§1. Introduction.

For a connected space M, let $F(M,d)$ be the space of ordered configurations of d distinct points in M, which is defined by

$$F(M,d) = \{(x_1, \cdots, x_d) \in M^d : x_i \neq x_j \text{ if } i \neq j \}.$$

Let Σ_d be the symmetric group of d letters $\{1, 2, \cdots, d\}$. Σ_d acts on $F(M,d)$ freely in the usual manner. The orbit space

$$C_d(M) = F(M,d)/\Sigma_d$$

is called the space of configurations of d distinct points in M. In this paper we shall assume that M is an open manifold, i.e. each component is non-compact and without boundary. Adding a point near one of the ends of M gives (up to homotopy) a stabilization map

$$j_d : C_d(M) \rightarrow C_{d+1}(M).$$

The following is well-known:

Theorem 0 ([Se]).

If M is an open manifold, then the stabilization map $j_d : C_d(M) \rightarrow C_{d+1}(M)$ is a homology equivalence up to dimension $[d/2]$. □

(We shall call a map $f : X \rightarrow Y$ a homology equivalence up to dimension m if the induced homomorphism

$$f_* : H_i(X,\mathbb{Z}) \rightarrow H_i(Y,\mathbb{Z})$$

is bijective when $i < m$ and surjective when $i = m$.)

Remarks. Various special cases of this result were known earlier. For example:

1. Let $M = \mathbb{R}^q$ ($q > 2$). Then $\lim_{q \to \infty} C_d(\mathbb{R}^q) = K(\Sigma_d, 1)$. The homology stabilization of the maps $K(\Sigma_d, 1) \rightarrow K(\Sigma_{d+1}, 1)$ follows from work of Nakaoka ([Na]). This also follows from Theorem 0.

2. Let $M = \mathbb{R}^2$. Then $C_d(M) = K(\text{Br}_d, 1)$. The statement of Theorem 0 in this case was proved by Arnold ([A]).
Let \(\tilde{C}_d(M) = F(M,d)/A_d \), where \(A_d \subset \Sigma_d \) is the alternating group of \(d \) letters \(\{1, \cdots , d\} \). We shall call \(\tilde{C}_d(M) \) the space of oriented configurations of \(d \) distinct points in \(M \). There is a non-trivial double covering \(\tilde{C}_d(M) \to C_d(M) \). Adding a point near an end of \(M \) gives a stabilization map

\[
\tilde{j}_d : \tilde{C}_d(M) \to \tilde{C}_{d+1}(M).
\]

In this note we shall determine the homological stability dimension for the spaces \(\tilde{C}_d(M) \), when \(M \) is obtained from a compact Riemann surface by removing a finite number of points.

More precisely, we shall prove:

Theorem 1. Let \(M \) be a compact Riemann surface, and let

\[
M' = M \setminus \{n \text{ points}\}
\]

where \(n \geq 1 \). Then the stabilization map

\[
\tilde{j}_d : \tilde{C}_d(M') \to \tilde{C}_{d+1}(M')
\]

is a homology equivalence up to dimension \([(d - 1)/3] \). Moreover, this bound is the best possible.

We shall give a proof in the next section, based on the calculations of [BCT] and [BCM]. First we make some remarks and pose a question:

Remarks. (1) It seems somewhat surprising that the answer is (about) \(d/3 \), not \(d/2 \) as in the un-oriented case.

(2) An analogous argument proves a similar result for McDuff’s configuration space \(C^n_\pm(M) \) of “positive and negative particles” ([McD]). An application of this will be given in [GKY].

Question. Is Theorem 1 true for any open manifold?

§2. PROOF OF THEOREM 1.

Without loss of generality we shall from now on assume that

\[
M' = C - \{l \text{ points}\}
\]

and write \(C_n \) for \(C_n(M') \) and \(\tilde{C}_n \) for \(\tilde{C}_n(M') \). We shall only consider the case \(l \geq 1 \). The case \(l = 0 \) can be dealt with in a similar way.

We shall show that

\[
(*) \quad H_q(\tilde{C}_d, F) \to H_q(\tilde{C}_{d+1}, F)
\]
is bijective for $q < n(d)$ and surjective for $q = n(d)$ if $F = \mathbb{Z}/p$ (p is any prime) or $F = \mathbb{Q}$, where

$$n(d) = \begin{cases} \frac{d}{2} & \text{if } F \neq \mathbb{Z}/3 \\ \frac{(d-1)}{3} & \text{if } F = \mathbb{Z}/3 \end{cases}$$

Theorem 1 follows from this and the universal coefficient theorem. (The case $F = \mathbb{Z}/2$ is trivial. Indeed, since $\tilde{C}_d \to C_d$ is a double covering and the stabilization map $C_d \to C_{d+1}$ is a homology equivalence up to dimension $[d/2]$, the result follows from the Gysin exact sequence.)

