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Abstract. The paper contains the study of sharp extensions of weak-type estimates
for a martingale maximal function. Given 1 < p < ∞ and a pair (x, y) of nonnegative
numbers satisfying xp ≤ y, we identify the optimal upper bounds for ∥| supn fn|∥p,∞,
for nonnegative martingales f = (fn)n≥0 satisfying ∥f∥1 = x and ∥f∥pp = y.

1. Introduction

As evidenced in numerous works, maximal inequalities play a distinguished role in
harmonic analysis and probability theory. The purpose of this paper is to present a
re�ned study of certain weak-type estimates arising in the context of martingales.

We start with the description of the background and notation used throughout the
text. In what follows, (Ω,F ,P) will denote the probability space, equipped with the
discrete-time �ltration (Fn)n≥0. For an adapted martingale f = (fn)n≥0, the symbol
f∗ = supn≥0 |fn| will stand for the associated maximal function, we will also use the
notation f∗

n = max0≤k≤n |fk| for its truncated version (n = 0, 1, 2, . . .).
Estimates between f and f∗ (equivalent to the boundedness of the maximal operator

on various function spaces) are of fundamental importance to the martingale theory and
form the base for stochastic integration. For example, we have the classical weak- and
strong-type estimates (cf. [2], see also [1, 5] for a di�erent perspective)

∥f∗∥p,∞ ≤ ∥f∥p, 1 ≤ p < ∞,

∥f∗∥p ≤ p

p− 1
∥f∥p, 1 < p ≤ ∞,

where ∥f∗∥p,∞ = supλ>0

(
λP(f∗ ≥ λ)

)1/p
stands for the weak-Lp norm of f∗ and ∥f∥p =

supn≥0

(
E|fn|p

)1/p
is the Lp norm of a martingale f . Both inequalities are sharp: the

constants 1 and p/(p− 1) cannot be decreased without additional conditions on f .
The purpose of this paper is to study a certain modi�cation and extension of the weak-

type bound. Consider the following alternative norming of the Lorentz space Lp,∞: for
1 < p < ∞ and an arbitrary random variable ξ, put

∥|ξ|∥p,∞ = sup

{
P(A)1/p−1

∫
A

|ξ|dP
}
,

where the supremum is taken over all events A of positive probability. It is well-known
that the quasinorms ∥ · ∥p,∞ and ∥| · |∥p,∞ are equivalent for 1 < p < ∞ (cf. [3]): we
have ∥ξ∥p,∞ ≤ ∥|ξ|∥p,∞ ≤ cp∥ξ∥p,∞ for some constant cp depending only on p. We will
identify the optimal constant in the weak-type estimate under this new norming.
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Theorem 1.1. For any 1 < p < ∞ and any martingale f we have the sharp estimate

(1.1) ∥|f∗|∥p,∞ ≤ Γ

(
2p− 1

p− 1

)1−1/p

∥f∥p.

Note that it is enough to study the above estimate for nonnegative martingales f
only. Indeed, given an arbitrary, real-valued Lp-bounded martingale f , let us denote
its pointwise limit by f∞. Then the passage from f to the nonnegative martingale
(E(|f∞| |Fn))n≥0 does not change the right-hand side of (1.1), while the left-hand side
can only increase. Thus, from now on, we will restrict ourselves to nonnegative martin-
gales. We will be able to study the following much more precise version of (1.1). Namely,
�x 1 < p < ∞ and suppose that f = (fn)n≥0 is a nonnegative, Lp bounded martingale
satisfying ∥f∥1 = x and ∥f∥pp = y. Here x, y are arbitrary positive numbers with xp ≤ y
(it is easy to see that for such x and y, there is at least one nonnegative martingale sat-
isfying the norm requirements). What is optimal upper bound for ∥|f∗|∥p,∞? Of course,

(1.1) will give ∥|f∗|∥p,∞ ≤ Γ
(

2p−1
p−1

)1−1/p

y1/p, but this does not have to be sharp: for

example, if xp = y, then f must be a constant martingale: f0 = f1 = f2 = . . . ≡ x and
hence ∥|f∗|∥p,∞ = x.

Our main result can be formulated as follows. Suppose that x, y are arbitrary positive
numbers with xp ≤ y. Introduce the function

Bp(x, y) = sup
{
∥|f∗|∥p,∞ : f ≥ 0, ∥f∥1 = x, ∥f∥pp = y

}
.

