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University of Warsaw, Pawińskiego 5A, 02-106 Warszawa, Poland

W.Rudnicki@icm.edu.pl

Aleksander Jankowski

ajank@students.mimuw.edu.pl

Aleksander Modzelewski

aleander@shirk.pl

Aleksander Piotrowski

ap219542@students.mimuw.edu.pl

Adam Zadrożny
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Abstract. Algorithms for estimating similarity between two macromolecular sequences are of pro-

found importance for molecular biology. The standard methods utilize so-called primary structure,

that is a string of characters denoting the sequence of monomers in hetero-polymer. These meth-

ods find the substrings of maximal similarity, as defined by the so-called similarity matrix, for a pair

of two molecules. The problem is solved either by the exact dynamic programming method, or by ap-

proximate heuristic methods.

The approximate algorithms are almost two orders of magnitude faster in comparison with the stan-

dard version of the exact Smith-Waterman algorithm, when executed on the same hardware, hence

the exact algorithm is relatively rarely used. Recently a very efficient implementation of Smith-

Waterman algorithm utilizing SIMD extensions to the standard instruction set reduced the speed
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advantage of heuristic algorithms to factor of three. Here we present an improved implementation

of the Smith-Waterman algorithm on the Cell processor.

Implementation presented here achieves execution speed of approximately 9 GCUPS. The perfor-

mance is independent on the scoring system. It is 4 to 10 times faster than best Smith-Waterman

implementation running on a PC and 1.5 to 3 times faster than the same implementation running

on Sony PlayStation 3. It is also 5 times faster than the recent implementation of the Smith-

Waterman utilizing Nvidia GPU.

Our implementation running on Sony PlayStation 3 has performance which is directly comparable

with that of BLAST running on PC, being up to 4 times faster in the best case and no more than

two times slower in the worst case. This performance level opens possibility for using the exact

Smith-Waterman algorithm in applications, where currently approximate algorithms are used.

Keywords: bioinformatics, protein sequence alignment, Cell processor

1. Introduction

Era of modern molecular biology started with the discovery of the DNA structure [1] and subsequent

determination of the genetic code [2, 3, 4]. Since then determining sequences of nucleic acids and protein

molecules became on of the most important tasks of molecular biologists. It appeared very soon that

protein molecules performing similar tasks are often very similar, not only when two proteins come

from the same organism, such as haemoglobin and myoglobin, but when they come form different species

as well, as for example bovine and human variants of haemoglobin. The sequence similarity between

various protein molecules is a very important information, which is used for identification of unknown

proteins, establishing the evolutionary relations between species and in many other ways.

The similarity of two molecules is measured by aligning them and counting number of identical

or chemically similar residues which occupy the same position. It is an easy task for nearly identi-

cal molecules. Unfortunately, with decreasing similarity level, the number of alternative alignments is

growing very quickly and problem becomes impossible to solve by hand.

Additional complication arises, due to chemical differences between amino acids. Different muta-

tions occur with different probabilities, which are dependent on the chemical similarity between amino

acids. One should take this into account when comparing various alternative alignments. Evolutionary

similarity between all pairs of amino acids is represented in the form of so-called amino acid similarity

matrix [5]. The algorithm, developed in 1970 by Needleman and Wunsch [6], utilizes such a matrix

to find an optimal global alignment for a pair of protein sequences. It is a dynamic programming al-

gorithm, which finds the optimal path through the rectangular matrix, which is filled with similarity

scores for pairs of amino acids. Needleman-Wunsch algorithm returns biologically meaningful results

for relatively similar sequences of similar length.

Nevertheless, this algorithm is unsuitable for alignment of sequences, where only fragment of se-

quences are similar. This situation can arise for example, when one compares two multi-domain proteins,

sharing single similar domain. Also comparison of two highly diverged proteins may be meaningful only

within the relatively short, highly conserved region. The modification of the Needleman-Wunsch algo-

rithm, which finds optimal local alignment was proposed in 1981 by Smith and Waterman [7]. It was

followed by an extension which allowed for using affine gap penalties and computation time propor-

tional to the product of sequences’ lengths proposed by Gotoh in 1982 [8]. These algorithms, although
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exact, are relatively slow and rarely used in practical applications, because fast heuristic approximate al-

gorithms, such as BLAST [9] or FASTA [10], give good enough results with much lower computational

costs.