We shall make use of the following well known fact (cf. [B]):

Lemma 2. Let G be a group and $H \subset G$ a subgroup of G of index 2. Let F be any field of characteristic not equal to 2. Then there is a natural additive isomorphism

$$H_q(H, F) \cong H_q(G, F) \oplus H_q(G, F(-1))$$

for any $q \geq 1$, where $F(-1)$ denotes the field F with the G-module structure given by

$$g \cdot f = \begin{cases} -f & g \notin H \\ f & g \in H \end{cases}$$

for $f \in F$ and $g \in G$. □

Let us take $G = \pi_1(C_d)$ and $H = \pi_1(\tilde{C}_d)$. Since $\tilde{C}_d \to C_d$ is a double covering, H can be identified with a subgroup of G of index 2. We have $\tilde{C}_d \cong K(H, 1)$, $C_d \cong K(G, 1)$ and we can identify the covering map with the map $K(H, 1) \to K(G, 1)$ induced by the inclusion $H \subset G$. We can thus apply Lemma 2 to obtain:

Lemma 3. If $F = \mathbb{Z}/p$ (p any odd prime) or $F = \mathbb{Q}$, then there is a natural additive isomorphism

$$H_q(\tilde{C}_d, F) \cong H_q(C_d, F) \oplus H_q(C_d, F(-1))$$

for any $q \geq 1$ □

Now, since $C_d \to C_{d+1}$ is a homology equivalence up to dimension $[d/2]$, Theorem 1 follows directly from the following result:

Lemma 4. Let q and d be positive integers such that $1 \leq q \leq [d/2]$ and $(q, d) \neq (1, 2)$.

1. If $F = \mathbb{Z}/p$ (p prime, $p \geq 7$) or $F = \mathbb{Q}$, then
 $$H_q(C_d, F(-1)) = 0$$

2. If $F = \mathbb{Z}/5$ and $(q, d) \neq (3, 6)$, then
 $$H_q(C_d, \mathbb{Z}/5(-1)) = 0$$

3. If $F = \mathbb{Z}/3$ and $d \geq 3q + 2$, then
 $$H_q(C_d, \mathbb{Z}/3(-1)) = 0$$
Proof. Let 1 \leq q \leq \lfloor d/2 \rfloor.

By (8.4) of [BCM], if \(n \) is sufficiently large, then

\[
H_q(C_d, \mathbf{F}(-1)) \cong H_{q+(2n+1)d}(\Omega^2 S^{2n+3} \times (\Omega S^{2n+3})^l, \mathbf{F})
\]

Note that

\[
H_j((\Omega S^{2n+3})^l, \mathbf{F}) \cong \left\{ \begin{array}{ll} F^{m(\beta)} & \text{if } j = (2n+2)\beta, \beta \geq 0 \\ 0 & \text{otherwise} \end{array} \right.
\]

and there is a stable splitting ([CMM], [S])

\[
\Omega^2 S^{2n+3} \cong \bigvee \Sigma \geq 1 \Sigma^{2n} D_\alpha
\]

where we take

\[
m(\beta) = \left(\frac{\beta + l - 1}{l - 1} \right) \quad \text{and} \quad D_\alpha = F(C, \alpha) \land \Sigma_\alpha (\land^{\alpha} S^1).
\]

Since \(D_\alpha \) has the homotopy type of a CW complex of dimension \(2\alpha - 1 \), \(H_j(D_\alpha, \mathbb{Z}/p) = 0 \) for any \(j \geq 2\alpha \).

Applying the K"unneth formula one can show that

\((**)
\[
H_q(C_d, \mathbf{F}(-1)) \cong \oplus_{\alpha=1}^d \check{H}_{q+2\alpha-d}(D_\alpha, \mathbf{F})^{\times(\beta - \alpha)}
\]

From now on we shall only consider the case \(\mathbf{F} = \mathbb{Z}/p \) (\(p \) an odd prime). The case \(\mathbf{F} = \mathbb{Q} \) can be dealt with analogously.

The following is well known:

Lemma 5. Let \(p \geq 3 \) be any odd prime.

1. There is a multiplicative isomorphism

\[
(a) \quad H_\ast(\Omega^2 S^3, \mathbb{Z}/p) = \mathbb{Z}/p[x_1, x_2, \cdots] \otimes E[y_0, y_1, y_2, \cdots]
\]

where \(\deg(x_i) = 2p^i - 2 \) and \(\deg(y_i) = 2p^i - 1 \).

