,
a non-zero prime ideal of Dy, the valuation ring of K. If f(x) € Dylx], with f'(x) its formal derivative, and
ro € Dy satisfies

IF(ro)lp <If'(ro)?lp
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then there exists a sequence (r1);2 , and an element 7 € K, satisfying

F=limr;,1= hm (r fri) )
i—oo * YOy
and f(7)=0.

Proof: As in the specific case of Hensel's lemma with K, = Q,, we need to establish the existence of a
sequence for which the following holds:

@ If'Tdlp =1f"(roly

f(ry)
(ll) ‘f’(r )2 = f/(rO)Z p
. f(ro)
(iii) |r; =rolp = | 772 ,

with each r; € Dy.
These conditions hold for i = 0. We prove the rest by way of induction. Firstly,

f@r:) f(ro) |* —f(ry) fro) %

'y
f’(’“i)2 » = f’(r‘o)2 » £(ri) » = f/(ro)z » |f (rl)|P
’ f,((ro))z < 1 by assumption, so for i > 1,
—f(ri) oo
7 ly <17
which implies that |f'(r;+1)lp = |f'(r)lp = 1f'(ro)lp since Taylor’s formula shows
I N gl __f("i)_, N f(ri)

frisn)=f(r; f’(ri))_f (ri) 6f’(rl)

for some 6 € D, and the non-Archimedean valuation |.|, gives
' / AU
If (rivDlp <max{|f (r))ly, |6 Fry) )1, Y=1'r )l
and f( )
|fl(7‘i)|p 5maX{|f,("i+1)|p,‘ f, & }_ If' (ri+1lp
s 100> 23] =100 23]
Next, Taylor’s formula also gives
e LD f(ri) (—ﬂnqz
flris)=f({r; (r ) =|f(ri)- f( z)f,( D 1))
with € € Dy. The term in brackets evaluates to zero, giving
| (FeDy? -fr)?
il = E(f«m)) ps'(f«m)) ,

as |elp < 1. Dividing across the inequality by |f’ (ris1)?l p yields

< (—fOan%rn)Z
a f'(riv1)

f(riv1)
f’(ri+l)2 P

p
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and by using our previous result

frien) | _ (_f(f‘i)/fl(ri))2 _| fro) P
f'(riz1)? P - f'(ry) o T f(ro)? P
: : N £aro) |24 o foro) | o fro) :
by induction. Lastly, |r;+1 —7;lp < Fro? , |f (ro)‘p < 7102 |, since |f’(r0)2 . <1 and since
f(ro)
|[riv1—ri+ri—rolp <maxi{|rj.1—r;lp,lri —rol }<‘
i+ i i P i+ ilps Il P f’(ro)Z .
the third condition holds.
Putting these results together, we can show that
. L fri) ) %, B
iliglolriﬂ ~rily = ill%lo‘_f’(ri) p B zlrgo f(r)2 p if (ri)|P =0

so (r);2, is Cauchy and approaches a limit 7 € Dy, since Ky, is complete and |r;|, <1 for all i. Also,

f(ro)

f’("o)Q

2i
£ = im If(ro)ly < lim £l -

P
as |f'(r;)lp is constant. (]

Example: (I') Let I' = Z(i) = {a + bi : a,b € Z} denote the set of Gaussian integers and Q(i) = {a + bi :a,b € Q} be
its field of fractions. Define the Gaussian norm to be the map N(x) = xx. Let it be assumed (without proof) that
the Gaussian integers are a principal ideal domain and that all primes are of the form of one of the following:

(i) a+bi with 6=3 (mod 4) anda=0
(ii) a+bi with a =3 (mod 4) and b =0
(iii) @+ bi with a #b #0 and a® + b2 = p where p is a prime in Z

and that anything of the above form is a prime. Then p =2 + 3i is a prime in the Gaussian integers and there
exists a completion Q(i), of Q(i) with respect to |.|,. Given a polynomial, say f(x) = x2+1+3i, over Z(i), we
can find out if this polynomial has a solution in Z(i), = {x € Qi) : Ix|p < 1}, the valuation ring of Q(i),.