On the other hand, the structure of the Smith-Waterman algorithm allows parallelisation of the com-

putations on the suitable hardware and significant performance gains. Several implementations taking

advantage of SIMD instructions were proposed [11, 12, 13], the latest being almost as effective as the

heuristic algorithms [14]. Indeed, the implementation presented by Farrar is only 4-7 times slower than

BLAST on the same PC when executed using BLOSUM 62 matrix and standard gap penalties. Differ-

ences are even smaller for other scoring systems.

Recently a new microprocessor architecture devoted to high throughput parallel computations, called

Cell Broadband Architecture, has been presented jointly by IBM, Toshiba and Sony. It has been demon-

strated that this architecture has a high chance to become a serious alternative to the standard PC in sci-

entific computations, because of high performance of integer and floating point operations for certain

types of codes [15]. The theoretical peak performance of the Cell processor is 205 GFLOPs per second

in single precision floating point calculations, which can be compared with the theoretical peak perfor-

mance of roughly 10 GFLOPs per second for the current dual core general purpose microprocessors.

Also, since Cell processors are used in mass-market-low-cost product, such as Sony PlayStation 3 (PS3),

it gives this architecture advantage of being a relatively low cost, high volume product. Implementing

of the basic scientific algorithms into this architecture may result in a boost of performance by an order

of magnitude in comparison to a standard PC.

2. Implementation

2.1. Algorithm

The Smith-Waterman algorithm, with Gotoh extensions for handling affine gap penalties was imple-

mented. Two sequences to be aligned, a query sequence and database sequence, are defined as Q =
〈q1, q2, q3, . . . , qm〉 and D = 〈d1, d2, d3, . . . , dn〉. The length of query sequence is m and database se-

quence is n, respectively. A scoring matrix W is used, where Wq,d is a score for amino acids q and d.

For similar amino acids q and d, Wq,d ≤ 0, for dissimilar ones Wq,d < 0. The penalties for opening

and continuation of the gap are defined as Ginit and Gext, respectively. The optimal alignment is ob-

tained by processing a rectangular matrix H . Initially element Hij holds score of for the pair i-th amino

acid of the query sequence and j-th amino acid from the target sequence. After processing by the algo-

rithm, Hij holds the value of the best local alignment, ending at i and j. The matrix is processed, starting

from upper left corner. Each element is obtained as a result of the following comparison:

Hij = max























Hi−1,j−1 + Wqi,dj

Eij

Fij

0























(1)

where

Eij = max

{

Ei,j−1 − Gext

Ei,j−1 − Ginit

}

is the score arising from the gap introduced at the query,
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Figure 1. Data alignment in SIMD implementations of the Smith-Waterman algorithm.

Vectors aligned along minor diagonals (a), vectors aligned along columns in a straightforward- (b) and striped- (c)

way as well as vectors containing entries from different matrices (d).

Fij = max

{

Fi−1,j − Gext

Fi−1,j − Ginit

}

is the score arising from the gap introduced at the target sequence

and the first argument is the score arising from the ungapped alignment. The values of Eij and Fij are

set to zero if i = 0 or j = 0.

2.2. Existing Solutions

In the SIMD single operation is performed on multiple data, for example by forming a sixteen-element

byte vector and storing it in a 128-bit quad word. Each operation on a 128-bit quad word becomes then

an operation on sixteen independent variables. This allows in theory to increase the speed of computa-

tions sixteen-fold. The SIMD operations for Smith-Waterman algorithm were previously used by Alpern

[11], Wozniak [12], Rognes and Seeberg [13] , and Farrar [14]. As can be seen in the Formula 1, the value

of each cell in the dynamic programming matrix depends on the values which are above and to the left

of the cell. In parallel implementation cells which are processed in parallel should be independent.

There are three general methods for this. The first one is based on observation that values on the

minor diagonals of the matrix are independent of each other and can be processed in parallel. The second

one uses observation that the algorithm is usually used for scanning large databases of sequences, which

are not similar to the query. One may notice that if a query is not similar to a database sequence, then the

scores in the dynamic programming matrix are low and with sufficiently high gap opening penalty Ginit

Eij and Fij in Eq. 1 are equal zero for most of the cells. One can use this observation by temporarily

assuming that Fij = 0 when processing the column of the matrix. With such assumption the value in the

cell does not depend on the values in the cells above the current one and computations of several cells
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within the column can be performed in parallel. Then one has to check if the assumption that Fij = 0
was correct. If it was not, one needs to recompute affected cells, however, if the sequences are not similar

this happens relatively infrequently. The third approach is based on the observation that when the SW

algorithm is used for database scan one can align query with several database sequences in parallel. The

graphical representation of the data layout in these approaches is given in Figure 1.

