A NOTE ON BURKHOLDER-ROSENTHAL INEQUALITY

ADAM OSEKOWSKI

ABSTRACT. Let $d f$ be a Hilbert-space-valued martingale difference sequence. The paper is devoted to a new, elementary proof of the estimate

$$\left\| \sum_{k=0}^{\infty} d f_k \right\|_p \leq C_p \left\{ \left(\sum_{k=0}^{\infty} \mathbb{E}(|d f_k|^2 |\mathcal{F}_{k-1}) \right)^{1/2} + \left(\sum_{k=0}^{\infty} |d f_k|^p \right)^{1/p} \right\},$$

with $C_p = O(p/\ln p)$ as $p \to \infty$.

1. Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, filtered by $(\mathcal{F}_n)_{n \geq 0}$, a nondecreasing family of sub-σ-algebras of \mathcal{F}. Assume that f is an adapted martingale, taking values in a certain separable Hilbert space H with norm $|\cdot|$ and scalar product $\langle \cdot, \cdot \rangle$. Then $d f = (d f_n)_{n \geq 0}$, the difference sequence of f, is given by $d f_0 = f_0$ and $d f_n = f_n - f_{n-1}$, $n \geq 1$. We define the conditional square function of f by

$$s(f) = \left[\sum_{k=0}^{\infty} \mathbb{E}(|d f_k|^2 |\mathcal{F}_{k-1}) \right]^{1/2},$$

(here and below, $\mathcal{F}_{-1} = \mathcal{F}_0$) and use the notation

$$s_n(f) = \left[\sum_{k=0}^{n} \mathbb{E}(|d f_k|^2 |\mathcal{F}_{k-1}) \right]^{1/2}, \quad n = 0, 1, 2, \ldots,$$

for the truncated conditional square function of f.

The purpose of this note is to investigate Burkholder-Rosenthal inequality

$$(1.1) \quad \|f\|_p \leq c_p \left(\|s(f)\|_p + \left\| \sum_{k=0}^{\infty} |d f_k|^p \right\|^{1/p}_p \right)$$

where $p \geq 2$ and c_p is a constant depending only on p. The special case in which the martingale f is a sum of independent mean-zero random variables forms an important extension of Khinchine inequality and was studied by Rosenthal in the 60’s. The proof from [11] gives the constant c_p which grows exponentially in p as $p \to \infty$. Johnson, Schechtman and Zinn [4] refined the reasoning and showed that the optimal order of c_p as $p \to \infty$ (still in the independent case) is $p/\ln p$. Applying difficult isoperimetric techniques, Talagrand [12] extended this statement to the case of independent Banach-space-valued random variables. Using hypercontractivity
methods, Kwapień and Szulga [7] gave a completely elementary proof of Talagrand’s result.

The inequality (1.1) for general real martingales (and some \(c_p \)) was established by Burkholder in [1]. The validity of this estimate with \(c_p = O(p/\ln p) \) was proved by Hitczenko [5] (see also [6]). This result was further generalized to vector-valued setting by Pinelis [10]. Consult also Nagaev [8] for a yet another approach.

The purpose of this paper is to present a new and elementary proof of (1.1) with \(c_p = O(p/\ln p) \). Precisely, we will establish the following statement.

Theorem 1.1. If \(f \) is a Hilbert-space-valued martingale, then for \(p \geq 4 \) we have

\[
\|f\|_p \leq C_p \left(\|s(f)\|_p^p + \left(\sum_{k=0}^{\infty} |d_k|^p \right)^{1/p} \right)^{1/p},
\]

where

\[
C_p = 2\sqrt{2} \left(\frac{p}{4} + 1 \right)^{1/p} \left(1 + \frac{p}{\ln(p/2)} \right).
\]

In fact, using Davis’ decomposition, we will be able to prove a slightly stronger estimate: see (2.10) and Remark 2.5 below.

A few words about the proof are in order. Hitczenko [5], [6] and Pinelis [10] apply the extrapolation method (good \(\lambda \)-inequality) of Burkholder and Gundy, combined with appropriate version of Prokhorov “arcsinh” estimate for martingales. Nagaev [8] first establishes a certain exponential bound for the tail of \(f \) and deduces Burkholder-Rosenthal estimate using a standard integration argument. Our approach is entirely different and exploits the properties of a certain special function; this type of proof can be regarded as an application of Burkholder’s method (see [2] and [9] for more on the subject).

2. Proof of Theorem 1.1

The starting point is the following technical estimate proved by Kwapień and Szulga [7].