By Hensel’s lemma, this amounts to finding an r¢ € Z[i], such that

Ir2 +1+3ily, < [2ro)?l,
and rg = 1 is clearly a suitable choice as
¢ =117+ 1+38il, <22, =1

for some ¢ > 1. Applying the next step

=1 fQ)
1=1-——=
')
we get rq = —%i. The next step gives
3. -2+1+3i 13
re=——i-— - =1-—i
2 -3i 12

and continuing in this way, we may get as close as we like to some r € Z[i],, satisfying f(r) = 0. We can
check this, by looking at f(ry) = —% +1+3i = _5+T12i = %3”2. Since (2+3i) 14, |f(r)lp = ¢2. Similarly,
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Flro)=(1—-18)2 4 148; = 181200 _ @437 414 again, since (2+3i)} 144, [ (r)lp = ¢ .

Example: (Z(v/3)) We claim that Z(v/3) is a unique factorisation domain. This follows from proving that
Euclid’s algorithm is applicable to the domain. Firstly, we introduce a norm function

N:2(V3)—Z
such that
N (a+bV3)=a?-3b>
with a, b € Z. Now, given any a, b € Z(v/3), 7 =x+ yv3 with x, y € Q. There exist m, n € Z with
| I, | < 1
x—ml,|ly—n|l< =
Y 2

and so: 3
1 SJV(%—m—n\/§)=(x—m)2—3(y—n)25

| =

and we get
W(%—m—n\/g)) <1

and setting ¢ = m +nv/3, this shows that
[A(a—bg)| < |A(b)|

proving that Z(v/3) is a Euclidean domain and hence a UFD.

V3 is prime in Z(v/3) and so we obtain a completion, Q(v/3) 3 of the field of fractions with respect to the V/3-
adic metric. Let £(x) = V3 +(2v3 +4)x +6x2 + x° be a polynomial whose coefficients all lie in the valuation ring
of this completion. Now |f(ro)l s < |f'(ro)?| 5 is satisfied for ro = 0 since v/3|£(0) = v3 and V31 '(0) =2V3 +4.
This is true since v3{(1+v3)3(vV3-1)=4(v/3+2) and A/(2+v3)=1 = 2+ /3 is a unit. Therefore we can
apply Hensel’s lemma to find a convergent sequence

AGUY)
f'(ri)

(rp)ylo—r:iris1=r;

and f(r)=0.
The first step gives
8v3+24  5/3+18

143413 14v3+13

ri=

and reiterating gives

5V3+18 [144+69V3 , 2394+ 10803 L 7182+ 19953
ro = -
2T 14v3+13 | 14V3+13  757+364v3 10598 +2785v/3

and so on.

As in the case of Q, successive iterations of the sequence constructed in Hensel’s lemma can become time
consuming to work out. To deal with this I devised a Perl script (with three supplement modules) to extend
p-adic analysis to the case of I'. One possible method to have done this would have used Perl’s Math: : Complex
module, however, the representations of rationals as decimals would have been unsuited to the situation, as
the aim of the code should be to provide insight into Hensel’s lemma, rather than generate approximants to
real roots of polynomials. To ensure that the algorithm remains accurate in the rationals (i.e % is never rep-

3333..333 ) there are three modules to accompany the main script: polynomial.pm, complex.pm

resented as 10000-000
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and rational.pm.

rational.pm overloads the operations of +,-,/,* and "" to represent numbers in their numerator-denominator
fashion, rather than that of a decimal. It includes a new class, created with the command new rational (numerator,
denominator). The operations are overloaded in the obvious way, with "" interpretting a rational to be

" (numerator/denominator)" for passing to print, except in the case that the numerator is 0 (returns "0")

or the denominator is 1 (returns "denominator". A gcd() function is also included and used with the arith-
metic operators to keep a rational in its lowest terms.

complex.pm overloads the above operators for complex numbers and includes a class initialised with new
complex(real,imaginary). "" now interprets an object of this class as "real+imaginary*i". It also in-
cludes pow (number , power), an exponentiation function (n.b. this can only be used if the real and imaginary
coefficients are rationals from the above package) and a norm() function that returns the product of a Gaus-
sian rational with its conjugate.

polynomial.pm contains functions f (coefficients, x) and f_derivative

(coefficients, x) that evaluates a polynomial determined by coefficents for a value x. It also, perhaps
unsuited to its name, contains a function extract() that takes a complex rational § + 7i as its argument
and returns an array of the values (a, b, c, d). The final, and most ad hoc, function in polynomial.pm is
prime_valuation. This function takes a complex number and a Gaussian prime as its arguments and returns
ord,(numerator) — ord,(denominator) where p is the prime in question. This is used to check the prerequisite
condition of Hensel’s lemma.