The first approach has been proposed by Wozniak. In this implementation the four-element vector

was aligned with minor diagonal of the matrix H . Unfortunately the code for loading the substitution

scores to the vector is rather complicated and not very efficient, because each substitution score is indexed

with different pair of amino acids from database and query sequence for each element of the vector.

The second approach was proposed by Rognes and Seeberg, and recently optimized version was

implemented by Farrar. In the original algorithm of Rognes and Seeberg processing is performed for

vector parallel to query, consisting of 8 adjacent cells of the same column, see Figure 1b. First is checked

if Fij = 0 for all cells. It is possible to check this condition for all elements of the vector simultaneously.

If this condition is met, the vector version of the algorithm is called, otherwise the scalar version with all

data dependencies is used. If sequences are not similar the scalar version is called relatively infrequently.

The main improvement with comparison to Wozniak approach is achieved due to more efficient retrieval

of scores for cells beeing processed. In the Wozniak approach each cell represents alignment of different

pair of amino acids. Therefore one needs to retrieve this score from a score matrix and place it in the right

position of the score separately for each element of the vector. On the other hand one may note that all

scores Aij are for the same j − th amino acid of the database sequence. One can take advantage of this

observation, by precomputing so called query profile. The query profile is a matrix 20 × query length.

Each column holds all scores for single amino acid when paired with the query. Loading of all scores for

the single vector can be executed with one vector copy operation, which is much more effective than in

Wozniak approach.

Graphic representation of the construction of the query profile and the score matrix in Rognes

and Farrar approach is displayed in the Figure 2. The next improvement of the SIMD implementation

of the SW algorithm was introduced recently by Farrar. Also in this case vectors are parallel to the query

sequence, but here the data dependence within the vectors is avoided by using stripped layout of the dy-

namic programming matrix. Single vector holds matrix elements from the same column, however, they

are not adjacent, see Figure 1c. Let us assume that vector holds four values and query length is 4t.

Then vectors are constructed as:

V1 = 〈Hi,1, Hi,t+1, Hi,2t+1, Hi,3t+1〉 ,

V2 = 〈Hi,2, Hi,t+2, Hi,2t+2, Hi,3t+2〉 ,

...

Vk = 〈Hi,k, Hi,t+k, Hi,2t+k, Hi,3t+k〉 .

Following Rognes and Seeberg, Farrar assumes that in most cases computations of the H-value do

not depend on the values of the cells above. This assumption is used to perform computations for the first

vector. It is not necessary when processing the following vectors, since values of the cells located above

current one have already been computed in the previous step. Finally, after the whole column is pro-

cessed, it is checked whether the cells computed in the first step indeed do not depend on the cells above.

If this assumption is false, then the computations for the first vector are repeated and it is checked,
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Figure 2. Construction of the query profile from the similarity matrix and application of the query profile for

construction of the dynamic programming matrix. For clarity the reduced set of five amino acids is used. Also

vector length is reduced to four elements.

whether this influences results for the second vector. This correction step is repeated for further vectors

until the results of the current vector do not influence results for the next vector. One should note, that

query profile introduced in Rognes algorithm is used by Farrar, albeit in a stripped manner. Graphic rep-

resentation of the construction of the query profile and the score matrix in Rognes and Farrar approach

is displayed in the Figure 2.

Farrar approach improves Rognes and Seeberg algorithm in two ways. In the Rognes-Seeberg ver-

sion of the algorithm the first element of the currently computed vector depends on the last element

of the previous vector and this forces usage of inefficient operations for manipulating single elements

of vectors. By organizing computations in the striped manner these non-aligned value dependencies be-

tween vectors are avoided. The striped approach removes also direct dependencies between elements

of a single vector. The cost of avoiding these data dependencies is relatively small. In the best case,

when no data dependencies are discovered between the last and the first vector one needs to perform

a single run of the correction step per column. On average only very few correction steps are required.