Theorem 1.2. The function Bp is given by

Bp(x, y) =

Γ
(

2p−1
p−1

)1−1/p

y1/p if p−1
p Γ

(
p

p−1

)p−1

y < xp,

c1−p
∗ y + x+ (p− 1)c∗γ

(
x
c∗

)p
− pγ

(
x
c∗

)p−1

x otherwise,

where c∗ = c∗(x, y) is de�ned in (2.5) below.

By a standard approximation, the above result extends to the continuous-time context.
That is, if (Xt)t≥0 is a nonnegative, continuous-time cádlág martingale satisfying ∥X∥1 =
x and ∥X∥pp = y, then its maximal function X∗ = supt≥0 |Xt| satis�es

∥|X∗|∥p,∞ ≤ Bp(x, y).

Furthermore, the constant on the right cannot be decreased: for each x, y there is a
martingale X with prescribed �rst and p-th norms, for which both sides above are equal.

Let us say a few words about our approach. A natural idea is to apply Burkholder's
method (sometimes referred to in the literature as the Bellman function technique). This
approach relates a given martingale inequality to the existence of a certain special func-
tion, enjoying appropriate size and concavity requirements: convenient references on this
subject are [1] and [4]. However, a direct application of the method requires the invention
of a complicated special function of four variables (which control the �rst norm of f , the
p-th norm of f , the size of the maximal function and the size of the event A which appears
in the de�nition of the weak norm, respectively). To overcome this technical di�culty,
we propose an alternative novel approach which is of independent interest. Namely, ap-
propriate optimization and homogenization arguments allow to reduce the problem to
the investigation of a much simpler martingale inequality. To prove this inequality, we
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will still use Burkholder's method, but this time the special functions will involve two
variables only.

The paper is organized as follows. In the next section we introduce the technical
background needed for our investigation and establish the simple martingale estimate
discussed above. The �nal part of the paper contains the proofs of Theorem 1.1 and 1.2.

2. An auxiliary estimate

Throughout this section, we assume that 1 < p < ∞ is a �xed parameter.

2.1. Some technical facts. We start our analysis with the introduction of a certain
special function of one variable. Let g : [0,∞) → [0,∞) be given by

g(s) = p(p− 1) exp(psp−1)

∫ ∞

s

up−1 exp(−pup−1)du.

We will need the following properties of this object.

Lemma 2.1. The function g is increasing and satis�es g(s) > s, lims→∞ g(s)/s = 1.

Proof. The asymptotics lims→∞ g(s)/s = 1 follows easily by de l'Hospital rule. The
estimate g(s) > s is equivalent to

p(p− 1)

∫ ∞

s

up−1 exp(−pup−1)du− s exp(−psp−1) > 0.

It is enough to note that the left-hand side vanishes at in�nity and its derivative at s
equals − exp(−psp−1) < 0. Finally, the monotonicity of g is a direct consequence of the
equation

(2.1) g′(s) = p(p− 1)sp−2(g(s)− s)

and the estimate g(s) > s we have just established. □

Put λ0 = g(0) = p−1/(p−1)Γ
(

p
p−1

)
and let γ : [λ0,∞) → [0,∞) be the inverse to

g. Then the estimate g(s) > s implies that γ(t) < t for t ≥ λ0. Furthermore, plugging
s = γ(t) into (2.1) and noting that g′(γ(t))γ′(t) = 1, we see that γ satis�es the di�erential
equation

(2.2) γ′(t) =
(
p(p− 1)γ(t)p−2(t− γ(t))

)−1
, t > 0.

We extend γ to the function on the whole half-line [0,∞), setting γ(t) = 0 for t < λ0.
Later on, we will need the following property of γ.

Lemma 2.2. The function ξ : (0,∞) → R given by

ξ(x) =

(
γ(x)p +

x

p− 1

)
x−p

is nonincreasing and satis�es limx→0 ξ(x) = ∞, limx→∞ ξ(x) = 1.