The main script takes the arguments determining the polynomial from the command line. It requires an
argument of the form:

ai,az,as,aq b1,b2,03,b4...
where the corresponding polynomial is

aip as.
_+_
as a4

b1 b3,
+ b2+b4z)x...

and so on. The user is then prompted to input a number in the form a,b (corresponding to a + bi), which is
checked for primality in I', using the same criteria in the example above. If the number passes the test, the
user is prompted for a number of the form a,b,c,d (corresponding to % + %i) as an approximate root to the
polynomial. The condition of Hensel’s lemma is checked and, if the root is suitable, the user is prompted for
the number of desired iterations and the Cauchy sequence constructed in Hensel’s lemma is generated to that
number of iterations. The sequence is then printed to the screen.

Using the example from above, the programme outputs:
>./hensel_gaussian.pl 1,1,3,1 0,1,0,1 1,1,0,1

Please enter a Gaussian prime (in the form ‘a,b’ where the prime is a+bi):
2,3

Please enter an approximate root of the polynomial [(a,b,c,d)]

1,1,0,1

A root exists!

How many iterations?

5

0+(-3/2)*i
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1+(-13/12)*i

(637/626)+(-11125/7512)*i
(757378333/728785444)+(-12615897541/8745425328)*i
(2011034665637538323965/1934099440191212213576)
+(-33481935359877638316133/23209193282294546562912)*i

and this corroborates the sequence obtained by hand above. With increasing iterations, the lines of output
become quite long and difficult to deal to read, so the number of iterations should be kept small.

8 Conclusion

I will conclude with some closing remarks regarding important topics that were not touched upon in this
project.

As Hensel’s lemma showed, Q,, though complete, is not an algebraically closed field. However, such a
field can be obtained from adding the roots of polynomials with p-adic coefficients and we can extend the
non-Archimedean valuation |.|, to the closure, @p of Q, by extending it individually to finite field extensions.
Suppose Q,(7) is one such extension. Then we define a mapping v: Q,(7) — Q, using any of the three following
formulations (p. 60, Koblitz [3]):

(i) Let A:Qp(1) — Qp(7) be the Qp-linear map given by Ax = 7x. Then v(7) = det(A).

(ii) v(r)=(-1)"a, where n is the degree of the monic polynomial that 7 satisfies and a, € Q, is the constant
term of this polynomial.

n
>1ii) v(r)= H 7; where each 7; is a conjugate of 71 =7 over Q.
i=1

We may then set ||x||, = [v(x)|, for x € @p and check the necessary details to show that the resulting valuation
is a well-defined, non-Archimedean extension of |.|,. After extending this valuation to the whole of @p and
using it to complete the field, we obtain a complete and algebraically closed field, Q,, the p-adic analogue of
the complex numbers.

The Hasse-Minowski principle, which applies to certain families of polynomials, such as quadratic forms,
states that suitable polynomials are solvable over the rational numbers if and only if they are solvable in Q,
for each prime p as well as R. This principle is also known as the local-global principle because it suggests that
local structures (i.e. the completions) give insight into global structures like Q and its quadratic extensions.

As a last note, I would like to express my sincere thanks to my supervisor, Dr. David Wilkins, who has
been immeasurably helpful in providing direction, discussion and food for thought throughout the course of
the project.
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A Code for Hensel’s Lemma

#! /usr/bin/perl
use warnings;
use bignum;

use strict;

#iH#

# A program applying Hensel’s lemma to determine

# whether the square root of

# a number lies in the p-adic completion of the rational numbers.
i

our $polynomial_degree = $#ARGV;
our Qa;

my $i;

our $sum = 0;

my $m;

my $q = 0;

print "Please enter number of iterations:\n";
our $iterations = <STDIN>;
chomp($iterations);

unless ($iterations =~ /~[+-]17\d+$/ )

{

print "This is not a number!\n";

exit;