Nevertheless these correction steps require additional operations, which are not easy to handle efficiently

in the vectorised manner. Additionally Farrar implementation uses one-byte integers. This allows for

processing 16 element vectors, instead of 8 elements as in earlier approach. The score range (0-255) is

sufficient for the database scan with commonly used scoring systems. In such application the overflow

can happen only when relatively similar sequences are aligned - and such situation is recorded as a hit,

which needs to be aligned with another version of Smith Waterman algorithm.

2.3. W4A Implementation

The Cell processor is a multi-core design, with one core being the general purpose processor, called

PPE, and eight cores, called Synergistic Processing Elements (SPE), which are specialized for high
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performance SIMD floating point and integer computations (Only six SPE units are available for users

in the Sony Playstation 3). Each SPE unit can run a different code. The single SPE unit performs

computations using 128 bit words. The internal processor instructions allow to use these 16 byte words

as 16 bytes, 8 integers, 4 floating point single precision numbers, or 2 double precision floating point

numbers.

The W4A implementation is designed to take advantage of the Cell processor architecture. The

main program, which reads data and schedules computations resides on the PPE core. The vectorized

SW alignment routines are executed in parallel on SPE cores, each core processes different sequences.

The vectorization is based on the approach proposed originally by Alpern. Each thread runs sixteen

parallel searches with sixteen different database sequences within single pass of the algorithm. There

are sixteen independent matrices which are processed simultaneously and each vector holds one element

from each matrix.

There are two reasons why this design of the algorithm should improve performance in comparison

with that of the previous implementations. First, there are no dependencies between elements of the

same vector, and therefore neither the correction step of the Farrar algorithm, nor checking of indepen-

dence condition of the Rognes and Seeberg algorithm, are needed. Second, the additional performance

gain over the previous SIMD implementation arises due to more efficient usage of the vector variables

in our approach. In the previous implementations the effective query length was a multiple of the vector

size. For queries which were not multiples of the vector size this results in processing of the unoccupied

vector elements at the last section of the query. In the current approach all vector elements are used,

since the query is matched with N database sequences of identical length. Also this approach is in-

dependent of the scoring function, whereas performance of both Rognes and Seeberg as well as Farrar

approach strongly dependends on the gap penalties. Nevertheless, the simplification of the computations

comes with a cost, namely the computation of the alignment score for sixteen sequences at once is more

complicated than in the previous implementations.

In our approach each score vector holds scores for a single query residue and N database residues.

In principle any combination of these N residues is possible, making pre-computing of the query profile

in the analogous way impossible. Nevertheless, we do use the pre-computed query profile, but in a dif-

ferent manner. The score vector is composed by performing an efficient lookup of the single row of

the query profile, see Figure 3. The score vector is composed using shuffle command, which is spe-

cific to Cell and Power processors. This useful command allows us to load any byte from two source

vectors to the single result vector using mask stored in the third vector. This allows very efficient lookup

of the query profile. Two source vectors hold a row of the query profile. The mask vector is constructed

from the sixteen amino acids located at the current position of the database sequences.

The layout of the dynamic programming matrix described above results in a significant optimisation

in comparison with the Farrar implementation since correction phase of the algorithm is not necessary.

Also the execution time is independent of gap penalties. Figure 4 illustrates the order of computations

and memory layout in three implementations discussed above. Looking at Figure 4 it is easy to un-

derstand that an efficient application of our implementation requires sorting of the database according

to the length of the sequences. Due to sorting in most cases all sequences computed within a single

algorithm run have identical length. Therefore, the dynamic programming matrix is filled with real data

and no waste of the processor cycles is incurred. The sorting of the database is performed after each

update.
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Figure 3. Construction of the dynamic program-

ming matrix from query profile using shuffle com-

mand.

Shuffle command uses four vectors of memory,

each consisting of N bytes. Vectors 0 and 1 hold

the source data, vector 2 holds control data and vec-

tor 3 is output. The k-th byte of the vector 2 holds

the number of the byte from vectors 0 and 1, which

should be put in the k-th byte of the output vec-

tor. Let’s assume that algorithm updates scores for

the i-th position of the query sequence and j-th po-

sition of the database sequences. Then the vectors 0

and 1 hold an i-th row of the query profile, vector 2

holds addresses corresponding to N amino acids from

the j-th position in N database sequences. The k-th

byte of the output vector holds a W (qi, dj) for the k-

th database sequence. The output vector is copied

to the score matrix.