Proof. The equality limx→0 ξ(x) = ∞ is evident, the identity limx→∞ ξ(x) = 1 follows
directly from the asymptotics lims→∞ g(s)/s = 1 established in the previous lemma.
We turn our attention to the monotonicity of ξ. This property holds on the interval
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x ∈ (0, λ0], because γ(x) = 0 there. For x ∈ (λ0,∞), we make the substitution x = g(y);
since g is increasing, we see that we must prove that the function

y 7→
(
yp +

g(y)

p− 1

)
g(y)−p

is nonincreasing on (0,∞). By the direct di�erentiation of this function and (2.1), it
su�ces to show that

(2.3) g(y)2 < p(g(y)− y)((p− 1)yp + g(y)).

However, integrating by parts, we obtain

g(y) = p(p− 1) exp(pyp−1)

∫ ∞

y

sp−1 exp(−psp−1)ds,

g(y)− y = exp(pyp−1)

∫ ∞

y

exp(−psp−1)ds

and

(2.4) (p− 1)yp + g(y) = p(p− 1)2 exp(pyp−1)

∫ ∞

y

s2p−2 exp(−psp−1)ds.

Plugging these three identities into (2.3) we obtain the equivalent bound(∫ ∞

y

sp−1 exp(−psp−1)ds

)2

≤
∫ ∞

y

exp(−psp−1)ds ·
∫ ∞

y

s2p−2 exp(−psp−1)ds,

which follows by Schwarz' inequality. □

Finally, we will need the following statement.

Lemma 2.3. Assume that positive numbers x, y satisfy the condition (p − 1)λp−1
0 y ≤

xp < y. Then there is a unique root c∗ = c∗(x, y) ≤ x/λ0 of the equation

(2.5) (1− p)c−py + (p− 1)γ
(x
c

)p
+

x

c
= 0.

Furthermore, the function c 7→ c1−py + c(p − 1)γ(x/c)p − pγ(x/c)p−1x, considered on
(0, x/λ0], attains its minimum for c = c∗(x, y).

Proof. The equation (2.5) is equivalent to ξ(x/c) = y/xp, so the existence and the unique-
ness of the root follows at once from the previous lemma. To show that c∗(x, y) ≤ x/λ0

(that is, x/c∗(x, y) ≥ λ0), we use the monotonicity of ξ together with the estimate

ξ(λ0) =
λ1−p
0

p− 1
≥ y

xp
,

which is assumed in the statement of the lemma. The second part of the assertion follows
from di�erentiation. Indeed, the derivative of the function in question is precisely the
left-hand side of (2.5); obviously, this derivative is a continuous function and, as we have
just proved, it has a unique zero. Thus it su�ces to note that its value at c = x/λ0

is nonnegative and its limit as c → 0 is negative. The �rst inequality has already been
analyzed above, the negativity of the limit follows at once from observing that

(1− p)c−py + (p− 1)γ
(x
c

)p
+

x

c
= (1− p)c−p(y − xp) + (p− 1)

(
γ
(x
c

)p
−
(x
c

)p)
+

x

c
,

and recalling that y > xp and γ(t) < t for all t. □
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2.2. Two martingale inequalities. We are ready to introduce a family (Uλ)λ≥0 of
special functions, de�ned on the angular domain D = {(x, y) : 0 ≤ x ≤ y}, which will
play a central role in this paper. First we need to consider appropriate subdomains Dλ

i

of D. We consider two cases. If λ ≥ λ0, we introduce three domains Dλ
0 , D

λ
1 and Dλ

2 ,
given by

Dλ
1 = {(x, y) ∈ D : λ ≤ y ≤ g(x)},

Dλ
2 = {(x, y) ∈ D : x ≥ γ(λ), y < λ},

Dλ
0 = D \ (Dλ

1 ∪Dλ
2 ).

For 0 ≤ λ < λ0, there are four domains, de�ned by

Dλ
1 = {(x, y) ∈ D : λ0 ≤ y ≤ g(x)},

Dλ
2 = {(x, y) ∈ D : y < λ},

Dλ
3 = {(x, y) ∈ D : λ ≤ y < λ0},

Dλ
0 = D \ (Dλ

1 ∪Dλ
2 ∪Dλ

3 ).

See Figure 1 below.

Figure 1. The subdomains Dλ
i in the case λ ≥ λ0 (left) and λ < λ0

(right). On the right picture, the common boundary between Dλ
0 and

Dλ
1 is the graph of the function g.