}

print "Please enter your prime:\n";
our $prime = <STDIN>;
chomp($prime);

unless ($prime =~ /~[+-17\d+$/ )

{

print "This is not a number!\n";
exit;

}

&cauchy_sequence($iterations);

print "{($al0]";
for($i=1; $i< $iterations; $i++)
{
print "), ";
if($q >= 10)
{
print "\n";
$q = 03
}
for($m = 0; $m <= $i; $m++)
{
if($m !'= 0)
{
print "$a[$m]*$prime~$m";
if($m 1= $i)
{
print " + ";
T
}
else
{
print "($al$m] + ";
}
$q++;
¥
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}
print ")...}\n";

sub cauchy_sequence
{

my $k;

my $j;

my $n = 0;

if ((not defined($al[$_[0]1)) && ($_[0] != 0))
{
&cauchy_sequence($_[0]1-1);

}
unless($_[0] == 0)
{
$sum += $al$_[0]-11*($primex*($_[0]1-1));
}

for($k=0; $k < $prime; $k++)

{

my $supersum = 0;

for($n = 0; $n < $polynomial_degree +1; ++$n)

{

$supersum += $ARGV[$n]*($sum + $k*$prime**$_[0])**$n;
}

if ($supersumy, ($prime**($_[0]+1)) == 0)
{

$al$_[01] = $k;

last;

}
}

if(not defined $a[0])

{

print "The root of the polynomial is not in the
$prime-adic completion of the rationals.\n";
exit;

}
}
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#! /usr/bin/perl

#Hith

# A program to check Hensel’s lemma for the field of
# fractions of the Gaussian integers

# and generate the corresponding Cauchy sequence

#Hith

use strict;

use warnings;
use rational;
use polynomial;
use complex;
use bignum;

my Qa;
my @b;

for(my $k = 0; $k <= $#ARGV; $k++)

{

@a = (split/,/, $ARGV[$k1);
if(scalar(Qa) != 4)

{
print "Invalid polynomial format\n";
exit;

}

push (@b, new complex(new rational($al[0],$al1]),
new rational($al[2],%$al3]1)));

}

my @prime_array;
my $instring;
my $real_part;
my $imag_part;
my $check;

my $i;

my $3j;

my Qarray;

print "Please enter a Gaussian prime (in the form
’a,b’ where the prime is a+bi):\n";
while(not defined($check))
{
$instring = <STDIN>;
chomp ($instring) ;
Qprime_array = split(/,/, $instring);
if(scalar(@prime_array != 2))
{
print "Please enter a number in the form specified!\n";
¥
else
{
$check++;
¥
}

$real_part = $prime_array[0];
$imag_part = $prime_array[1];

unless($real_part =~ /~[+-17\d+$/ && $imag_part =~ /~[+-]17\d+$/)
{
print "Non-numerical entry\n" and die $!;

}
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if($imag_part != 0 && $real_part !'= 0)
{
$check = $real_partx$real_part + $imag part*$imag_part;
if (&check_prime($check) != 1)
{
print "Number is not prime!\n";
exit;
¥
}
elsif($imag_part == 0 && (abs($real_part)i4 == 3) &&
&check_prime(abs($real_part)))
{
}
elsif ($real_part == O && (abs($imag _part)%4 == 3) &&
&check_prime(abs($imag_part)))
{
}
else
{
print "Number is not prime!\n";
exit;

}

my $prime = new complex(new rational($real_part,1),
nev rational($imag_part,1));

$check = 0;
while($check == 0 )
{

print "Please enter an approximate root of the polynomial [(a,b,c,d)]\n";
our $root = <STDIN>;

chomp ($root);

Qarray = split(/,/, $root);

if(scalar(@array != 4))

{

print "Please enter number in the form specified!\n";

¥

else

{

$check++;

¥
}
our $root = new complex(new rational($array[0],$array([1]),
new rational($array[2],$array[3]));

if ((polynomial::prime_valuation(
polynomial::f(@b, $root), $prime)) >
(polynomial: :prime_valuation
(complex: :pow(polynomial::f_derivative(@b, $root),2), $prime)))
{

print "A root exists!\n";

}

else

{

print "A root may not exist\n";
exit;

}

my @sequence;

print "How many iterations?\n";

my $iterations = <STDIN>;

chomp($iterations);