Figure 4. Processing order for a single query seq-

uence in three implementations of the Smith-Waterman

algorithm.

Rognes a), Farrar b) and W4A c).

Elements of the dynamic programming matrix cor-

responding to the same database sequence are en-

closed in a box of the same colour. Rognes and Far-

rar implementations use vectors parallel to the query

and perpendicular to the database sequence, whereas

our implementation uses vectors which are perpendic-

ular both to the query and database sequences. It can be

observed that a number of operations necessary to pro-

cess N database sequences is larger in two former im-

plementations, unless the length of a query sequence is

an exact multiple of the vector length.
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3. Testing

To compare performance of current implementation with earlier SW implementations and other algo-

rithms for sequence similarity search we developed a standardized environment. All tests were performed

using ASTRAL SCOP Genetic Domain Sequences database [16], rel. 1.711, containing 71796 protein

sequences and 13740191 residues. Average sequence length is 191. The Astral database used in the tests

was selected because it fits in the memory of the Sony Playstation3, whereas, for example, NCBI NR

database does not.

Forty sequences from the NCBI NR database with varying length were used as query sequences.

The shortest and the longest sequences were respectively 42 and 1202 residues long. Tests were per-

formed using standard similarity matrices used with BLAST at NCBI interface, for all combinations

of parameters. These include two matrices of the PAM family [5] (PAM 30 and PAM 70) as well as three

matrices of the BLOSUM family [17] (BLOSUM 80, BLOSUM 62 and BLOSUM 45).

All tests were performed on Sony Playstation 3 running Fedora 7 and on a standard desktop PC

with the cost comparable to that of PS3. PC was equipped with AMD Athlon(tm) 64 Processor 3200+,

clocked at 2 GHz with 512 KB of cache and 1 GB of RAM. PC was running Centos 5.0. For all codes

the total time of the core sequence alignment phase was measured, without time necessary for reading

data from the disk. All tests were performed fifteen times for each query, and the best result for each

query was used in comparisons. Tests were performed for all standard gap penalty parameters used for

BLAST at NCBI.

4. Results and Discussion

The execution times for BLAST, Farrar’s version of Smith-Waterman implemented on PC, Farrar’s ver-

sion implemented on Sony PS3 and our version implemented on Sony PS3, which here is called W4A,

are shown in Figure 5.

The numbers used for comparisons are taken from runs performed using the gap penalty parameters

resulting in minimal gap opening penalty for given matrix. These values usually gave results closest

to the average of all standard combinations of parameters. The differences between execution times

for the same algorithm run with identical similarity matrix and various gap penalty parameter sets for

W4A algorithm were negligible in comparison to the differences between runs with different similarity

matrices. For BLAST algorithm the differences varied between 0 and 13% and for Farrar algorithm

between 3% and 27%. It is interesting to note that the highest differences for Farrar algorithm were

observed for short sequences, whereas for BLAST for long sequences.

The performance of all algorithms measured in Cell Updates Per Second (CUPS) is shown in Figure

6. One can notice that the performance of all algorithms varies with the query length and scoring system,

see also Table 1. Dependence of performance on the query length is visible for all algorithms and all

scoring systems. The smallest variability is observed for W4A implementation, where the highest per-

formance is 25% larger than the lowest one for all scoring systems. The largest variability is for BLAST

where the highest performance is 4 times better than the lowest for the same scoring system and 6.7 times

when performance for all scoring systems is compared.

1http://astral.berkeley.edu/scopseq-1.71.html
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Figure 5. Execution times for tested algorithms as

a function of query length.

Test with the best (BLOSUM 62) and the worst (BLO-

SUM 45) performing scoring system are presented for

BLAST. Data for short queries is shown in inset.

Figure 6. Performance of tested algorithms as

a function of query length.

Results for all scoring systems are displayed. Results

for different scoring systems are indistinguishable for

all implementations of Smith-Waterman algorithm.

Also the variability between scoring systems is significant for BLAST. The execution time of BLAST

for the BLOSUM45 matrix is on average more than 3 times higher than that for BLOSUM62 matrix.

on the other hand performance of both implementations of the Smith-Waterman algorithm is much less

dependent on the scoring system. For Farrar implementation the difference is less than 5% or 2% on PC

and PS3, respectively. The difference between the fastest and the slowest run for W4A implementation

is 0.02%, which is negligible. This can be seen in Figure 6, where performance curves for BLAST

algorithm for different scoring systems are well separated, whereas for all implementations of Smith-

Waterman algorithm curves for various scoring systems are almost indistinguishable.