Lemma 2.1. Let \(p \geq 4 \) and put

\[
\eta = \eta(p) := \frac{\ln(p/2)/p}{1 + \ln(p/2)/p}.
\]

Then for any \(t \geq 0 \) we have

\[
(1 + t\eta)^p - pt\eta \leq 1 + \left(\frac{p}{2} - 1 \right) t^2 + t^p.
\]

We shall require the following vector-valued version of this bound. From now on, we assume that \(p \geq 4 \) and that \(\sigma = \sigma(p) = \eta(p)/\sqrt{2} \).

Lemma 2.2. For any \(y, d \in \mathcal{H} \) we have

\[
|y + \sqrt{2}\sigma d|^p - p|y|^{p-2} \langle y, \sqrt{2}\sigma d \rangle \leq |y|^p + \frac{p}{2}|y|^{p-2}|d|^2 + |d|^p.
\]

Proof. The left-hand side can be rewritten in the form \(F(y, \sqrt{2}\sigma d) \), where

\[
F(s) = ||y|^2 + 2\sigma^2|d|^2 + 2s|p/2 - p|y|^{p-2}s, \quad s \in \mathbb{R}.
\]

Now keep \(|y| \) and \(|d| \) fixed; since the function \(F \) is convex, it suffices to prove the estimate for \(\langle y, \sqrt{2}\sigma d \rangle = \pm \sqrt{2}\sigma |y||d| \), i.e. in the case when \(y \) and \(d \) are linearly
dependent. If $\langle y, \sqrt{2}\sigma d \rangle = \sqrt{2}\sigma |y||d|$, then (2.2) follows directly from (2.1); on the other hand, if $\langle y, \sqrt{2}\sigma d \rangle = -\sqrt{2}\sigma |y||d|$, we have

$$|y + \sqrt{2}\sigma d|^p - p|y|^{p-2}\langle y, \sqrt{2}\sigma d \rangle = ||y| - \sqrt{2}\sigma |d||^p + p\sqrt{2}\sigma |y|^{p-1}|d|$$

$$\leq ||y| + \sqrt{2}\sigma |d||^p - p\sqrt{2}\sigma |y|^{p-1}|d|,$$

so the claim again follows from (2.1).

The key ingredient of the proof is the special function $U : [0, \infty) \times \mathcal{H} \times [0, \infty) \to \mathbb{R}$, given by

$$U(x, y, z) = \begin{cases} (|y|^2 - x^2)^{p/2} - cx^p - z & \text{if } |y| \geq \sqrt{2}x, \\ |y|^p - (2p/2 - 1 + c)x^p - z & \text{if } |y| < \sqrt{2}x, \end{cases}$$

where

$$c = p 2^{p/2-2} + 1.$$

Let us list some properties of this function.

Lemma 2.3. (i) For any $(x, y, z) \in [0, \infty) \times \mathcal{H} \times [0, \infty)$ we have

$$U(x, y, z) = \min \left\{ ||y|^2 - x^2||^{p/2} - cx^p - z, |y|^p - (2p/2 - 1 + c)x^p - z \right\}.$$ (2.3)

(ii) For any $x \geq 0$ and $y \in \mathcal{H}$ we have

$$U(x, y, 0) = \begin{cases} (|y|^2 - x^2)^{p/2} - cx^p - z & \text{if } |y| \geq \sqrt{2}x, \\ |y|^p - (2p/2 - 1 + c)x^p - z & \text{if } |y| < \sqrt{2}x, \end{cases}.$$ (2.4)

(iii) For all $(x, y, z) \in [0, \infty) \times \mathcal{H} \times [0, \infty)$ we have

$$U(x, y, z) \geq 2^{-p/2} \left[|y|^p - \sigma p C_p(x^p + z) \right].$$ (2.5)

Proof. (i) For fixed x, $z \geq 0$, the function

$$F(s) = s^p - (2p/2 - 1 + c)x^p - z - (|s|^2 - x^2)^{p/2} - cx^p - z,$$

vanishes at $s = \sqrt{2}x$ and is strictly increasing:

$$F'(s) = p s^{p-2} - |s|^2 - x^2 (p-2)/2 \sgn (|s|^2 - x^2).$$

This yields (2.3).

(ii) This is obvious, since $\sigma \leq 1$.