$root = new complex(new rational($array[0],$array[1]),
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new rational($array[2],$array[3]1));
for($i = 0; $i < $iterations; $i++)

{

$root = $root - polynomial::f(@b, $root)/
polynomial::f_derivative(@b, $root);

push (@sequence, $root);

}

foreach(@sequence)
{

print "$_\n";

}

sub check_prime
{
for($i = 0; $i <= $_[0]; $i++)
{
push(@array, $i)
¥

for($i = 2; $i <= sqrt($_[0]); $i++)
{
unless($array[$i] = 0)
{
for($j = 1; $ix$j <= $_[0]; $j++)
{
$array[$i*$j] = 0;
¥
}
¥
if($array[$_[01] == 0)
{
return 0;
¥
else
{
return 1;

}



#! /usr/bin/perl
use strict;

use warnings;
use bignum;

# A package to represent rational numbers
package rational;

sub new {

my $class = shift;

my $number =

{
_numerator => shift,
_denominator => shift,

};
bless $number, $class;
}
sub ged {
my $a;
my $b;
if (abs($_[0]) > abs($_[1]1))
1{
$a = abs($_[01);
$b = abs($_[11);
¥
elsif(abs($_[1]) > abs($_[01))
{
$a = abs($_[11);
$b = abs($_[01);
¥
else
{
return abs($_[0]);
¥
if($b == 0)
{
return 0;
}
while($b !'= 0)
{
($b, $a) = ($a % $b, $b);
}
return $a;
¥

sub as_string {
if($_[0]{_numerator} == 0)

{

return "0";

}

if($_[0]{_denominator} == 1)
{

return "$_[0]{_numerator}";
}

my $numerator = $_[0]{_numeratorl}/
&gcd($_[0]{_numerator}, $_[0]{_denominator});
my $denominator = $_[0]{_denominator}/
&gcd($_[0]{_numerator}, $_[0]{_denominator});
return "($numerator/$denominator)";

}

use overload (’""? => ’as_string’);
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sub add_rational {

my $denominator = $_[0]{_denominator}*$_[1]{_denominator};
my $numerator = $_[0]{_denominator}*$_[1]1{_numerator} +
$_[1]{_denominator}*$_[0]{_numerator};

if (&gcd($numerator, $denominator) != 0)
{
return new rational($numerator/&gcd($numerator, $denominator),
$denominator/&ged ($numerator, $denominator));
}
else
{
return new rational(0,1);
}
}

use overload (’+’ => ’add_rational?’);

sub subtract_rational {
my $denominator = $_[0]{_denominator}*$_[1]{_denominator};
my $numerator = $_[1]{_denominator}*$_[0]{_numerator}-
$_[0]{_denominator}*$_[1]{_numerator};
unless(&gcd($numerator, $denominator) == 0)
1{
return new rational($numerator/&gcd($numerator, $denominator),
$denominator/&ged ($numerator, $denominator));
¥
else
{
return new rational(0,1);
¥
}

use overload (’-’ => ’subtract_rational’);

sub divide_rational {

my $numerator = $_[0]{_numerator}*$_[1]{_denominator};
my $denominator = $_[1]{_numerator}*$_[0]{_denominator};
return new rational($numerator, $denominator);

}
use overload(’/’ => ’divide_rational’);

sub multiply_rational {
my $numerator = $_[0]{_numerator}+$_[1]{_numeratorl};
my $denominator = $_[1]{_denominator}*$_[0]{_denominator };
unless(&gcd ($numerator, $denominator) == 0)
{
return new rational($numerator/&gcd($numerator, $denominator),
$denominator/&ged ($numerator, $denominator));
¥
else
{
return new rational(0,1);
¥
}

use overload (’*’ => ’multiply_rational’);

sub pow {
my $product = new rational(l,1);
for(my $i = 0; $i < $_[1]; $i++)
{

$product = $product*$_[0];

¥
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return $product;

}

sub extract_integers {

return ($_[0]{_numerator}, $_[0]{_denominator});
}

1
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# /usr/bin/perl

us
us

# A package to represent complex numbers

e strict;
e warnings;

package complex;

sub new

{

my $class = shift;
my $number =

{

_real => shift,
_imag => shift,

} .