One can notice that for short queries (those of length less than 150 residues) performance of our

implementation is better than that of any other algorithm, including BLAST. Then for query lengths

Table 1. Variability of performance of the tested algorithms.

PAM 30 PAM 70 BLOSUM 80 BLOSUM 62 BLOSUM 45 Overall

BLAST 3.57 4.06 1.61 2.52 2.32 6.69

Farrar PC 2.09 2.07 1.91 2.30 2.11 2.31

Farrar PS3 2.40 2.40 2.35 2.44 2.41 2.45

W4A 1.25 1.25 1.25 1.25 1.25 1.25

Variability is defined as the ratio of the best and the worst performance achieved for given scoring system. Overall

variability is defined as the ratio of the best to the worst performance for all scoring systems.
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Table 2. Relative performance of W4A versus other tested algorithms.

PAM 30 PAM70 BLOSUM 80 BLOSUM 62 BLOSUM 45

best worst best worst best worst best worst best worst

BLAST 1.75 0.80 2.06 1.00 1.74 0.61 1.78 0.54 3.79 2.04

Farrar PS3 3.07 1.46 2.95 1.46 2.95 1.46 2.95 1.46 2.86 1.46

Farrar PC 9.85 4.23 8.99 4.22 8.74 4.21 8.53 4.23 7.47 4.22

Numbers are higher than 1 if the performance of W4A is better than that of the other algorithm.

up to 300 residues the performance of our algorithm is still comparable to that of BLAST with best

performing scoring systems. One may notice, that for two scoring systems performance of BLAST is

lower than that of our algorithm for all query lengths.

Comparison with the previous implementations of the Smith-Waterman algorithm is even more

favourable for this implementation. The speedup in comparison with Farrar implementation on PS3

varies between 1.5 and 3.1, with highest values for short queries. The speedup with respect to PC imple-

mentation of Farrar algorithm varies between 4.2 and 9.8, again the highest value are for short queries.

The summary of the relative speeds for all scoring systems is presented in Table 2.

To analyse the algorithm performance more precisely, one should consider how much the results de-

pend on the selection of the database. Both theoretical analysis and practical tests (data not shown) shows

that the performance of the two tested variants of the Smith-Waterman algorithm does not depend on the

length of the sequence database. Therefore this choice of test database does not influence the results

of comparison between variants of Smith-Waterman algorithm.

The comparison between Smith-Waterman and BLAST is more complicated, because relative per-

formance may depend to larger extent on the percentage of hits encountered on the database. It can

be seen that the performance of BLAST varies in our tests more than that of Smith-Waterman variants

(see Figures 5 and 6). Therefore the exact values of relative performance of two algorithms should

be taken with the grain of salt. Nevertheless, the performance of BLAST run against ASTRAL using

the longest queries is very similar to that of BLAST run against NCBI NR database on PC (data not

shown) and therefore it is a good representation of BLAST performance. In practice one can expect that

relative performance of these algorithms for large databases would be close to that reported as worst

relative performance in Table 2.

We presented a new implementation of the SW algorithm using SIMD instructions of the Cell ar-

chitecture. This implementation is up to 10 times faster than implementation presented by Farrar on PC

and up to three times faster than Farrar implementation on PS3. It is also faster than the PC implemen-

tation of the BLAST algorithm for some scoring systems. Taking into account that the cost of a Sony

PS3 is comparable to that of a PC, the application of exact algorithm instead of approximate heuristic

becomes feasible, time effective and cost-effective.

The improvement in performance in comparison to Farrar version is due to an efficient vectorisation

of the code, in our implementation. The code of the inner loop is simple since no tests for the inde-

pendence of vector elements are necessary. Also the additional correcting loop is omitted. This makes

the code easier to optimize. Thanks to the true independence of computations between subsequent cells
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the additional optimisation is possible in our approach, what is impossible for Farrar method. Cell

processor can issue new instruction in every cycle, but for most instructions execution takes at least

two cycles. Therefore for algorithms requiring strict order of execution the processor needs to wait for

the result of the previous step. Simple reordering of operations within the inner loop is not sufficient

to overcome this limit in the case of Smith-Waterman algorithm. Nevertheless, thanks to the real inde-

pendence of the results between steps of the algorithm one can intertwine computations for two cells

located on the same minor diagonal of the matrix. In this way processor is never waiting for instructions.