(iii) Using the definitions of C_p and σ, we see that we must prove the bound

$$U(x, y, z) \geq 2^{-p/2} \left[|y|^p - \left(\frac{p}{4} + 1 \right) 2^p (x^p + z) \right].$$

Now, for $|y| < \sqrt{2}x$, we have

$$U(x, y, z) = |y|^p - \left(\frac{p}{4} + 1 \right) 2^{p/2} x^p - z \geq 2^{-p/2} \left[|y|^p - \left(\frac{p}{4} + 1 \right) 2^p (x^p + z) \right].$$

On the other hand, if $|y| \geq \sqrt{2}x$, then $|y|^2 - x^2 \geq |y|^2/2$ and hence

$$U(x, y, z) \geq 2^{-p/2} \left[|y|^p - 2p/2 cx^p - 2p^2/2 \right],$$

so the majorization is clear.

We turn to the key property of the function U.

Lemma 2.4. For any $x, z \geq 0$, $y \in \mathcal{H}$ and any \mathcal{H}-valued, mean-zero random variable d with $||d||_p < \infty$ we have

$$\mathbb{E} U \left(\sqrt{x^2 + \mathbb{E} |d|^2}, y + \sigma d, z + |d|^p \right) \leq U(x, y, z).$$ (2.6)
Proof. We consider three cases separately.

1° The case \(|y|^2 \leq 2x^2\). By (2.3), we have

\[
\mathbb{E} \left(\sqrt{x^2 + \mathbb{E}|d|^2}, y + \sigma d, z + |d|^p \right)
\leq \mathbb{E}|y + \sigma d|^p - (2^{p/2} - 1 + c)(x^2 + \mathbb{E}|d|^2)^{p/2} - z - \mathbb{E}|d|^p
\]

= \mathbb{E}\{ |y + \sigma d|^p - p|y|^{p-2}(y, \sigma d) - |d|^p \} - (2^{p/2} - 1 + c)(x^2 + \mathbb{E}|d|^2)^{p/2} - z.

By (2.2), the expression in the parentheses does not exceed \(|y|^p + p|y|^{p-2}|d|^2/2\); furthermore, we have

\[
(2^{p/2} - 1 + c)(x^2 + \mathbb{E}|d|^2)^{p/2} \geq (2^{p/2} - 1 + c) \left(x^p + \frac{p}{2} x^{p-2} \mathbb{E}|d|^2 \right)
\]

\[
\geq (2^{p/2} - 1 + c)x^p + \frac{p}{2} x^{p-2} \mathbb{E}|d|^2
\]

\[
\geq (2^{p/2} - 1 + c)x^p + \frac{p}{2} |y|^{p-2} \mathbb{E}|d|^2.
\]

Combining these estimates, we obtain

\[
\mathbb{E} \left(\sqrt{x^2 + \mathbb{E}|d|^2}, y + \sigma d, z + |d|^p \right) \leq |y|^p - (2^{p/2} - 1 + c)x^p - z,
\]

which is precisely the desired bound.

2° The case \(2x^2 < |y|^2 \leq 2(x^2 + \mathbb{E}|d|^2)\). We start as previously: by (2.3) and then (2.2),

\[
\mathbb{E} \left(\sqrt{x^2 + \mathbb{E}|d|^2}, y + \sigma d, z + |d|^p \right)
\leq |y|^p + \frac{p}{2} |y|^{p-2} \mathbb{E}|d|^2 - (2^{p/2} - 1 + c)(x^2 + \mathbb{E}|d|^2)^{p/2} - z.
\]

The latter expression decreases as \(\mathbb{E}|d|^2\) increases; indeed, the function

\[
F(s) = |y|^p + \frac{p}{2} |y|^{p-2}s - (2^{p/2} - 1 + c)(x^2 + s)^{p/2} - z, \quad s \geq \frac{|y|^2}{2} - x^2,
\]

satisfies

\[
F'(s) \leq \frac{p}{2} \left[|y|^{p-2} - 2^{p/2-1}(x^2 + s)^{p/2-1} \right] \leq 0.
\]

In consequence, we have

\[
\mathbb{E} \left(\sqrt{x^2 + \mathbb{E}|d|^2}, y + \sigma d, z + |d|^p \right)
\leq F \left(\frac{|y|^2}{2} - x^2 \right)
\leq \frac{p}{2} |y|^{p-2} \left(\frac{|y|^2}{2} - x^2 \right) - (c - 1) \left(\frac{y^2}{2} \right)^{p/2} - z
\leq \frac{p}{2} |y|^{p-2}x^2 - z
\leq \left(\frac{|y|^2}{2} \right)^{p/2} \left(x^2 - \left(\frac{p}{2} + 2^{1-p/2} \right) |y|^{p-2}x^2 \right.
\leq \left(\frac{|y|^2}{2} \right)^{p/2} - c \left(\frac{|y|^2}{2} \right)^{p/2-1} x^2 - z
\leq (|y|^2 - x^2)^{p/2} - cx^p - z;
\]
and we are done.