To de�ne Uλ : D → R, we also consider two cases. For λ ≥ λ0, we let

Uλ(x, y) =


(y − λ)+ − xp if (x, y) ∈ Dλ

0 ,

y − λ+ (p− 1)γ(y)p − pγ(y)p−1x if (x, y) ∈ Dλ
1 ,

(p− 1)γ(λ)p − pγ(λ)p−1x if (x, y) ∈ Dλ
2 ,

while for 0 ≤ λ < λ0, we put

Uλ(x, y) =


(y − λ)+ − xp if (x, y) ∈ Dλ

0 ,

y − λ+ (p− 1)γ(y)p − pγ(y)p−1x if (x, y) ∈ Dλ
1 ,

x ln(λ0/λ) if (x, y) ∈ Dλ
2 ,

y − λ+ x ln(λ0/y) if (x, y) ∈ Dλ
3 .
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It is easy to check that for any �xed y > 0, the function Uλ(·, y) is of class C1 on [0, y],
in particular, the partial derivative ∂xUλ(x, y) exists for any x ∈ [0, y]. In the lemma
below we study two further important properties of the above functions.

Lemma 2.4. (i) For any (x, y) ∈ D we have the majorization

(2.6) Uλ(x, y) ≥ (y − λ)+ − xp.

(ii) For any (x, y) ∈ D and any h ≥ x we have the estimate

(2.7) Uλ(x+ h, (x+ h) ∨ y) ≤ Uλ(x, y) + ∂xUλ(x, y)h

(we set ∂xUλ(0, 0) = 0).

Proof. We will only check the case λ ≥ λ0, for 0 ≤ λ < λ0 the reasoning is similar.
(i) The claim is trivial for (x, y) ∈ Dλ

0 (both sides are equal). If (x, y) ∈ Dλ
1 or

(x, y) ∈ Dλ
2 , the estimate (2.6) is equivalent to (p − 1)γ(y)p + xp ≥ pγ(y)p−1x or (p −

1)γ(λ)p + xp ≥ pγ(λ)p−1x, respectively, which follows at once from Young's inequality.
(ii) It is obvious from the formulas on Dλ

0 , D
λ
1 and Dλ

2 that for each y, the function
Uλ(·, y) : [0, y] → R is concave. Therefore, the estimate (2.7) holds true for x + h ≤ y
and we may restrict ourselves to x + h > y. Exploiting the concavity of Uλ(·, y) again,
we may write

Uλ(x, y) + ∂xUλ(x, y)h = Uλ(x, y) + ∂xUλ(x, y)(y − x) + ∂xUλ(x, y)(x+ h− y)

≥ Uλ(y, y) + ∂xUλ(y, y)(x+ h− y).

Thus we will be done if we show that Uλ(x+h, x+h) ≤ Uλ(y, y)+ ∂xUλ(y, y)(x+h− y).
To this end, we make three observations. First, the function y 7→ Uλ(y, y) is of class C

1

(straightforward); second, the function y 7→ ∂xUλ(y, y) is nonincreasing (this is also very
simple); �nally, we have ∂yUλ(y, y) = 0 for any y > 0: this is clear if (y, y) ∈ Dλ

0 ∪Dλ
2 , and

follows from the di�erential equation (2.2) for (y, y) ∈ Dλ
1 . Putting these observations

together, we obtain that the function y 7→ Uλ(y, y) is concave and hence

Uλ(x+ h, x+ h) ≤ Uλ(y, y) +
(
∂xUλ(y, y) + ∂yUλ(y, y)

)
(x+ h− y)

= Uλ(y, y) + ∂xUλ(y, y)(x+ h− y).

The proof is complete. □

We are ready to prove the main results of this section.

Theorem 2.5. Suppose that (fn)n≥0 is an arbitrary nonnegative martingale bounded in
Lp. Then for any λ ≥ 0 we have the estimate

(2.8) E(f∗ − λ)+ ≤ ∥f∥pp + Uλ(Ef0,Ef0).