The algorithm described above is responsible for the first phase of the homology search procedure –

finding the hits. This is the most compute-intensive phase and it is performed on SPE cores of the Cell

processor. To reduce computational cost and memory requirement the algorithm does not store the trace-

back information. The result of the procedure is limited to the value of the highest score achieved.

The actual sequence alignment is performed by another variant of Smith-Waterman algorithm, which

stores traceback information. Since finding the hit is in fact a rare event the cost for computing a full

version of a Smith-Waterman algorithm for the hits is more than offset by performance improvements

during the hit finding phase. The sequence alignment is performed on the PPE unit of the Cell processor.

There are certain practical limitations of the implementation presented here, which need to be ad-

dressed before using it on the production server for the protein homology searches. These limitations

arise due to the constraints of both PS3 as well as Cell architectures.

The local memory of the SPE unit of the Cell processor is 256 KB, what puts a constraint for the size

of the protein which can be aligned in the single run. Within the current implementation the sequence

length is limited to 3000 residues for database sequences. As of September 2007 there are more than 3.6

million protein sequences in the NCBI nr database, and 6318 (0.18%) are longer than this limit. Total

length of these long sequences is 2.11% of the total database length. Alignment of these sequences is

performed by the Farrar algorithm.

Practical applications of the algorithm could be limited by the constraints of Sony PlayStation 3

design as well. In particular the main memory of the PS3 is limited to 256 MB, what is not sufficient

to hold many current sequence databases, including for example NCBI NR database. To overcome this

limit we are developing the mixed PC/SP3 cluster system consisting of a single PC node and several PS3

nodes. Each PS3 node is connected to a separate network interface on a PC. PC is a control node which

holds sequence databases and user interface. It feeds the execution nodes with the sequences and collects

the hits. PS3 nodes perform the computations.

Currently our implementation is limited to the Cell BE architecture. The key element of our imple-

mentation is computation of the query profile for multiple database sequences using single Cell’s shuffle

instruction. This instruction is specific to the Cell architecture. Nevertheless it might be possible to adapt

this approach to other processors using different instructions. This issue remains to be investigated.

5. Conclusions

In the current paper we present the implementation of the Smith-Waterman algorithm on the Sony PS3

variant of the Cell architecture. This implementation takes advantage of the parallel internal architec-

ture and SIMD instruction set. The SIMD registers of the SPE units are parallel to the query sequence

in the striped pattern, each strip coming from different database sequence. In this way we process 96

database sequences in a single execution of the SW algorithm and completely avoid data dependen-
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cies between parallel registers. This allows us to take full advantage of the parallel SIMD architecture

of the system.

Calculation speeds approaching 9 GCUPS are achieved, which is a speedup of a factor 4.5 over Farrar

implementation on PC and comparable to that of BLAST on PC. The relative speed comparisons were

performed using single core CPU of the PC and six SPEs of the Cell processor. Using multiple cores

of PC processor would have shifted balance towards PC. on the other hand, we used only 6 out of 8 SPEs

of the Cell processor (due to SP3 limitations). Also we assume, that compilers for Cell platform are

less mature than those for x86 platform and therefore additional performance gains on Cell are possible.

Taking all this factors into account we believe that comparison is fair.

The speed of current implementation of the Smith-Waterman algorithm is comparable to the imple-

mentations performed on FPGA, see for example [18, 19, 20, 21, 22] estimate that the execution speeds

up to 23.8 GCUPS are achievable on the high end FPGA systems. Recently the Smith-Waterman im-

plementation on the Nvidia GPU was presented, which achieves calculation speed of 1.8 GCUPS or 3.5

GCUPS using single or dual GPU configuration, respectively [23].

According to our best knowledge algorithm presented here is currently the fastest implementation

of the Smith-Waterman algorithm on the commodity hardware.

5.1. Availability and Requirements

The code for the W4A-SW algorithm as well as for the cluster system is available at

http://bioinfo.icm.edu.pl/algorithm/source/W4A-SW/

Operating systems: Linux

Programming language: C/C++

Other requirements: IBM’s Cell SDK

License: GPL
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