2. There is an additive isomorphism

\[
(b) \quad \check{H}_\ast(D_\alpha, \mathbb{Z}/p) = \oplus_{J=(\epsilon_0, m_1, \epsilon_1, \cdots) \in J} \mathbb{Z}/p\{ \prod_{j \geq 1} x_j^{m_j} \cdot \prod_{j \geq 0} y_j^{\epsilon_j} \}
\]

where we take:

\[
J = \{ J = (\epsilon_0, m_1, \epsilon_1, \cdots) : \epsilon_j \in \{ 0, 1 \}, m_j \geq 0, w(J) = \alpha \}
\]

and

\[
w(J) = \epsilon_0 + \sum_{j \geq 1} p^j (m_j + \epsilon_j).
\]

□
¿From Lemma 5

(c) \[\dim \mathbf{Z}_p \tilde{H}_{q+2\alpha-d}(D_\alpha, \mathbf{Z}/p) = \text{card}(\mathcal{F}) \]

where

\[\mathcal{F} = \{ J = (\epsilon_0, m_1, \epsilon_1, \cdots) \neq (0, 0, \cdots) : \epsilon_j \in \{0, 1\}, m_j \geq 0, D(J) = q + 2\alpha - d, w(J) = \alpha \} \]

and

\[D(J) = \epsilon_0 + \sum_{j \geq 1} \{ 2(p^j - 1)m_j + (2p^j - 1)\epsilon_j \}. \]

Here \(\text{card}(S) \) denotes the cardinality of a finite set \(S \).

Note that for \(J = (\epsilon_0, m_1, \epsilon_1, \cdots) \), if \(w(J) = \alpha \), then

\[D(J) = q + 2\alpha - d \Leftrightarrow H(J) = \epsilon_0 + \sum_{j \geq 1} (2m_j + \epsilon_j) = d - q \]

Hence

(d) \(\mathcal{F} = \{ J = (\epsilon_0, m_1, \epsilon_1, \cdots) \neq (0, 0, \cdots) : \epsilon_j \in \{0, 1\}, m_j \geq 0, w(J) = \alpha, H(J) = d-q \} \).

By (c) and (d) it suffices to show:

Claim. Let \(1 \leq q \leq \lfloor d/2 \rfloor, 1 \leq \alpha \leq d \) and \((q, d) \neq (1, 2) \).

(1) If \(p \geq 7 \) is an odd prime or \(p = 5 \) and \((q, d) \neq (3, 6) \), then \(\mathcal{F} = \emptyset \).

(2) If \(p = 3 \) and \(d \geq 3q + 2 \), \(\mathcal{F} = \emptyset \).

Proof of Claim. (1) Assume that \(p \geq 5 \) is a prime and \(J = (\epsilon_0, m_1, \epsilon_1, \cdots) \in \mathcal{F} \).

Since \(1 \leq q \leq \lfloor d/2 \rfloor \leq d/2 \),

\[\epsilon_0 + \sum_{j \geq 1} (2m_j + \epsilon_j) = H(J) = d - q \geq d/2 \geq \alpha/2 = \{ \epsilon_0 + \sum_{j \geq 1} p^j(m_j + \epsilon_j) \}/2. \]

Hence

(e) \[\epsilon_0 + \sum_{j \geq 1} \{(4 - p^j)m_j + (2 - p^j)\epsilon_j \} \geq 0 \]

Since \(J \neq (0, 0, \cdots) \), one can deduce from (e) that

\[J = (\epsilon_0, m_1, \epsilon_1, m_2, \epsilon_2, \cdots) = \begin{cases} (1, 0, 0, 0, 0, 0, \cdots) & \text{if } p \geq 7 \\ (1, 0, 0, 0, 0, 0, 0, \cdots) \text{ or } (1, 1, 0, 0, 0, 0, 0, \cdots) & \text{if } p = 5 \end{cases} \]

Hence

\[(q, d) = \begin{cases} (1, 2) & p \geq 7 \\ (1, 2), (3, 6) & p = 5 \end{cases} \]
This is a contradiction.

(2) Assume \(d \geq 3q + 2 \) and \(p = 3 \). Then

\[
\alpha - d = w(J) - (q + H(J)) \\
= \{\epsilon_0 + \sum_{j \geq 1} 3^j (m_j + \epsilon_j)\} - \{\epsilon_0 + \sum_{j \geq 1} (2m_j + \epsilon_j)\} - q \\
= \sum_{j \geq 1} \{(3^j - 2)m_j + (3^j - 1)\epsilon_j\} - q \\
\geq \frac{1}{2} \sum_{j \geq 1} (2m_j + \epsilon_j) - q \\
= \frac{1}{2} (d - q - \epsilon_0) - q \quad \text{(by } H(J) = d - q) \\
= \frac{1}{2} (d - 3q - \epsilon_0) \\
\geq \frac{1}{2} \{(3q + 2) - 3q - 1\} = \frac{1}{2} > 0
\]

Hence \(\alpha = w(J) > d \), which is a contradiction. \(\square \)

This completes the proof of Theorem 2. \(\square \)
References

Department of Mathematics, University of Rochester, Rochester, New York 14627, USA
Department of Mathematics, Toyama International University, Kaminikawa, Toyama 930-12, Japan
Department of Mathematics, The University of Electro-Communications, Chofu, Tokyo 182, Japan