Proof. Let us extend the �ltration (Fn)n≥0 by setting F−1 = {∅,Ω}; this adds the variable
f−1 ≡ Ef0 to the martingale (fn)n≥0 (and possibly increases its maximal function, but this
will not a�ect the proof). The key observation is that the composition (Uλ(fn, f

∗
n))n≥−1

is a supermartingale. Indeed, the integrability of Uλ(fn, f
∗
n) follows from the estimate

Uλ(x, y) ≤ cp(1 + xp + yp), valid for some constant cp depending only on p, and the
assumed Lp-boundedness of f . Furthermore, for any n ≥ −1 we have

E
[
Uλ(fn+1, f

∗
n+1)|Fn

]
= E

[
Uλ(fn + dfn+1, (fn + dfn+1) ∨ f∗

n)
∣∣Fn

]
≤ Uλ(fn, f

∗
n) + ∂xUλ(fn, f

∗
n)E(dfn+1|Fn) = Uλ(fn, f

∗
n),
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where the inequality follows directly from (2.7), applied with x = fn, y = f∗
n and h =

dfn+1. Consequently, for any n we have EUλ(fn, f
∗
n) ≤ EUλ(f−1, f

∗
−1) = Uλ(Ef0,Ef0),

which combined with (2.6) yields

E(f∗
n − λ)+ − ∥f∥pp ≤ E(f∗

n − λ)+ − Efp
n ≤ EUλ(fn, f

∗
n) ≤ Uλ(Ef0,Ef0).

It remains to let n → ∞ and apply Lebesgue's monotone convergence theorem. □

We will also need the following re�ned version of the above estimate.

Theorem 2.6. Suppose that (fn)n≥0 is an arbitrary nonnegative martingale with ∥f∥1 =

x and ∥f∥pp = y. If (p− 1)λp−1
0 y ≤ xp < y, then for any λ > 0 we have

(2.9) E(f∗ − λ)+ ≤ K(x, y)p

p− 1
λ1−p,

where

K(x, y) =
p− 1

p

[
c1−p
∗ y + x+ (p− 1)c∗γ

(
x

c∗

)p

− pγ

(
x

c∗

)p−1

x

]
and c∗ = c∗(x, y) is given by (2.5).

Proof. We will consider two major cases x ≥ λ and x < λ separately.

Case x ≥ λ. Apply (2.8) to f/c∗ and λ/c∗ to obtain an estimate equivalent to

E(f∗ − λ)+ ≤ c1−p
∗ ∥f∥pp + c∗Uλ/c∗

(
x

c∗
,
x

c∗

)
.

But x/c∗ ≥ λ0, so we get

E(f∗ − λ)+ ≤ c1−p
∗ y + x− λ+ c∗(p− 1)γ

(
x

c∗

)p

− pγ

(
x

c∗

)p−1

x

(no matter whether λ/c∗ ≥ λ0 or not; in both cases, the formula for Uλ/c∗ (x/c∗, x/c∗)

is the same, since (x/c∗, x/c∗) ∈ D
λ/c∗
1 ). That is, we have shown that E(f∗ − λ)+ ≤

pK(x, y)/(p− 1)− λ, and the latter expression does not exceed K(x, y)pλ1−p/(p− 1), by
virtue of Young's inequality.

Case x < λ. Pick the parameter c = λc∗/x and proceed as in the previous case to get

(2.10) E(f∗ − λ)+ ≤ c1−p∥f∥pp + cUλ/c

(x
c
,
x

c

)
.

Now there are two sub-cases. If x/c ≥ γ(λ/c), this is equivalent to

E(f∗ − λ)+ ≤ c1−py + (p− 1)cγ

(
λ

c

)p

− pγ

(
λ

c

)p−1

x

=

(
λ

x

)1−p
[
c1−p
∗ y + (p− 1)c∗γ

(
x

c∗

)p

·
(
λ

x

)p

− pγ

(
x

c∗

)p−1

x ·
(
λ

x

)p−1
]
.

Let us optimize the expression in the square brackets, considered as a function of λ/x.
We know that 1 ≤ λ/x ≤ (x/c∗)/γ(x/c∗) (the second inequality is equivalent to x/c ≥
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γ(λ/c)). Therefore, we have

d

ds

[
c1−p
∗ y + (p− 1)c∗γ

(
x

c∗

)p

· sp − pγ

(
x

c∗

)p−1

x · sp−1

]

= p(p− 1)γ

(
x

c∗

)p

sp−2c∗

(
s− x/c∗

γ(x/c∗)

)
< 0

for s = λ/x. That is, the expression in the square brackets is the largest for s = 1, and
hence we obtain

(2.11) E(f∗ − λ)+ ≤
(
λ

x

)1−p
[
c1−p
∗ y + (p− 1)c∗γ

(
x

c∗

)p

− pγ

(
x

c∗

)p−1

x

]
,

or E(f∗ − λ)+ ≤ (λ/x)1−p (pK(x, y)/(p− 1)− x). It remains to note that the latter
expression is not bigger than K(x, y)pλ1−p/(p− 1), by Young's inequality.