3' The case $|y|^2 > 2(x^2 + E|d|^2)$. Here the reasoning is a bit more complicated. First we show the pointwise estimate

\begin{equation}
|y + \sigma d|^2 - x^2 - E|d|^2|^{p/2} - p|y|^2 - x^2 - E|d|^2|^{p/2-1}(y, \sigma d)
\leq \left(|y|^2 - x^2 - E|d|^2 \right)^{1/2} + \sqrt{2}\sigma|d|
\right)^p - p|y|^2 - x^2 - E|d|^2|^{(p-1)/2}\sqrt{2}\sigma|d|.
\end{equation}

In fact, we will establish a slightly stronger inequality:

\[
|y + \sigma d|^2 - x^2 - E|d|^2|^{p/2} - p|y|^2 - x^2 - E|d|^2|^{p/2-1}(y, \sigma d)
\leq \left(|y|^2 - x^2 - E|d|^2 + 2\sqrt{2}|y|^2 - x^2 - E|d|^2|^{1/2}\sigma|d| \right)^{p/2}
- p|y|^2 - x^2 - E|d|^2|^{(p-1)/2}\sqrt{2}\sigma|d|.
\]

To do this, divide throughout by $||y|^2 - x^2 - E|d|^2|^{p/2}$ and substitute

\[
A^2 = \frac{|y|^2 - x^2 - E|d|^2 + \sigma^2|d|^2}{|y|^2 - x^2 - E|d|^2}, \quad Y = \frac{y}{||y|^2 - x^2 - E|d|^2|^{1/2}}
\]

and

\[
D = \frac{d}{||y|^2 - x^2 - E|d|^2|^{1/2}}.
\]

The estimate becomes

\begin{equation}
|A^2 + 2\langle Y, \sigma D \rangle|^{p/2} - p(Y, \sigma D) \leq |A^2 + 2\sqrt{2}\sigma|D||^p - p\sqrt{2}\sigma|D|.
\end{equation}

However, the reasoning presented in the proof of (2.2) gives

\[
|A^2 + 2\langle Y, \sigma D \rangle|^{p/2} - p(Y, \sigma D) \leq (A^2 + 2\sigma|Y||D|)^{p/2} - p\sigma|Y||D|.
\]

It suffices to use the bounds $|Y| \leq \sqrt{2}$ and $A^2 \geq 1$ to obtain (2.8), because the function $s \mapsto (A^2 + 2s)^{p/2} - ps$ is increasing on $[0, \infty)$. Thus (2.7) follows. We turn to (2.6): applying (2.3), we get

\[
EU \left(\sqrt{x^2 + E|d|^2}, y + \sigma d, z + |d|^p \right)
\leq E \left[|y + \sigma d|^2 - x^2 - E|d|^2|^{p/2} - c(x^2 + E|d|^2)^{p/2} - z - E|d|^p \right]
\leq E \left[\left(|y + \sigma d|^2 - x^2 - E|d|^2 \right)^{1/2} + \sqrt{2}\sigma|d| \right)^p
\leq \left(|y|^2 - x^2 - E|d|^2 \right)^{1/2} + \sqrt{2}\sigma|d|
\right)^p - p|y|^2 - x^2 - E|d|^2|^{(p-1)/2}\sqrt{2}\sigma|d|\right)^p
- p|y|^2 - x^2 - E|d|^2\right)^{p/2-1}(y, \sigma d)
\leq \left(|y|^2 - x^2 - E|d|^2 + 2\sqrt{2}|y|^2 - x^2 - E|d|^2\right)^{p/2}
- p|y|^2 - x^2 - E|d|^2\right)^{(p-1)/2}\sqrt{2}\sigma|d|.
\]

Now we apply (2.2) (in the real case) to obtain

\[
EU \left(\sqrt{x^2 + E|d|^2}, y + \sigma d, z + |d|^p \right)
\leq \left(|y|^2 - x^2 - E|d|^2 \right)^{p/2} + \frac{p}{2} |y|^2 - x^2 - E|d|^2\right)^{p/2-1}\sigma|d|^2 + c|x|^p - z
\leq |y|^2 - x^2|^{p/2} - cx^p - z = U(x, y, z).
\]