>

bless $number, $class;

}

sub complex_string {

my $real = $_[0]{_real};
my $imag = $_[01{_imag};
return "$real+$imag*i”;

}

use overload (°""’ => ’complex_string’);

sub add_complex {

return new complex($_[0]{_real} + $_[1]1{_reall,

$_
}

use overload (’+’ => ’add_complex’);

[0]{_imag} + $_[1]1{_imagl} );

sub subtract_complex {

return new complex($_[0]{_real} - $_[1]1{_reall},

$_
}

use overload (’-’ => ’subtract_complex’);

[0]1{_imag} - $_[1]1{_imagl} );

sub multiply_complex {

return new complex(($_[0]1{_reall}*$_[1]1{_real} -

$

[0]{_imag}*$_[11{_imag}),

($_[01{_real}*$_[1]1{_imag}+$_[1]1{_reall}*$_[01{_imag}));

}

use overload (’*’ => ’multiply_complex’);

sub divide_complex {

return new complex(

($_[0]{_real}*$_[1]1{_reall)/

($_[11{_real}*$_[11{_real} + $_[1]1{_imag}*$_[11{_imag})

($_[0]{_imag}*$_[1]1{_imag})/

($_[11{_real}*$_[11{_real} + $_[1]{_imag}+$_[11{_imag})

($_[0]{_imag}*$_[1]1{_real})/

($_[11{_real}*$_[11{_real} + $_[11{_imag}*$_[11{_imag})

($_[1]1{_imag}*$_[0]{_real})/

($_[11{_real}*$_[1]1{_real} + $_[1]1{_imag}r*$_[1]1{_imag})
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use overload (’/’ => ’divide_complex’);

sub pow {
my $product = new complex(new rational(l,1) , new rational(0,1));
for(my $i = 0; $i < $_[11; $i++)

{
$product = $product*$_[0];
¥
return $product;
}

sub extract_rationals {
return($_[01{_real}, $_[0]1{_imagl});
}

sub norm {

$_[0]{_real}*$_[0]{_real} + $_[0]{_imag}*$_[0]{_imag};
}

1;

# /usr/bin/perl
#A package to check values of polynomials

use warnings;
use strict;
use bignum;

package polynomial;

sub £ {
my $sum = new complex(new rational(0 , 1), new rational(0 , 1));
for(my $i = 0; $i < scalar(@.) -1; $i++)
{
$sum += complex::pow($_[scalar(@_)-1]1 , $i)*$_[$il;
¥
return $sum;

}

sub f_derivative {
my $sum = new complex(new rational(0 , 1), new rational(0 , 1));
for(my $i = 1; $i < scalar(@_) -1; $i++)
{
$sum += complex::pow($_[scalar(@_)-1] , $i-1)*$_[$i]
*(new complex(new rational($i,1), new rational(0,1)));
¥
return $sum;

}

sub extract {
my Qa;
my Qc;
Qa = complex::extract_rationals($_[0]);
foreach(@a)
{
push(@c, rational::extract_integers($_));
}
return Qc;

}

sub prime_valuation {
my $upstairs_count = 0;

my $downstairs_count 0;
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our Qtemparray = &extract($_[0]);
my $upstairs = new complex(new rational
($temparray [0] *$temparray[3],1),

new rational($temparray[2]*$temparray[1],1));
my $downstairs = new complex(new rational
($temparray[1]*$temparray[3],1),

0, 1);

$upstairs = $upstairs/$_[1];

Qtemparray = extract($upstairs);
while($temparray[1] == 1 && $temparray[3] == 1)
{

$upstairs = $upstairs/$_[1];

Qtemparray = extract($upstairs);
$upstairs_count++;

}

$downstairs = $downstairs/$_[1];

@temparray = &extract($downstairs);
while($temparray[1] == 1 && $temparray[3] == 1)
{

$downstairs = $downstairs/$_[1];

@temparray = &extract($downstairs);
$downstairs_count++;

}

return $upstairs_count - $downstairs_count;

}

sub valuation {

my $check = complex::norm($_[01);

our Q@temparray = rational::extract_integers($check);
print complex::norm($_[01);

my $valuation = -1;

while($temparray[1] == 1)

{

$check = $check/complex: :norm($_[1]);
$valuation++;

Qtemparray = rational::extract_integers($check);
}

return $valuation;

}
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