Finally, we need to consider the second sub-case x/c < γ(λ/c). Under this assumption,
the estimate (2.10) becomes

E(f∗ − λ)+ ≤ c1−p(y − xp) =

(
λ

x

)1−p

c1−p
∗ (y − xp),

which implies (2.11) and the assertion, by the Young inequality again. □

3. Proofs of Theorems 1.1 and 1.2

We start with Theorem 1.2. If y = xp, then the claim is trivial: the only martingale
which satis�es the conditions ∥f∥1 = x and ∥f∥pp = xp is the constant one: f ≡ x, for
which ∥|f |∥p,∞ = x. Hence, from now on, we will assume that y > xp.

3.1. Proof of the upper bound for Bp. We consider two major cases: (p− 1)λp−1
0 y ≥

xp and (p− 1)λp−1
0 y < xp. In the �rst case, we apply the estimate (2.8) with λ = λ0 and

the martingale f/c, where c is a positive parameter which will be speci�ed in a moment.
Since Uλ0(s, s) ≤ 0 for all s ≥ 0, we obtain E(f∗/c− λ0)+ ≤ ∥f/c∥pp, or

E(f∗ − cλ0)+ ≤ c1−p∥f∥pp = c1−py.

Now pick an arbitrary event A of positive probability. We may write∫
A

f∗dP = cλ0P(A) +

∫
A

(f∗ − cλ0)dP ≤ cλ0P(A) +

∫
A

(f∗ − cλ0)+dP

≤ cλ0P(A) + E(f∗ − cλ0)+ ≤ cλ0P(A) + c1−py.

The latter expression, considered as a function of c, attains its minimal value for c =(
(p− 1)yλ−1

0 P(A)−1
)1/p

. Plugging this choice above, we get∫
A

f∗dP ≤ p

p− 1
λ
1−1/p
0 ((p− 1)y)1/pP(A)1−1/p = Γ

(
2p− 1

p− 1

)1−1/p

y1/p · P(A)1−1/p.

Since A was arbitrary, the estimate follows. In the case (p− 1)λp−1
0 y < xp the reasoning

is similar, but we apply Theorem 2.6 instead. Namely, we take an arbitrary event A with
P(A) > 0 and argue as above, obtaining∫

A

f∗dP ≤ λP(A) +
K(x, y)p

p− 1
λ1−p.
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The expression on the right, considered as a function of λ, attains its minimum for
λ = K(x, y)P(A)−1/p. Plugging this special λ above, we obtain the claim.

3.2. Proof of the lower bound for Bp. We will proceed directly and construct ap-
propriate examples. It is enough to consider continuous-time martingales: as we have
mentioned in the introductory section. As previously, we consider two cases.

Case (p − 1)λp−1
0 y ≤ xp. Let c∗ = c∗(x, y) be the number de�ned in (2.5). Consider

the probability space equal to the interval [0, 1], equipped with its Borel subsets and the
Lebesgue measure. We introduce the continuous-time �ltration (Ft)t∈[0,1], where the σ-
algebra Ft is generated by the interval [0, 1−t] and all Borel subsets of (1−t, 1]. Consider
the random variable

ξ(ω) = c∗

(
γ

(
x

c∗

)p−1

− lnω

p

)1/(p−1)

and the associated martingale (ξt)t∈[0,1] = (E(ξ|Ft))t∈[0,1]. We compute that

Eξ = c∗

∫ 1

0

(
γ

(
x

c∗

)p−1

− lnω

p

)1/(p−1)

dω

= c∗

∫ ∞

0

(
γ

(
x

c∗

)p−1

+
u

p

)1/(p−1)

e−udu

= c∗p
−1/(p−1)