This completes the proof. \qed
Proof of (1.2). It suffices to prove that for any nonnegative integer n,

$$
E|f_n|^p \leq C_p E \left(s_n^p(f) + \sum_{k=0}^n |df_k|^p \right).
$$

Of course, we may assume that df_0, df_1, \ldots, df_n (and hence also f_n) belong to L^p, since otherwise there is nothing to prove. The key observation is that the process

$$
\left(U\left(s_n(f), \sigma f_n, \sum_{k=0}^n |df_k|^p \right) \right)_{n \geq 0}
$$

is a supermartingale with respect to $(\mathcal{F}_n)_{n \geq 0}$. Indeed, the integrability follows from the above assumption on df; furthermore, for any $n \geq 0$ we have

$$
E \left[U \left(s_{n+1}(f), \sigma f_{n+1}, \sum_{k=0}^{n+1} |df_k|^p \right) \bigg| \mathcal{F}_n \right] = E \left[U \left(\sqrt{s_n^2(f) + E(|df_{n+1}|^2|\mathcal{F}_n)|}, \sigma f_n + \sigma df_{n+1}, \sum_{k=0}^n |df_k|^p + |df_{n+1}|^p \right) \bigg| \mathcal{F}_n \right],
$$

which does not exceed $U(s_n(f), \sigma f_n, \sum_{k=0}^n |df_k|^p)$, by (2.6) applied conditionally with respect to \mathcal{F}_{n-1}. Next, we have $U(s_0(f), \sigma f_0, |df_0|^p) \leq 0$, in view of (2.4). Combining these two facts with (2.5) yields the claim:

$$
E \left[|f_n|^p - C_p \left(s_n^p(f) + \sum_{k=0}^n |df_k|^p \right) \right] \leq \frac{2p/2}{\sigma_p} E \left(s_n(f), \sigma f_n, \sum_{k=0}^n |df_k|^p \right) \leq 0. \quad \Box
$$

Remark 2.5. Using Davis’ decomposition (see e.g. Davis [3] or Burkholder [1]), one can deduce a slightly stronger form of (1.2). Namely, for all f as in the statement of Theorem 1.1 and $p \geq 4$ we have

$$
\|f\|_p \leq 2C_p \left(\|s(f)\|_p^p + \|df^*\|_p^p \right)^{1/p},
$$

where $df^* = \sup_{n \geq 0} |df_n|$. Indeed, fix a martingale f and consider the random variables $d_{n-1}' = df_n 1_{|df_n| \leq 2df^*_{n-1}}$, $d_n'' = df_n 1_{|df_n| > 2df^*_{n-1}}$. Here, as usual, $df^*_n \equiv 0$ and $df^*_n = \max_{0 \leq k \leq n} |df_k|$. Note that on the set $\{ |df_n| \geq 2df^*_{n-1} \}$ we have

$$
(2p - 1)|d_{n-1}'|^p + (2df^*_{n-1})^p \leq (2|df_n|)^p \leq (2df^*_n)^p,
$$

which implies

$$
\sum_{k=0}^n |d_k'|^p \leq \frac{2p}{2p - 1} (df^*_n)^p, \quad n = 0, 1, 2, \ldots.
$$

Next, observe that for any n,

$$
E \left[\sum_{k=0}^n |d_k|^p \right] \leq \sum_{k=0}^n E(2|df^*_k|^{2} (2df^*_k)^{p-2})
$$

$$
= \sum_{k=0}^n E(|df_k|^2|\mathcal{F}_{k-1})(2df^*_k)^{p-2}
$$

$$
\leq E s_n^p(f)(2df^*_n)^{p-2}
$$

$$
\leq \frac{2}{p} \|s_n(f)\|_p^p + \frac{p - 2}{p} \|2df^*_n\|_p^p.
$$
where in the last line we have exploited Young’s inequality. Combining the above estimates for the sums of \(d'_n \) and \(d''_n \) we get

\[
\mathbb{E} \sum_{k=0}^{n} |df_k|^p \leq \frac{2}{p} \left(\frac{1}{2p - 1} + \frac{p - 2}{p} \right) ||s_n(f)||_p^p + 2^p ||df^*_n||_p^p
\]

Plugging this into (2.9) and using the fact that \(n \) is an arbitrary nonnegative integer, we obtain (2.10).

References

Department of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
E-mail address: ados@mimuw.edu.pl