∫ ∞

pγ(x/c∗)p−1

u1/(p−1) exp

(
−u+ pγ

(
x

c∗

)p−1
)
du

= c∗p(p− 1) exp

(
pγ

(
x

c∗

)p−1
)∫ ∞

γ(x/c∗)

tp−1 exp(−ptp−1)dt

= c∗g

(
γ

(
x

c∗

))
= c∗ ·

x

c∗
= x

and, similarly,

Eξp = cp∗

∫ 1

0

(
γ

(
x

c∗

)p−1

− lnω

p

)p/(p−1)

dω

= cp∗p(p− 1) exp

(
pγ

(
x

c∗

)p−1
)∫ ∞

γ(x/c∗)

t2p−2 exp(−ptp−1)dt

= cp∗

[
γ

(
x

c∗

)p

+
g (γ (x/c∗))

p− 1

]
= cp∗

[
γ

(
x

c∗

)p

+
x/c∗
p− 1

]
,

where in the third line we have applied (2.4). However, by (2.5), the last expression
above is equal to y: thus, Eξp = y. Finally, the maximal function of (ξt)t∈[0,1] satis�es

ξ∗(ω) ≥ ξω(ω) = (1−ω)−1
∫ 1−ω

0
ξ(s)ds. Carrying out similar calculations to those above,

we obtain

∥|ξ∗|∥p,∞ ≥ Eξ∗ ≥ c∗

(
px/c∗
p− 1

+ pγ

(
x

c∗

)p

− pγ

(
x

c∗

)p−1
x

c∗

)
,

which is the desired lower bound, by (2.5).
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Case (p− 1)λp−1
0 y > xp. Consider the auxiliary parameters

x̄ = (p− 1)1/(p−1)
(y
x

)1/(p−1)

λ0 and ȳ = (p− 1)1/(p−1)
(y
x

)p/(p−1)

λ0.

Note that x̄ > x, by the assumption of our case. Furthermore, we check easily that
(p− 1)λp−1

0 ȳ = x̄p, so by the construction from the previous case, there is a martingale ξ̄
satisfying ∥ξ̄∥1 = x̄, ∥ξ̄∥pp = ȳ and

Eξ̄∗ = Bp(x̄, ȳ) = x̄+ λp−1
0 x̄1−pȳ = p(p− 1)1/(p−1)−1λ0

(y
x

)1/(p−1)

.

We introduce the martingale (ξt)t∈[0,1] as follows. First we pick an event A of probability
x/x̄. We assume that on Ac, the compliment of A, the martingale (ξt)t∈[0,1] is constant
and equal to zero; on the other hand, on A its conditional distribution is the same as that
of ξ̄. Then we have ∥ξ∥1 = ∥ξ̄∥1 · x/x̄ = x, ∥ξ∥pp = ∥ξ̄∥pp · x/x̄ = xȳ/x̄ = y and

∥|ξ|∥p,∞ ≥ P(A)1/p−1

∫
A

ξ∗dP = P(A)1/p · Eξ̄∗ = (x/x̄)1/p · Bp(x̄, ȳ).

3.3. Proof of Theorem 1.1. To show (1.1), it is enough to prove the estimate

Bp(x, y) ≤ Γ

(
2p− 1

p− 1

)1−1/p

y1/p.

If (p− 1)λp−1
0 y ≥ xp, then both sides are equal; otherwise, the inequality is equivalent to

c1−p
∗ y + x+ (p− 1)c∗γ

(
x

c∗

)p

− pγ

(
x

c∗

)p−1

x ≤ pλ
1−1/p
0

(p− 1)1−1/p
y1/p.

Lemma 2.3 implies that the left-hand side of above inequality is not greater than

h(x) = a1−p
y y + x+ (p− 1)ayγ

(
x

ay

)p

− pγ

(
x

ay

)p−1

x,

where ay = [(p − 1)y]1/pλ
−1/p
0 < x/λ0. However, h(x) ≤ a1−p

y y + ayλ0. Indeed, for

x = ayλ0 we have equality here and h′(x) = −pγ (x/ay)
p−1 ≤ 0. It remains to observe

that a1−p
y y + ayλ0 = p(p− 1)1/p−1λ

1−1/p
0 y1/p. This gives (1.1). Its sharpness follows at

once from the fact that Bp(x, y) = Γ
(

2p−1
p−1

)1−1/p

y1/p on a part of the domain of Bp.
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